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Abstract. In a groupoid, consider arbitrarily parenthesized expressions on the k variables
x0, x1, . . . xk−1 where each xi appears once and all variables appear in order of their indices.
We call these expressions k-ary formal products, and denote the set containing all of them
by Fσ(k). If u, v ∈ Fσ(k) are distinct, the statement that u and v are equal for all values
of x0, x1, . . . xk−1 is a generalized associative law.
Among other results, we show that many small groupoids are completely dissociative,

meaning that no generalized associative law holds in them. These include the two groupoids
on {0, 1} where the groupoid operation is implication and NAND, respectively.
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1. Introduction

Our earlier paper, [3], begins an investigation of groupoids G := 〈G; ⋆〉 in which

the binary operation ⋆ : G×G → G fails to be associative; that is, those G for which

there exists an ordered triple g0g1g2 ∈ G3 with (g0 ⋆ g1) ⋆ g2 6= g0 ⋆ (g1 ⋆ g2). The

failure of a triple to associate may induce differing products of longer strings too.

We study generalized associativity in G, using product formulas u. A k-ary u is

on the k variables x0x1 . . . xk−1, each appearing in u exactly once and in the order

of its index. We focus on those G for which, given k-ary formulas u 6= v, there is

a string ~g := g0g1 . . . gk−1 ∈ Gk such that ~gu⋆ 6= ~gv⋆, where ~gu⋆ ∈ G denotes the

product under ⋆ which is computed after gi replaces xi in u for each i. Such G we call

k-dissociative. We call G completely dissociative if it is k-dissociative for all k > 3.

In §3 a general result enables us to prove many G to be completely dissociative. Six

of the sixteen groupoids on the set 2 := {0, 1} are completely dissociative. Among
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them are those expressing the logical operators implication and NAND. The proof

that NAND is completely dissociative uses boolean algebra. Some groupoids on the

sets 3 := {0, 1, 2} and 4 := {0, 1, 2, 3} are completely dissociative. There are infinite

completely dissociative groupoids as well.

In §4, Birkhoff’s Theorem in universal algebra leads us to study primitive com-

pletely dissociative groupoids. These are the G that are minimal completely disso-

ciative groupoids in the variety they generate. We show that a number of finite G

are primitive, illustrating general techniques in the process.

§5 discusses representations for k > 3 of k-ary operations ϕ : Gk → G via a string
~β := β0β1 . . . βk−2 of binary operations βj : G2 → G. There exist ϕ : Gk → G that

are unrepresentable thus if and only if 2 6 |G| < ∞.

Recalling [3], we summarize our terminology in §2.

2. Our language

Henceforth ω := {0, 1, 2, . . .} and N := {1, 2, 3, . . .}. When n ∈ N then n also

denotes the set {0, 1, . . . , n − 1}.

For {k, n} ⊆ N we write nk to designate the set of all k-tuples of elements in n,

and nω denotes the set of all infinite sequences j0j1j2 . . . whose terms are elements

in n. Obviously the number of k-ary operations, ϕ : nk → n on the set n, is equal

to the integer nnk

. The most familiar are for k = 2; namely, the nn2

distinct binary

operations on the set n.

As in [3], we often employ reverse Polish notation, rPn, for the k-ary operations

ϕ : Gk → G, putting operation symbols after what they are applied to.

The paper [3] discusses the set F σ(k) of all “formal k-products”, which we re-

introduce in Definition 2.1, below. Our “formal products” are special instances of

what, in the more encompassing language of universal algebra, are called “terms”.

An example might clarify our intent:

Consider the formal 5-product u := x0x1 • x2x3 • •x4• ∈ F σ(5). (Which is

((x0 • x1) • (x2 • x3)) • x4 in infix notation.)

When G is a set, and if ~β is a 4-tuple β0β1β2β3 with βi : G2 → G for every i ∈ 4,

then by our comments after Definition 2.2 below, the equalities

u
~β := x0x1 • x2x3 • •x4•

~β := x0x1β0x2x3β1β2x4β3

present a 5-ary operation u
~β : G5 → G on G.

If the finite sequence of binary operations has βi = ⋆ for all relevant i, then we

may write v
~β more simply as v⋆.

Here is a synopsis and modification of terminology introduced in [3]:
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Viewing a word w as a (finite or infinite) sequence, we say that s is a subword of

w iff s is a subsequence of w. A subword of w whose letters occur consecutively in

w we call a segment of w; some authors use the word “block” to designate a segment

in a one-letter alphabet.

An initial segment of w we call a prefix of w; a terminal segment of w we call

a suffix of w. Of course a nonempty suffix of w is infinite if and only if w is itself

infinite.

Finite words we usually call tuples. But from now on, infinite words will always

be called sequences, and our “sequences” will always be infinite.

Henceforth ~x := x0x1x2 . . . denotes an infinite sequence of distinct variables xi,

and • denotes an operator symbol. Let Σ := {•, x0, x1, x2, . . .}. Then Σ∗ denotes

the set of finite words each of whose letters is an element in the infinite alphabet Σ.

Definition 2.1. Let u ∈ Σ∗, and let k ∈ N. Then u is said to be a formal

k-product iff it consists of x0x1 . . . xk−1 with k − 1 many • symbols inserted in it to

make a valid rPn expression.

The expression F σ(k) denotes the set of all formal k-products, and the set of all

formal products is then F σ :=
⋃

{F σ(k) : k ∈ N}.

Given b ∈ F σ(j), we let bi denote the element in Σ∗ obtained by replacing in b

the letter xt with the letter xi+t for each t ∈ ω. This enables us to define the binary

operation ⊙ : F σ × F σ → F σ by ab⊙ := abi• where a ∈ F σ(i). It is routine to

verify that every w ∈ F σ \ {x0} has a unique factorization under ⊙ into a product

w = ps⊙ of two elements in F σ.

Definition 2.2. Let {n, k} ⊆ N, and let u ∈ F σ(k). For each j ∈ k − 1 let

βj : n2 → n, and let ~β be the (k− 1)-tuple β0β1 . . . βk−2. Then u
~β denotes the word

in {β0, β1, . . . βk−2, x0, x1, x2, . . .}∗ obtained by substituting the operation symbol βj

for the jth occurrence of the letter • in the word u, for each j ∈ k − 1. We call the

words u
~β formal k-ary products in ~β.

For a given ~β, we also write u
~β for the operation on n that takes g0g1 . . . gk−1 ∈ Gk

to ~gu
~β ∈ G obtained by replacing x0 with g0, x1 with g1 and so on in u

~β. In this

case, we say that u represents ϕ via ~β.

For k ∈ N and u ∈ F σ(k) and ~g ∈ Gω , note that ~gu
~β is determined by the length-k

prefix of ~g. The “extra” terms in ~g simplify our notation.

Two additional conventions: When y ∈ G and ~g := g0g1g2 . . . ∈ Gω is the sequence

such that gt = y for all t ∈ ω then we may write ~g instead as ~y, where ~y := yyy . . .

That is, when y ∈ G then ~y := yyy . . . ∈ Gω.

For 〈G; ⋆〉 a groupoid, when ~g = g0g1g1 . . . ∈ Gω and m ∈ ω then ~gm denotes the

infinite suffix gmgm+1gm+2 . . . of ~g. Thus ~gum
⋆ = ~gmu⋆.
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3. Dissociativity

For G := 〈G; ⋆〉 a groupoid, we say that ~g separates u from v in G iff ~gu⋆ 6= ~gv⋆.

Definition 3.1. 〈G; ⋆〉 is said to be k-dissociative iff every pair u 6= v of elements

in F σ(k) can be separated by a sequence in Gω. We call 〈G; ⋆〉 completely dissociative

iff 〈G; ⋆〉 is k-dissociative for every k > 3.

(In [3], we instead used the term “completely free”.) The 3-dissociative groupoids

are those which are not semigroups.

Another way to view this is as follows. Our formal products also correspond to

specific kinds of terms ; namely, those where the variables x0, x1, x2, . . . xk−1 each

appear exactly once, and in the order given here. Expressions such as u⋆ we call

formal products interpreted in G (or by ⋆).

We say that G satisfies the identity u ≈ v iff u⋆ = v⋆ in G. If u 6= v, then u ≈ v is

a nontrivial identity. So we have that G is k-dissociative if and only if no nontrivial

k-ary identity is satisfied between formal products interpreted in G.

We begin with a few remarks. For every integer k > 3, notice that:

(1) G is k-dissociative if, and only if, |F σ(k)/G| = |F σ(k)| and each ≈G equivalence

class is a singleton [v]G = {v} ⊆ F σ(k).

(2) Both isomorphism and anti-isomorphism respect k-dissociativity.

(3) G is k-dissociative if G has a k-dissociative subgroupoid.

(4) If a component groupoid of a cartesian product groupoid is k-dissociative then

the product groupoid is also k-dissociative.

(5) If G has a k-dissociative homomorphic image, G is k-dissociative.

While the five statements above can all be verified directly, the last four are also

consequences of Birkhoff’s Theorem in Universal Algebra. This will be discussed in

more detail in §4.

Q u e s t i o n 3.1. For each k > 3 is there a k-dissociative groupoid which is not

(k + 1)-dissociative?

Theorem 3.1. If 〈G; ⋆〉 is k-dissociative, then 〈G; ⋆〉 is j-dissociative for all j ∈

{3, 4, . . . , k − 1}.

P r o o f. We assume k > 3, since otherwise the assertion is vacuous. To prove

the contrapositive, suppose that 3 6 j < k and that a⋆ = b⋆ for some formal j-

products a 6= b. Then of course {axj . . . xk • . . . •, bxj . . . xk • . . . •} ⊆ F σ(k +1) and

axj . . . xk • . . . • 6= bxj . . . xk • . . . •,. Let ~g ∈ Gω be arbitrary. Since ~ga⋆ = ~g b⋆, we

have ~gaxj . . . xk •. . . •⋆ = ~ga⋆gj . . . gk⋆. . . ⋆ = ~gb⋆gj . . . gk⋆. . . ⋆ = ~gbxj . . . xk •. . . •⋆.

Thus axj . . . xk • . . . •⋆ = bxj . . . xk • . . . •⋆. �

82



We already have an example of an infinite completely dissociative groupoid. An

easy induction shows that 〈F σ,⊙〉 is completely dissociative.

Conjecture 3.13 in [3] fails. Of the 16 binary operation tables on set 2, eight are

of semigroups. We call the tables themselves “concrete” semigroups.

We name “concrete” groupoids via a natural nomenclature that specifies binary

operation tables on each set n ∈ N, creating a dictionary, G(n) of groupoids nj :=

〈n; ⋆j〉, with |G(n)| = nn2

. Viewed in base n, j encodes the table of ⋆j . We let j be

the sum over all i, k ∈ n of (i ⋆j k)nn2−in−k−1. For example, 213 has its operation

⋆ = ⋆13 defined by 0 ⋆ 0 = 1, 0 ⋆ 1 = 1, 1 ⋆ 0 = 0 and 1 ⋆ 1 = 1, since 13 is 1101

in base 2. Interpreting 0 as “false” and 1 as “true”, ⋆13 is ⇒, and we call 213 the

“implication groupoid”.

G(2) := {20, 21, 22, . . . , 215} is the family of all 222

= 16 distinct such tables

on the universe 2 := {0, 1}. The groupoid 2j is a semigroup if and only if j ∈

{0, 1, 3, 5, 6, 7, 9, 15}. Our computer verifies that neither 210 nor 212 is 4-dissociative,

although not one of the eight triples 〈a, b, c〉 ∈ 23 associates in 210 or in 212. The-

orem 3.6 will establish that the remaining six 2j ∈ G(2) are completely dissocia-

tive.

Similarities in our early inductive proofs of the complete dissociativity of a few

groupoids suggested a comprehensive fact, viz Theorem 3.2, below. We need addi-

tional terminology in order to present this theorem.

When a j-tuple ~r ∈ Gj occurs m times consecutively in a sequence ~g ∈ Gω , we

write the resulting mj-tuple segment of ~g as ~rm. This generalizes our notation ym,

which denotes the m-tuple yy . . . y ∈ Gm when y ∈ G.

For ~g ∈ Gω where G := 〈G; ⋆〉 is a groupoid, and for S ⊆ G, we say that ~g yields

S iff ~gu⋆ ∈ S for every u ∈ F σ.

Given U ⊆ F σ, we say ~g yields S on U iff ~gu⋆ ∈ S for all u ∈ U .

The set S is called yieldable iff there is some ~g which yields S. If ~g yields {a} then

we say that ~g yields a and that a is yieldable.

For i ∈ N and u ∈ F σ, we call u an i-split iff its unique factorization in 〈F σ;⊙〉

is u = ab⊙ with a ∈ F σ(i).

Theorem 3.2. Let G := 〈G; ⋆〉 be a groupoid, let T ⊆ G with |T | > 2, and let

the following three conditions hold.

i) Left Separation: If {x, y} ⊆ T with x 6= y then there is a yieldable Lx,y ⊆ G

with sx⋆ 6= s′y⋆ and {sx⋆, s′y⋆} ⊆ T for all s, s′ ∈ Lx,y.

ii) Right Separation: If {x, y} ⊆ T and x 6= y, there is a yieldable Rx,y ⊆ G with

xs⋆ 6= ys′⋆ and {xs⋆, ys′⋆} ⊆ T for all s, s′ ∈ Rx,y.
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iii) Split Separation: For all {i, j, k} ⊆ N with i < j 6 k, there are nonempty

disjoint subsets A and B of T , and a ~g ∈ Gω that yields A on the set of all

i-splits in F σ(k + 1) and that yields B on the set of all j-splits in F σ(k + 1).

Then G is completely dissociative.

P r o o f. Note that every groupoid is trivially k-dissociative for k ∈ {1, 2}. For

k > 3, we will prove by induction that whenever w, w′ ∈ F σ(k) are not equal that

there exists ~g ∈ Gk so that ~gw⋆ and ~gw′⋆ are distinct elements of T . Note that the

1-split x0x1x2 • • and the 2-split x0x1 • x2• are the only two elements in F σ(3). By

Split Separation, there exist A ⊆ T and B ⊆ T and ~g ∈ Gω with A ∩ B = ∅, and

such that a = ~gx0x1x2 • •⋆ for some a ∈ A and b = ~gx0x1 • x2•⋆ for some b ∈ B. So

G is k-dissociative if k = 3. The basis is done.

Now choose k ∈ {3, 4, 5, . . .}, and suppose that G is v-dissociative for every v ∈

{1, 2, . . . , k}. Pick any {w,w′} ⊆ F σ(k + 1) with w 6= w′. These formal (k + 1)-

products have unique factorizations w = ab⊙ and w′ = a′b′⊙ in the groupoid

〈F σ;⊙〉, where 〈a,a′〉 ∈ F σ(i)× F σ(i′) for some {i, i′} ⊆ {1, 2, . . . , k}. Without loss

of generality, take it that i 6 i′.

If i < i′ then by Split Separation there exist disjoint subsets A and B of T , and

a sequence ~g ∈ Gω , such that ~gw⋆ ∈ A while ~gw′⋆ ∈ B, whence ~gw⋆ 6= ~gw′⋆, and

so w⋆ 6= w′⋆. Therefore we may take it that i = i′. Since w 6= w′, either a 6= a′ or

b 6= b′.

C a s e a 6= a′: By the inductive hypothesis, there exists ~g ∈ Gω with ~ga⋆ 6= ~ga′⋆

and {~ga⋆, ~ga′⋆} ⊆ T . Let x := ~ga⋆ and x′ := ~ga′⋆. By Right Separation there exists
~h ∈ Gω such that xs⋆ and x′s′⋆ are distinct elements in T , where s := ~hb⋆ and

s′ := ~hb′⋆. We may suppose ~gi = ~h. Thus ~gw⋆ = ~gab⊙⋆ = ~gabi•⋆ = ~ga⋆~gbi
⋆⋆ =

~ga⋆~gib
⋆⋆ = xs⋆ 6= x′s′⋆ = ~ga′⋆~gib

′⋆⋆ = ~ga′⋆~gb′
i

⋆⋆ = ~ga′b′
i
•⋆ = ~ga′b′⊙⋆ = ~gw′⋆,

and so w⋆ 6= w′⋆.

C a s e b 6= b′: The proof is similar to that of the previous case, but uses Left

Separation.

Thus G is (k + 1)-dissociative. So G is completely dissociative. �

Although Theorem 3.2 is quite general, it is often used in a simple way. For

instance, if a ∈ G is idempotent then surely a is yieldable, for we can let ~g = aω.

Likewise, if x 7→ xa⋆ is a permutation of T then Right Separation is shown by

setting Rx,y := {a} for all x 6= y. And, if ⋆ is commutative then Right Separation is

equivalent to Left Separation. We also often have that T = G.

Some situations arise repeatedly when we argue that ~g yields a particular set.

Note that if H is a subgroupoid of G, and if g0g1 . . . gk−1 ∈ Hk for some k ∈ N,

then ~g yields H . Another situation arises when {a, b} is a 2-element subgroupoid

of G with aa⋆ = a and with ab⋆ = ba⋆ = bb⋆ = b; that is, if the set {a, b} forms
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a semilattice and if aω 6= ~g ∈ {a, b}ω, then ~g yields b, because b is an absorptive

element in subgroupoid {a, b}.

As our first example of the use of Theorem 3.2, we prove the following.

Theorem 3.3. The groupoid B, depicted below, is completely dissociative.

P r o o f. The following table defines the groupoid B := 〈4; ⋆〉:

⋆ 0 1 2 3

0 0 1 2 3
1 1 2 3 1
2 3 2 3 2
3 1 2 1 3

B

To apply Theorem 3.2, let T := 4. The idempotent 0 is yieldable. In fact, 0 is an

identity. Moreover, Left and Right Separation are equivalent, since B is abelian. So,

for each x 6= y we let Lx,y = Rx,y = {0}.

For Split Separation, let 1 6 i < j 6 k, and take ~g := 0i−1120j−i−130k−j~gk+1. We

let A := {1} and B := {3}. For an i-split w = ab⊙ ∈ F σ(k + 1) that has 〈a,b〉 ∈

F σ(i) × F σ(k + 1 − i), we compute that ~gw⋆ = ~gab⊙⋆ = ~gabi•⋆ = ~ga⋆~g bi
⋆⋆ =

~ga⋆~gib
⋆⋆ = 0i−11~gia

⋆~gib
⋆⋆ = 1(~gib

⋆)⋆ = 1(20j−i−130k−j~gk+1b
⋆)⋆ = 123 ⋆ ⋆ =

11⋆ = 1 ∈ A. That is to say, ~g yields A on the set of all i-splits in F σ(k + 1).

Similarly ~g yields 12 ⋆ 3⋆ = 3 ∈ B on the set of all j-splits in F σ(k + 1). So if

w′ ∈ F σ(k + 1) is a j-split then ~gw⋆ 6= ~gw′⋆. That is, ~g separates w and w′. �

The groupoid B is interesting because of its subgroupoid {1, 2, 3}, which is iso-

morphic to the groupoid CI321 discussed in §4. The latter groupoid falls just short

of complete dissociativity, and constitutes a natural example between semigroups

and completely dissociative groupoids. It is curious that the removal from B of its

identity element, 0, destroys complete dissociativity.

We now examine the implication groupoid, the concrete groupoid 213 := 〈2; ⋆13〉.

Lemma 3.1. Let ~g ∈ 2ω, let k ∈ N, and let u ∈ F σ(k). Then the groupoid

213 := 〈2; ⋆〉 satisfies the following conditions.

(1) If k > 1 and ~g = 1k~gk then ~gu⋆ = 1.

(2) If k > 1 and ~g = 1k−10~gk then ~gu⋆ = 0.

(3) If k > 2 and j 6 k − 2 and ~g = 1j01k−j−1~gk then ~gu⋆ = 1.

P r o o f. The claim 3.1.1 follows from the fact that 1 is an idempotent.

While 3.1.2 can be easily proved by induction, the key idea is that the last step in

the evaluation of ~gu⋆ is 1 ⋆ 0 = 0.
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The basis of an inductive proof of 3.1.3 involves k = 2 and j = 0 and ~g = 01~g2 ∈ 2ω.

For the only u ∈ F σ(2) we then get ~gu⋆ = 01⋆ = 1. Pick k > 2. Let v = ab⊙ ∈

F σ(k+1) be an i-split with i 6 k−1. Let ~g = 1j01k−j~gk+1 with 0 6 j < k. Suppose,

for all t ∈ {2, 3, . . . , k} and 0 6 s 6 t − 2, that 1s01t−s−1~gt yields 1 on F σ(t). Now

if i 6 j then ~ga⋆ = ~1a⋆ = 1 by 3.4.1, and ~gib
⋆ = 1j−i01k−j~b⋆ = 1 by the inductive

hypothesis, whence ~gv⋆ = 11⋆ = 1. However, if i > j then ~gib
⋆ = 1 by 3.1.1, whence

~gv⋆ = ~ga⋆~gib
⋆⋆ ∈ {01⋆, 11⋆} = {1}. �

Theorem 3.4. The implication groupoid 213 is completely dissociative.

P r o o f. Take T := {0, 1}, and use Theorem 3.2. For Left Separation, let

Lx,y = {1} for all x 6= y; this set is yieldable by Lemma 3.1.1. For Right Separation,

let Rx,y = {0} for all x 6= y; this set is yieldable by 3.1.2.

To show Split Separation, let 1 6 i < j 6 k, let ~g := 1i−101k−i0~gk+1, let ab⊙ ∈

F σ(k + 1) be an i-split, and let a′b′⊙ ∈ F σ(k + 1) be a j-split. By Lemma 3.1 we

get that ~gab⊙⋆ = (1i−10~gia
⋆)(1k−i0~gk+1b

⋆)⋆ = 00⋆ = 1, while on the other hand

~ga′b′⊙⋆
= (1i−101j−ia⋆)(1k−j0b⋆)⋆ = 10⋆ = 0. �

To finish our determination of the completely dissociative 2j, we offer Theorem 3.5.

However, since there seem to be no sequences ~g ∈ 2ω that reliably yield sets we need

in order to apply Theorem 3.2 to its proof, we sought and found in boolean algebra

an alternative sort of proof.

Theorem 3.5. The NAND groupoid 214 is completely dissociative.

P r o o f. For reference, the table of 214 is given below. (Here ⋆ := ⋆14.)

⋆ 0 1

0 1 1
1 1 0

214

The binary operation ⋆ of 214 is equivalent to an expression in the standard boolean

algebra on 2 := {0, 1}. The binary operations of this boolean algebra are join or sum,

written ∨, and meet or product, written ∧, and its unary operation is complement,

written ′. As is usual, we write ∨ and ∧ as infix operations. With this notation, we

have that xy⋆ = x′ ∨ y′ for all 〈x, y〉 ∈ 2 × 2, so ⋆ is what is commonly called the

NAND operation.

Our proof will proceed via boolean algebra expressions that are equivalent to

formal products. These expressions will be reduced to a standard form similar to

disjunctive normal form. The following terminology is due mainly to W.V.Quine;

viz [7] or Chapter XIV of [8]. However, our presentation will be self-contained.
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Expressions will be built up out of variables; a literal will be either a single vari-

able xi or its complement x′
i. A fundamental formula is either a single literal or a

conjunction of literals with no repeated variables. A formula Φ is normal if it is

either fundamental or a disjunction of fundamental formulas. In the latter case, the

fundamental formulas are clauses of Φ.

A formula Θ is said to imply a formula Φ iff every uniform assignment of values

to the variables in the formulas that makes Θ equal to 1 also makes Φ equal to 1;

we then call Θ an implicant of Φ. A prime implicant of Φ is a fundamental formula

that implies Φ, but fails to do so if any of its literals is removed.

These formulas are also called “Sum of Product” or SoP forms. We focus upon

a special SoP form, called the complete sum form. Given a formula Φ which is

equivalent neither to 0 nor to 1, its complete sum form is defined to be the disjunction

of its prime implicants. (A formula equivalent to 0 has no implicants; a formula

equivalent to 1 has an “empty product” as its sole prime implicant. We avoid these

trivial cases.) It is easy to recognize the implicants of a nontrivial formula, and

the prime implicants are clearly identifiable. The complete sum form of a nontrivial

formula is unique, up to the order of clauses and of literals within clauses.

For example, in the formula Φ := (x∧y)∨ (x∧y′)∨ z∨ (x′ ∧y∧ z), each of its four

clauses x ∧ y, x ∧ y′, z and x′ ∧ y ∧ z are implicants of Φ, as are such fundamental

formulas such as x ∧ z and x′ ∧ y′ ∧ z. The clause z is a prime implicant of Φ, but

x ∧ y and x ∧ y′ are not—they can be combined into the fundamental formula x.

The final clause x′ ∧ y ∧ z also fails to be a prime implicant; it is subsumed by z,

and thus can be deleted. So the prime implicants of Φ are x and z, and the complete

sum form of Φ is x ∨ z. Quine attributes this process of combining and deleting

clauses to Samson and Mills, and presents a proof that it always yields our complete

sum form of a nontrivial formula. (Quine calls our complete sum form of a formula

“the alternation of its prime implicants”.) His proof is sometimes called Quine’s

Theorem; it states that a formula is in complete sum form if and only if no clauses

can be combined or deleted. It could be used to simplify the proofs of Claims 2

and 3, below.

C l a i m 1: If u ∈ F σ(k) then there exist ~g ∈ 2ω such that ~gu⋆ = 0 and ~r ∈ 2ω

such that ~ru⋆ = 1. The evaluation in 214 of each u ∈ F σ(k) depends on all its

variables xi for i ∈ k.

The claim is obvious for k = 1. If it holds for {u,v} ⊆ F σ, it holds for uv⊙. So

induction establishes Claim 1, none of our w ∈ F σ are trivial, and we can restrict

our focus to the complete sum form of w.

C l a i m 2: If p = st⋆ ∈ F σ,⋆ then the complete sum form of p is equal to the join

of the complete sum forms of s′ and t′.
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To prove this, first note that s, t and p are nontrivial by Claim 1. So s′ and t′ also

are nontrivial, and the complete sum forms of p, of s, of s′, of t, and of t′ all exist.

Also, s′ and t′ have no variables in common.

Let r be an implicant of p = s′ ∨ t′. Then r is an implicant either of s′ or of t′;

for, if not, then values can be assigned to variables so that r is 1 while both s′ and

t′ are 0, whence p will also be 0, contradicting the hypothesis that r is an implicant

of p. But if r is a prime implicant of p, then r cannot be an implicant of both s′

and t′; for, if so, then the removal from r of the literals of variables in t would yield

a shorter implicant of s′ and hence of p. Therefore the prime implicants of p are

already prime implicants either of s′ or of t′. Claim 2 is proved.

Consider some p := u⋆ = st⋆ = s′ ∨ t′ with u⋆ ∈ F σ,⋆(k). For this p, define the

binary relation ̺ on {xi : i ∈ k} by: xi̺xj iff literals of xi and of xj appear together

in some clause of the complete sum form of p. Claim 1 implies that ̺ is reflexive, and

̺ is symmetric by construction. Thus the transitive closure of ̺ is an equivalence

relation Ep on {xi : i ∈ k}.

C l a i m 3: If p = st⋆ ∈ F σ,⋆(k) for any k > 2, then Ep has exactly two equivalence

classes.

Let p = st⋆ = s′ ∨ t′. Claim 2 implies that Ep does not relate variables in s′ with

variables in t′. So it remains only to show that all of the variables in s′, say, are

related to each other by Ep. This is immediate if s is a single literal. So we may take

it that s = v′ ∨ w′, for formal products v and w interpreted in 214. By DeMorgan’s

Law, s′ = v ∧ w.

We show that the prime implicants of v ∧w are precisely the formulas of the form

m∧ n, where m is a prime implicant of v, and n is a prime implicant of w: Let q be

an implicant of v ∧ w. Then q is an implicant both of v and of w. Thus q must be

an implicant of some prime implicant m of v and some prime implicant n of w. So q

must be an implicant of m∧n. This shows that every prime implicant of v∧w must

be some m∧n. But none of the m∧n can imply another; for, suppose m0 ∧n0 were

an implicant of m1 ∧ n1. Then m0 ∧ n0 is an implicant of m1. No variables in n0

appear in m1; so we can remove their literals, getting that m0 implies m1. As prime

implicants of v, they are equal. Similarly n0 = n1. We infer the assertion opening

this paragraph.

Now let x be a variable of v, and y a variable of w. Claim 1 implies that v depends

on x. So x must appear in some prime implicant m of v. Similarly, y appears in

some prime implicant n of w. Thus both x and y appear in m ∧ n, which is a prime

implicant of s by the previous paragraph. Therefore every variable of v is related by

̺ to every variable of w. So Ep relates all variables in s′ = v ∧ w. Claim 3 follows.

For {u,v} ⊆ F σ(k), it is obvious that u = v ⇒ u⋆ = v⋆. The converse is obvious

for k = 1. This is the basis step of an induction on k.
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Let k ∈ N; suppose for all j ∈ {1, 2, . . . , k} that u⋆ = v⋆ ⇒ u = v when {u,v} ∈

F σ(j). Let {u,v} ⊆ F σ(k + 1). Suppose that u⋆ = v⋆.

As above, in Boolean language we write u⋆ = pu = sutu⋆ = s′
u
∨ t′

u
and v⋆ =

pv = svtv⋆ = s′v ∨ t′v. From pu = pv we get by Claim 3 that su has the same

variables as sv and that tu has the same variables has tv. If on 214 it happens both

that su = sv and that tu = tv then by the inductive hypothesis the corresponding

factors of u and v in 〈F σ;⊙〉 also are equal, and therefore u = v as alleged.

Without loss of generality, pretend that there is an assignment of values to the

variables in su which gives su the value 1 while sv gets the value 0. Then, by Claim 1

there is an assignment of values to the variables in tu which gives tu the value 1. It

follows for these independent value assignments to the elements in {x0, x1, . . . , xk}

that pu gets the value 11⋆ = 1′ ∨ 1′ = 0 while pv gets the value 0tv⋆ = 0′ ∨ t′v = 1,

contrary to the hypothesis that u⋆ = v⋆. �

Theorem 3.6. The concrete groupoid 2j is completely dissociative if and only if

j ∈ {2, 4, 8, 11, 13, 14}.

P r o o f. We write A ≍ B iff the groupoid A is either anti-isomorphic or isomor-

phic to B. Plainly ≍ is an equivalence relation on G(2). The ≍ equivalence classes

of the eight 2j ∈ G(2) which are non-semigroups are: {22, 24, 211, 213}, {28, 214}, and

{210, 212}.

Theorem 3.4 gives us that 213 is completely dissociative, and 214 is completely

dissociative by Theorem 3.6. In 210, the value of an expression depends only on the

value of its final input. Thus wx ⋆ y ⋆ z⋆ and wxyz ⋆ ⋆⋆ always produce the same

value. Therefore 210 fails to be 4-dissociative, and consequently 210 is not completely

dissociative. �

Theorem 3.7. There are at least seventeen completely dissociative 〈3; ⋆〉.

P r o o f. We show first via Theorem 3.2 that the groupoid D, depicted below, is

completely dissociative. During our argument, we will note table entries which we

never use, entailing that D is but one of at least seventeen completely dissociative

groupoids 3j ∈ G(3).

⋆ 0 1 2

0 0 1 0
1 1 1 0
2 0 0 2

D

We note parenthetically the values of ⋆ to which our argument resorts. Let T :=

{0, 1}. The idempotent element 0 is is yieldable. (This uses 00⋆ = 0.) Since ⋆ is
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commutative, Left Separation is equivalent to Right Separation. Let Lx,y := Rx,y :=

{0} for all 〈x, y〉 ∈ 22, (using 00⋆ = 0 and 01⋆ = 1 = 10⋆.)

For Split Separation, note that 1p0q~gp+q ∈ 3ω yields 1 when {p, q} ⊆ N, since

{0, 1} forms a semilattice, (never using the value of 01⋆.) Similarly 0p2q~gp+q yields

0 since {0, 2} forms a semilattice, (not using the value of 20⋆.) Now suppose

1 6 i < j 6 k. Let ~g := 1i0j−i2k−j+1~gk+1. If ab⊙ is an i-split then ~gab⊙⋆ =

(1i~gia
⋆)(0j−i2k−j+1~gk+1b

⋆)⋆ = 10⋆ = 1, (using cited facts and that 1 is idempo-

tent.) If a′b′⊙ is a j-split, then ~ga′b′⊙⋆ = (1i0j−i~gja
′⋆)(2k−j+1~gk+1b

′⋆)⋆ = 12⋆ = 0,

(using cited facts, that 2 is idempotent, and that 12⋆ = 0.) So D is completely dis-

sociative.

The values of 20⋆ and 21⋆ were never used in the argument above. So, we

can change D to make eight other completely dissociative groupoids with {0} 6=

{20⋆, 21⋆}. Since D is abelian, we could instead have used ~g = 2i0j−i1k−j+1~gk+1 to

show Split Separation—and never have used the values of 02⋆ and 12⋆ of D. Thus

we can make eight other completely dissociative groupoids by changing those values

in D. �

Most of our proofs may be analyzed in the manner above, and slightly modified

to show that additional groupoids are completely dissociative.

We have seen six 2-element completely dissociative groupoids, and know that any

groupoid with a completely dissociative subgroupoid is completely dissociative. So

it is plausible that “most” groupoids are completely dissociative, and we ask the

following.

Q u e s t i o n 3.2. For any given n, let CD(n) be the number of concrete groupoids

on n that are completely dissociative. What is CD(n)/nn2

, in the limit as n goes to

infinity?

4. Primitive completely dissociative groupoids

By the variety V(G) generated by a groupoid G we mean the closure of {G} under

the formation of homomorphic images, subgroupoids and product groupoids. We

will show later that G must be completely dissociative if any groupoid in V(G) is.

Thus, of special interest are the completely dissociative groupoids not forced to be

completely dissociative because smaller groupoids are.

We say that a finite completely dissociative groupoid P is primitive iff no smaller

groupoid in V(P) is completely dissociative.

Observe that all of the 2-element completely dissociative groupoids are primitive,

since the trivial groupoid is a semigroup. We will establish the primitiveness of many

other small completely dissociative groupoids.
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Qu e s t i o n 4.1. Is there a primitive completely dissociative groupoid nj for each

integer n > 2?

To proceed with our study of primitive completely dissociative groupoids, we will

need a little material from universal algebra. For background, we refer the reader to

[5], which is a good beginning text and reference.

Our principal tool will be Birkhoff’s Theorem, which first appeared in [1] and is

carefully developed also in [5]. Before stating it, we should first review some termi-

nology. Everything will be stated for groupoids, although it naturally generalizes to

arbitrary algebras.

By a term we mean an expression built up from variables using the groupoid

operation symbol. Since our explanations deal only with small terms, we will use

infix notation for them in this section. An identity is an equality between terms that

is true for all relevant values of the variables. It is customary to use ≈ to show that

terms are equal in an identity. We say that an identity holds in a groupoid iff it is

(always) true there, and that an identity holds in a class of groupoids iff it holds

in each member of the class. Alternatively, we can say that a groupoid satisfies

an identity. The Associative Law, x • (y • z) ≈ (x • y) • z, is an example of an

identity.

A groupoid is 3-dissociative if and only if the Associative Law does not hold in it,

and a groupoid is completely dissociative if and only if all of the generalizations of

the Associative Law fail to hold there.

A variety is a class of groupoids that is closed under homomorphic images, sub-

groupoids and (Cartesian) products of elements in that class. If Ω is a set of identities,

then the models of Ω are precisely the groupoids for which all of the identities in Ω

hold. We can now state Birkhoff’s Theorem:

Theorem 4.1. A class of groupoids is a variety if and only if it is the class of

models of a set of identities.

We need a related result, which also is due to Birkhoff.

Theorem 4.2. If G is an groupoid, then the varietyV(G) generated by G is equal

to the class of models of the set of all identities holding in G.

Thus, to show for a groupoid H that H 6∈ V(G), it suffices to produce an identity

that holds in G but does not hold in H. So, if G is not completely dissociative, some

generalized associative law is an identity of G. By Theorem 4.2, such an identity

holds in every groupoid in V(G). So G is completely dissociative if V(G) contains a

primitive groupoid.
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For finite G, the converse implication holds. If an nj is completely dissociative then

V(nj) contains a completely dissociativeM of minimum size. Since V(M) ⊆ V(nj),

any such M is perforce primitive.

Thus knowing the primitive completely dissociative groupoids could give us infor-

mation about the class of all completely dissociative groupoids.

As already noted, the six concrete completely dissociative groupoids in G(2) are

primitive. What about the groupoid D treated in Theorem 3.7?

Theorem 4.3. D is a primitive completely dissociative groupoid.

P r o o f. We have by 3.7 that D is completely dissociative. Observe that D sat-

isfies the Idempotent and Commutative laws. Thus every groupoid in V(D) satisfies

them too. But the only 2-element groupoids where these laws hold are the semi-

groups 27 and 21. Thus V(D) contains no completely dissociative groupoids which

are smaller than D, and so D is primitive. �

We suspect that the other 16 groupoids that were proved completely dissociative

in Theorem 3.7 are primitive as well.

As another example, we will outline a proof that the groupoid B of Theorem 3.3

is primitive. The groupoid B satisfies the commutative and idempotent laws. So all

of the groupoids in the variety V(B) also satisfy them. To this end, we investigate

the 3-element groupoids that are commutative and idempotent.

So, consider the groupoids 3t that conform to the binary operation table(s) CI3α,

below, with 〈a, b, c〉 ∈ 33 where 3 := {0, 1, 2}.

⋆ 0 1 2

0 0 a b
1 a 1 c
2 b c 2

CI3α

CI3α is our acronym for “Commutative Idempotent 3-element groupoid num-

ber α”, where α = 9a + 3b + c.

Many of the twenty-seven CI3α are isomorphic to each other under permutations

of the set 3. The isomorphism classes are:

i) CI30
∼= CI313

∼= CI326

ii) CI31
∼= CI32

∼= CI38
∼= CI310

∼= CI316
∼= CI317

iii) CI33
∼= CI312

∼= CI318
∼= CI322

∼= CI323
∼= CI324

iv) CI34
∼= CI36

∼= CI39
∼= CI314

∼= CI320
∼= CI325

v) CI35
∼= CI315

∼= CI319

vi) CI37
∼= CI311
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vii) CI321

The groupoid D from §3 is in this list, as are three new completely dissociative

groupoids. We examined each isomorphism class, and will summarize our results.

Details will be left to the reader. None of the completely dissociative CI3α are

elements of V(B), since the identity β fails in each of them, where β is:

((x ⋆ y) ⋆ z) ⋆ z ≈ ((x ⋆ y) ⋆ (x ⋆ z)) ⋆ (x ⋆ z)

One may verify that β holds in B, and hence in V(B). Where it matters, we will

indicate how the identity β fails.

i) CI30
∼= CI313

∼= CI326

CI30 is a semigroup.

ii) CI31
∼= CI32

∼= CI38
∼= CI310

∼= CI316
∼= CI317

The groupoid CI31 is a semigroup.

iii) CI33
∼= CI312

∼= CI318
∼= CI322

∼= CI323
∼= CI324

⋆ 0 1 2

0 0 0 1
1 0 1 0
2 1 0 2

CI33

The groupoid CI33 is completely dissociative. We verify this, using Theorem 3.2.

Let T = 3 := {0, 1, 2}. We always set Lx,y = Rx,y = {2}, giving Left and Right

Separation.

For Split Separation, let ~g = 0i1j−i2k−j+1~gk+1 ∈ 3ω. If ab⊙ ∈ F σ(k + 1) is an

i-split, one finds that ~gab⊙⋆ ∈ {00⋆, 01⋆} = {0}. If a′b′⊙ ∈ F σ(k + 1) is a j-split,

then ~ga′b′⋆ = 0 ⋆ 2 = 1. Therefore CI33 is completely dissociative, as alleged.

Our aim is to prove that B is primitive. Since CI33 is completely dissociative and

smaller than B, we wish to show that CI33 6∈ V(B). The identity β holds in B.

Thus it suffices to show that β fails in CI33. So let 〈x, y, z〉 := 〈0, 2, 1〉, and observe

that then ((x ⋆ y) ⋆ z) ⋆ z = ((0 ⋆ 2) ⋆ 1) ⋆ 1 = 1 6= 0 = ((0 ⋆ 2) ⋆ (0 ⋆ 1)) ⋆ (0 ⋆ 1) =

((x ⋆ y) ⋆ (x ⋆ z)) ⋆ (x ⋆ z), as desired.

iv) CI34
∼= CI36

∼= CI39
∼= CI314

∼= CI320
∼= CI325

Since CI39 = D, which was proven in Theorem 3.7 to be completely dissociative,

it remains to show that β fails in D. Letting 〈x, y, z〉 = 〈1, 2, 0〉, accomplishes this.

v) CI35
∼= CI315

∼= CI319

The groupoid CI35 is completely dissociative. Let T = 3, and let Lx,y = Rx,y =

{1} for all 〈x, y〉 ∈ 32.
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If ab⊙ and a′b′⊙ are an i-split and a j-split, respectively, we let ~g := 01j−22k−j+2

~gk+1. One obtains that ~gab⊙
⋆ = 0 ⋆ 2 = 1, while ~ga′b′⊙⋆ = (0 ⋆ 2) ⋆ 2 = 2, showing

Split Separation.

Letting 〈x, y, z〉 = 〈2, 0, 1〉 shows that the identity β fails in CI35.

vi) CI37
∼= CI311

CI37 is completely dissociative. Let T := {0, 2}, and take Lx,y = Rx,y = {0} for

all x 6= y in T .

To show Split Separation, let ~g := 0i1j−i2k−j+1. If ab⊙ is an i-split and a′b′⊙ a

j-split, then ~gab⊙⋆ = 0 ⋆ 1 = 0 and ~ga′b′⊙⋆
= 0 ⋆ 2 = 2.

Letting 〈x, y, z〉 := 〈2, 1, 0〉 shows β fails in CI37.

vii) CI321

This algebra is not completly dissociative. In the 3-element field, one has that

x ⋆ y is equal to 2(x + y), so the generalized associative law ((v ⋆ w) ⋆ (x ⋆ y)) ⋆ z ≈

v ⋆ ((w ⋆ x) ⋆ (y ⋆ z)) holds.

Theorem 4.4. Groupoids which are isomorphic to CI33, to CI34, to CI35, or

to CI37, are primitive completely dissociative groupoids.

P r o o f. The argument is identical to that in Theorem 4.3. �

Theorem 4.5. B is a primitive completely dissociative groupoid.

P r o o f. The groupoid B, of Theorem 4.3, satisfies the Idempotent and Commu-

tative laws. Thus every groupoid in V(B) satisfies them too. But the only 2-element

groupoids where these laws hold are the semilattices, 27 and 21, both of which are

semigroups.

The idempotent commutative 3-element groupoids were studied above. The iso-

morphism classes of those which are completely dissociative—those represented by

CI33, by CI34, by CI35, and by CI37—have no elements in common with V(B),

since the identity β holds in none of them, but does hold in B.

We have established that there exist no completely dissociative groupoids in V(B)

that are smaller than B. Therefore B is primitive. �

P r o b l e m 4.1. Characterize primitive completely dissociative groupoids.

5. Making k-ary functions by composing binary functions

In this section we show that some functions ϕ : nk → n are unrepresentable as

any u
~β . The simplest situation, where n = 2 and k = 3, is the more demanding.
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Lemma 5.1. There exists a 3-ary operation ϕ : 23 → 2 such that for no ordered

pair ~β := 〈β0, β1〉 of binary operations βi : 22 → 2 is the function x0x1x2ϕ equal to

either x0x1β0x2β1 or x0x1x2β0β1.

P r o o f. Define ϕ : 23 → 2 by 000ϕ = 010ϕ = 011ϕ = 110ϕ = 111ϕ = 0, and

001ϕ = 100ϕ = 101ϕ = 1.

The argument consists of four main cases. Two of the cases show that x0x1x2ϕ 6=

x0x1β0x2β1 while the other two show that x0x1x2ϕ 6= x0x1x2β0β1.

We detail only one case; it will suffice to reveal the nature of our argument.

C a s e: 00β0 := 1 and v〈β0,β1〉 := x0x1β0x2β1.

We show that there is no pair 〈β0, β1〉 of binary operations on 2 for which ϕ =

v〈β0,β1〉. This involves our proceeding step by step through the construction, of the

functions β0 and β1, which is mandated by the ϕ specified above and the initial

condition 00β0 := 1, until we ram into a wall.

From 10β1 =: 00β00β1 = 000ϕ := 0, we infer that 10β1 = 0. Also, 11β1 =

00β01β1 = 001ϕ := 1, and so 11β1 = 1.

01β00β1 = 010ϕ := 0 provides two possibilities: 01β0 = 0 or 01β0 = 1. If 01β0 = 1

then 11β1 = 01β01β1 = 011ϕ := 0, contrary to our prior observation that 11β1 = 1.

Therefore 01β0 = 0.

Next, 01β1 = 01β01β1 = 011ϕ := 0 whence 01β1 = 0. By 10β00β1 = 100ϕ := 1

we are again offered two possibilities: 10β0 = 0 or 10β0 = 1. But if 10β0 = 1

then 10β1 = 10β00β1 = 100ϕ := 1, contrary to our earlier inference that 10β1 = 0.

Therefore, 10β0 = 0.

Finally, 0 = 01β1 = 10β01β1 = 101ϕ := 1, and we hit the wall.

We omit the similar second case, which shows that x0x1x2ϕ 6= x0x1β0x2β1 when

00β0 = 0. Likewise x0x1x1ϕ = x0x1x2β0β1 is impossible. �

We used a case-ridden argument to prove Lemma 5.1 because there are twice as

many formal 3-ary products interpreted by some duple of binary operations 22 → 2

as there are 3-ary operations on the set 2 := {0, 1}. However, when either n > 3 or

k > 4, a straightforward counting argument enables us easily to show that the result

established for 〈n, k〉 = 〈2, 3〉 extends to every pair 〈n, k〉 of integers with n > 2 and

k > 3.

Theorem 5.1. For n > 2 and k > 3 integers, there exists a k-ary operation

ϕ : nk → n such that ϕ 6= u
~β for every u ∈ F σ(k) and for every (k − 1)-tuple

~β := β0β1 . . . βk−2 of binary operations βi : n2 → n.

P r o o f. Since Lemma 5.1 establishes our claim for the case 〈n, k〉 = 〈2, 3〉, we

may take it that either n > 3 or k > 4.
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From [6] or [9] we have that |F σ,~β(k)| = Ck−1 for every (k − 1)-tuple ~β :=

β0β1 . . . βk−2 of binary operations βj : n2 → n, where

Cn =
1

n + 1

(

2n

n

)

is the n-th Catalan number.

Since there are nn2(k−1) such ~β, it follows that the number Φ(n, k) of formal k-ary

products interpreted by some such ~β is

Φ(n, k) = nn2(k−1)Ck−1 = nn2(k−1) (2k − 2)!

(k − 1)!k!
.

Thus the ratio R(n, k) of the number nnk

of distinct k-ary operations on n to the

number of distinct interpreted formal k-products is

R(n, k) =
nnk

Φ(n, k)
= nnk−n2(k−1) (k − 1)!k!

(2k − 2)!
.

Notice that R(n, k) > 1 for every pair 〈n, k〉 of integers such that either n > 3

while k > 3 or n > 2 while k > 4. �

It is reasonable to wonder whether enlarging our tool kit of building-block opera-

tions on n enables the construction of all operations of given arities larger than the

arities of permitted building blocks. In this light we ask

Q u e s t i o n 5.1. For each r ∈ {3, 4, 5, . . .}, is there an n(r) ∈ N such that,

for each pair 〈m, k〉 of integers with m > n(r) and k > r, there is some k-ary

operation ϕ : mk → m which it is impossible to “build” using a natural formal

product construction generalizing F σ by allowing j-ary operations on m with j ∈

{2, 3, . . . , r − 1} instead of using only binary operations?
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