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Abstract. The Picone-type identity for the half-linear second order partial differential
equation

n�
i=1

∂

∂xi
Φ 
 ∂u

∂xi � + c(x)Φ(u) = 0, Φ(u) := |u|p−2u, p > 1,

is established and some applications of this identity are suggested.
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1. Introduction

The classical Picone identity established by Picone [24] concerns a pair of second

order Sturm-Liouville operators

l[x] := (r(t)x′)′ + c(t)x, r(t) > 0,(1)

L[y] := (R(t)y′)′ + C(t)y, R(t) > 0

and reads as follows. Let x, y be differentiable functions such that rx′, Ry′ are also

differentiable and y(t) 6= 0 on an interval I ⊂ � . Then in this interval
d

dt

{
x

y
(yrx′ −xRy′)

}
= (r−R)x′2 +(C − c)x2 +R

(
x′ −

x

y
y′

)2

+
x

y
{yl[x] − xL[y]} .
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Since 1910, when the original paper of Picone was published, this identity has been

extended to various equations (not only to ODE’s but also to PDE’s and to difference

equations, see [1], [3], [12], [13], [14], [16], [17], [23], [27] and the references given

therein), and it has turned out to be a very useful tool in the oscillation theory of

these equations.

In our paper we follow this idea and establish a Picone-type identity for the second

order partial differential equation

(2)

n∑

i=1

∂

∂xi

Φ

(
∂u

∂xi

)
+ c(x)Φ(u) = 0,

where Φ(u) := |u|p−2u, p > 1, x = (x1, . . . , xn) ∈ � n and c : � n → � is a Hölder
continuous function (Theorem 1). We also present some basic consequences of this

identity (Theorems 2–4).

If p = 2, i.e.Φ( ∂u
∂xi

) = ∂u
∂xi
, then (2) reduces to the classical Laplace equation

(3) ∆u + c(x)u = 0.

There also exists a voluminous literature dealing with the PDE’s with the so-called

p-Laplacian

(4) div(‖∇u‖p−2
2 ∇u) + c(x)Φ(u) = 0,

where ∇ is the usual nabla operator ∇u = ( ∂u
∂x1

, . . . , ∂u
∂xn

) and ‖x‖2 =
( n∑

i=1

x2
i

) 1
2

is the Euclidean norm in � n , see e.g. [7], [11] and the references given therein. In

these papers and monographs, it was shown that solutions of (4) have many of the

properties typical for the equation with the classical Laplacian (3). Let us mention

at least the papers [1], [2], [10], [12], [14] dealing with Picone’s identity for (4). This

identity is used in [1], [2] to study the Dirichlet eigenvalue problem associated with

(4) and the papers [10], [12], [14] deal with the application of Picone’s identity in

oscillation theory and show that oscillatory properties of (4) are very similar to those

of (3).

PDE of the form (2) has been investigated in a series of papers of G.Bognár [4],

[5], [6], and basic properties of the eigenvalue problem associated with (2) have been

established. Our investigation can be regarded as a continuation of this research and

also as an attempt to extend the results concerning (3) and (4) to (2). In particular,

using the Picone identity established in this paper we show that the basic facts of

the classical Sturmian theory (like Sturm comparison and separation theorems) do

extend to (2).

582



2. The Picone identity

Let Ω ⊂ � n be a bounded domain and let u ∈ W 1,p
0 (Ω). Then multiplying the

left-hand side of (2) by u and integrating the obtained formula over Ω (using the

Gauss theorem) we see that (2) is closely related to the p-degree functional

(5) Fp(u; Ω) :=

∫

Ω

{ n∑

i=1

∣∣∣
∂u

∂xi

∣∣∣
p

− c(x)|u(x)|p
}

dx =

∫

Ω

{
‖∇u‖p

p − c(x)|u|p
}

dx,

where ‖x‖p =
( n∑

i=1

|xi|
p
) 1

p denotes the p-norm in � n . Another important object

associated with (2) is a Riccati-type equation which we obtain as follows. Let u be

a solution of (2) which is nonzero in Ω and denote

v :=

(
Φ

(
∂u

∂x1

)
, . . . , Φ

(
∂u

∂xn

))
, w :=

v

Φ(u)
.

Then, using the fact that (2) can be written in the form div v = −c(x)Φ(u), we

have

div w =
1

Φ2(u)
{Φ(u) div v − Φ′(u)〈∇u, v〉}

= −c(x) − (p − 1)
|u|p−2

|u|2p−2

n∑

i=1

∣∣∣
∂u

∂xi

∣∣∣
p

= −c(x) − (p − 1)

n∑

i=1

∣∣∣Φ
(

∂u/∂xi

u

)∣∣∣
q

= −c(x) − (p − 1)‖w‖q
q ,

where 〈·, ·〉 denotes the usual scalar product in � n , q := p
p−1 is the conjugate exponent

of p and ‖x‖q =
( n∑

i=1

|xi|
q
) 1

q denotes the q-norm in � n . Consequently, the vector

variable w satisfies the Riccati-type equation

(6) div w + c(x) + (p − 1)‖w‖q
q = 0.

Of course, if p = q = 2 and n = 1, then the last equation reduces to the classical

Riccati equation w′ + c(t) + w2 = 0 associated with (1) (where r(t) ≡ 1) via the

substitution w = u′/u. Recall also that if we apply the same procedure as above to

equation (4) and the vector variable z := ∇u
u
, we get the functional

(7) F̃p(u; Ω) :=

∫

Ω

{‖∇u‖p
2 − c(x)|u|p} dx
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and the Riccati-type equation

(8) div z + c(x) + (p − 1)‖w‖q
2 = 0.

Now we are in a position to formulate a Picone-type identity for (2), more precisely,

for the p-degree functional (5) and the Riccati type equation (6) associated with (2).

Before formulating it, observe that if R ≡ r, C ≡ c in (1), y is a solution of l(y) = 0

and w := ry′

y
, then Picone’s identity for (1) mentioned in the first section can be

written in the form

r(t)x′2 − c(t)x2 = [x2w(t)]′ +
1

r(t)
[r(t)x′ − w(t)x]2,

and integrating this identity over I = [a, b] we get the integral form of this identity

F(x; a, b) :=

∫ b

a

[r(t)x′2 − c(t)x2] dt(9)

= x2w(t)
∣∣b
a

+

∫ b

a

r−1(t)[r(t)x′ − w(t)x]2 dt.

Theorem 1. Let w be a solution of (6) which is defined in Ω (closure of Ω) and

u ∈ W 1,p(Ω). Then

Fp(u; Ω) =

∫

∂Ω

|u(x)|pw(x) dS

+ p

∫

Ω

{
‖∇u(x)‖p

p

p
− 〈∇u(x), Φ(u(x))w(x)〉 +

‖w(x)‖q
q |Φ(u(x))|q

q

}
dx.(10)

Moreover, the last integral in this formula is always nonnegative and for a function

u 6≡ 0 it equals zero only if u 6= 0 in Ω and

(11) w =
1

Φ(u)

(
Φ

(
∂u

∂x1

)
, . . . , Φ

(
∂u

∂xn

))
.

���������
. By a direct computation, using (6), we have

div (w|u|p) = |u|p div w + pΦ(u)〈∇u, w〉

= |u|p
(
−c(x) − (p − 1)‖w‖q

q

)
+ ‖∇u‖p

p − ‖∇u‖p
p + p〈∇u, Φ(u)w〉

= ‖∇u‖p
p − c(x)|u|p − p

{
‖∇u‖p

p

p
− 〈∇u, Φ(u)w〉 +

‖w‖q
q|Φ(u)|q

q

}
.

Integrating the last formula over Ω and using the Gauss theorem we get (10).

584



To prove nonnegativity of the second integral in (10), consider the function f(x) =
‖x‖p

p

p
. Its conjugate function

(12) f∗(y) := sup
x∈ � n

{〈x, y〉 − f(x)}

is f∗(y) =
‖y‖q

q

q
as can be verified by a direct computation. The supremum in (12)

is attained for

(13) x = (x1, . . . , xn) = (Φq(y1), . . . , Φq(yn)) , Φq(s) := |s|q−2s

being the inverse function of Φ(s) = |s|p−2s. The classical Fenchel inequality (see

[25]) now implies that

‖x‖p
p

p
− 〈x, y〉 +

‖y‖q
q

q
> 0

for every x, y ∈ � n with equality if and only if x and y are related by (13). Sub-

stituting there x = ∇u, y = Φ(u)w we see that the (continuous and nonnegative)

integrand in the second integral of (10) equals zero if and only if u and w are related

by (11). �

Substituting p = 2 in the previous theorem, we get Picone’s identity as formulated

e.g. in [27] and one can immediately see its similarity with (9).

Using Picone’s identity (10) we can now prove the following relationship between

the positivity of Fp (over W 1,p
0 (Ω)) and the existence of a nonzero solution (in Ω) of

(2).

Corollary 1. If there exists a solution u = u(x) of (2) such that u(x) 6= 0 for

x ∈ Ω then Fp(y; Ω) > 0 for every 0 6≡ y ∈ W 1,p
0 (Ω).���������

. The proof immediately follows from Theorem 1 by setting

w =
1

Φ(u)

(
Φ

(
∂u

∂x1

)
, . . . , Φ

(
∂u

∂xn

))

and using the fact that w and ∇y cannot be proportional since u(x) > 0 in Ω and

y|∂Ω = 0. �
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3. Applications

Following the usual terminology for linear equation (3) (see e.g. [21], [22]), a

bounded domain Ω ⊂ � n is said to be the nodal domain of a nontrivial solution

u of (2) if u|∂Ω = 0, and the curve Γ = {x ∈ Ω: u(x) = 0} is called the nodal

contour of u in Ω. Corollary 1 immediately implies the following Sturmian-type

statement.

Theorem 2. Suppose that u is a nontrivial solution of (2) with the nodal domain

Ω ⊂ � n and c̃ : � n → � is a Hölder continuous function such that c̃(x) > c(x) in Ω.

Then every solution of the (majorant) equation

(14)

n∑

i=1

∂

∂xi

Φ

(
∂u

∂xi

)
+ c̃(x)Φ(u) = 0

has a nodal contour in Ω. In particular, if c̃(x) = c(x), then every solution of (2) has

a nodal contour in Ω.���������
. If ũ is a solution of (14) without a nodal contour in Ω, then by Corol-

lary 1 ∫

Ω

{
‖∇y‖p

p − c̃(x)|y|p
}

dx > 0

for every nontrivial y ∈ W 1,p
0 (Ω) and in view of the inequality c̃(x) > c(x) in Ω,

we have Fp(y; Ω) > 0 for every nontrivial y ∈ W 1,p
0 (Ω). On the other hand, the

solution u of (2) satisfies u ∈ W 1,p
0 (Ω) and by the Gauss theorem Fp(u; Ω) = 0, a

contradiction. �

Corollary 1 also suggests another application in the oscillation theory of (2),

namely to compare this equation with a certain half-linear ODE. To prove that

(2) possesses no positive solution in a connected (bounded or unbounded) domain

Ω ⊂ � n , it suffices to find a nontrivial function y ∈ W 1,p
0 (Ω) for which Fp(y; Ω) 6 0.

It is natural to look for such a function in the radial form y(x) = ỹ(‖x‖), where ‖ · ‖

is a norm in � n and ỹ : � → � . This idea has been used in [10], [14] for PDE with
p-Laplacian (4) with the norm ‖ · ‖p, for our equation (2) it is convenient to take the

q-norm ‖ · ‖q.

Theorem 3. Let

C(r) :=

∫

‖x‖q=r

c(x) dS, q =
p

p − 1
.
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If the half-linear second order ODE

(15)
(
rn−1Φ(z′)

)′
+

1

ωn(q)
C(r)Φ(z) = 0, ′ :=

d

dr
, ωn(q) :=

∫

‖x‖q=1

dS

is oscillatory (i.e., every nontrivial solution of (15) has arbitrarily large zeros), then

(2) possesses no positive solution in the exterior domain ΩR = {x ∈ � n : ‖x‖q > R}

for every R > 0.���������
. If (15) is oscillatory, there exists an increasing sequence rn → ∞ and

a nontrivial solution z = z(r) of (15) for which z(rn) = 0. Let R > 0 be arbitrary.

Then rn > R for n ∈ � sufficiently large and for some of these n’s define

y(x) =

{
z(‖x‖q), rn 6 ‖x‖q 6 rn+1,

0 elsewhere.

Then, if Ωrn,rn+1
:= {x ∈ � n | : rn 6 ‖x‖q 6 rn+1}, we have

Fp(y; Ωrn,rn+1
) =

∫

Ωrn,rn+1

[
‖∇y‖p

p − c(x)|y|p
]

dx

=

∫ rn+1

rn

{ ∫

‖x‖q=r

[‖∇y‖p
p − c(x)|y|p] dS

}
dr

= ωn(q)

{ ∫ rn+1

rn

[
rn−1|z′(r)|p −

C(r)

ωn(q)
|z(r)|p

]
dr

}

= ωn(q)

{
rn−1Φ(z′)z |

rn+1

rn
−

∫ rn+1

rn

z

(
(rn−1Φ(z′))′ −

C(r)

ωn(q)
Φ(z)

)
dr

}

= 0.

Consequently, by Corollary 1, equation (2) cannot have a positive solution in ΩR for

every R > 0. �

The previous theorem shows that any oscillation criterion for the half-linear ordi-

nary differential equation

(16) (r(t)Φ(x′))
′
+ c(t)Φ(x) = 0

can be applied to (2). A typical example is the Leighton-Wintner criterion (see

e.g. [20] for its proof) which states that (16) is oscillatory provided

(17)

∫ ∞

r1−q(t) dt = ∞ and lim
t→∞

∫ t

c(s) ds = ∞.
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The application of this criterion to (2) gives the following statement.

Theorem 4. Let p > n. If

lim
r→∞

∫

‖x‖q6r

c(x) dx = ∞

then (2) possesses no positive solution in the exterior domain ΩR = {x ∈ � n : ‖x‖q >

R} for every R > 0.���������
. By Theorem 3, it suffices to prove oscillation of (15), but it follows

immediately from the just mentioned Leighton-Wintner criterion (17) since (because

of p > n) ∫ ∞

r(n−1)(1−q) dr =

∫ ∞

r−
n−1

p−1 dr = ∞

and

lim
r→∞

∫ r

C(r) dr = lim
r→∞

∫

‖x‖q6r

c(x) dx = ∞.

�

The results of this section should be regarded only as “a sample” of the applications

of Picone’s identity in the oscillation theory of (2). For example, following [10], [14],

any oscillation and conjugacy criterion for the half-linear equation (15) (see., e.g.,

[8], [9]) yields a corresponding result on nonexistence of positive solutions of (2). In

addition, in our investigation we have till now completely neglected the relationship

between the existence of a nonzero solution of (2) and the solvability of (6). This

method of oscillation theory is usually regarded as the Riccati technique and was

used in the oscillation theory of PDE’s e.g. in [10], [18], [19], [21], [26] and other

papers. We hope to investigate applications of the Picone identity in the oscillation

theory of (2) as well as to look for a more general form of this identity in a subsequent

paper.
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