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Abstract. We deal with the Laplace equation in the half space. The use of a special
family of weigted Sobolev spaces as a framework is at the heart of our approach. A complete
class of existence, uniqueness and regularity results is obtained for inhomogeneous Dirichlet
problem.
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1. Introduction

The purpose of this paper is to solve the problem

(P)

{−∆u = f in �
N
+ ,

u = g on Γ = �
N−1 ,

with the Dirichlet boundary condition on Γ. The approach is based on the use of
a special class of weighted Sobolev spaces for describing the behavior at infinity.
Many authors have studied the Laplace equation in the whole space �N or in an
exterior domain. The main difference is due to the nature of the boundary and one
of difficulties is to obtain the appropriate spaces of traces. However, the half-space
has a useful symmetric property.
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Problem (P) has been investigated in weighted Sobolev spaces by several authors,
but only in the Hilbert cases (p = 2) and without the critical cases corresponding to
the logarithmic factor (cf. [2], [4]). We can also mention the book by Simader, Sohr
[5] where the Dirichlet problem for the Laplacian is investigated.
Let Ω be an open subset of �N , N � 2. Let x = (x1, . . . , xN ) be a typical point

of �N and r = |x| = (x21 + . . .+ x2N )
1/2. We use two basic weights:

� = (1 + r2)1/2 and lg � = ln(2 + r2).

As usual, D(�N ) denotes the spaces of indefinitely differentiable functions with a
compact support and D′

(�N ) denotes its dual space, called the space of distributions.
For any nonnegative integers n and m, real numbers p > 1, α and β, setting

k = k(m, N, p, α) =

{−1 if N
p + α /∈ {1, . . . , m},

m − N
p − α if N

p + α ∈ {1, . . . , m},

we define the following space:

(1.1)
Wm,p

α,β (Ω) = {u ∈ D′(Ω); 0 � |λ| � k, �α−m+|λ|(lg �)β−1Dλu ∈ Lp(Ω);

k + 1 � |λ| � m, �α−m+|λ|(lg �)βDλu ∈ Lp(Ω)}.

In case β = 0, we simply denote the space by Wm,p
α (Ω). Note that Wm,p

α,β (Ω) is a
reflexive Banach space equipped with its natural norm

‖u‖W m,p
α,β (Ω)

=
[ ∑
0�|λ|�k

‖�α−m+|λ|(lg �)β−1Dλu‖p
Lp(Ω)

+
∑

k+1�|λ|�m

‖�α−m+|λ|(lg �)βDλu‖p
Lp(Ω)

]1/p

.

We also define the semi-norm

|u|W m,p
α,β (Ω)

=
( ∑

|λ|=m

‖�α(lg �)βDλu‖p
Lp(Ω)

)1/p

,

and for any integer q, we denote by Pq the space of polynomials in N variables of
a degree smaller than or equal to q, with the convention that Pq is reduced to {0}
when q is negative. The weights defined in (1.1) are chosen so that the corresponding
space satisfies two properties:

(1.2) D(�N
+ ) is dense in Wm,p

α,β (�
N
+ ),

and the following Poincaré-type inequality holds in Wm,p
α,β (�

N
+ ).
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Theorem 1.1. Let α and β be two real numbers and m � 1 an integer not
satisfying simultaneously

(1.3)
N

p
+ α ∈ {1, . . . , m} and (β − 1)p = −1.

Then the semi-norm | · |W m,p
α,β (�

N
+)
defines on Wm,p

α,β (�
N
+ )/Pq′ a norm which is equiv-

alent to the quotient norm,

(1.4) ∀u ∈ Wm,p
α,β (�

N
+ ), ‖u‖W m,p

α,β (�
N
+)/Pq′ � c|u|W m,p

α,β (�
N
+)

with q′ = inf(q, m − 1), where q is the highest degree of the polynomials contained
in Wm,p

α (�N
+ ),

�����. First, we construct a linear continuous extension operator such that

(1.5) P : Wm,p
α,β (�

N
+ )→ Wm,p

α,β (�
N )

satisfying

(1.6) ‖Pu‖W m,p
α,β (�

N) � ‖u‖W m,p
α,β (�

N
+)

.

Since

(1.6) ∀u ∈ Wm,p
α,β (�

N ), ‖u‖W m,p
α,β (�

N)/Pq′ � c|u|W m,p
α,β (�

N)

holds [cf. 1], it automatically implies the statement of our theorem. �

Now, we define the space

◦
Wm,p

α,β (�
N
+ ) = D(�N

+ )
‖·‖

W
m,p
α,β

(�N
+
) ;

the dual space of
◦

Wm,p
α,β (�

N
+ ) is denoted by W−m,p′

−α,−β(�
N
+ ), where p′ is the conjugate

of p : 1p +
1
p′ = 1.

Theorem 1.2. Under the assumptions of Theorem 1.1, the semi-norm

| · |W m,p
α,β (�

N
+)
is a norm on

◦
Wm,p

α,β (�
N
+ ) such that it is equivalent to the full norm

‖ · ‖W m,p
α,β
(�N
+)
.

We recall now some properties of weighted Sobolev spaces Wm,p
α,β (�

N
+ ). We have

the algebraic and topological imbeddings

Wm,p
α,β (�

N
+ ) ⊂ Wm−1,p

α−1,β (�
N
+ ) ⊂ . . . ⊂ W 0,p

α−m,β(�
N
+ )
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if N
p + α /∈ {1, . . . , m}. When N

p + α = j ∈ {1, . . . , m}, then we have:

Wm,p
α,β (�

N
+ ) ⊂ . . . ⊂ Wm−j+1,p

α−j+1,β (�
N
+ ) ⊂ Wm−j,p

α−j,β−1(�
N
+ ) ⊂ . . . ⊂ W 0,p

α−m,β−1(�
N
+ ).

Note that in the first case, the mapping u → �γu is an isomorphism from Wm,p
α,β (�

N
+ )

ontoWm,p
α−γ,β(�

N
+ ) for any integerm. Moreover, in both cases and for any multi-index

λ ∈ �
N , the mapping

u ∈ Wm,p
α,β (�

N
+ )→ Dλu ∈ W

m−|λ|,p
α,β (�N

+ )

is continuous.
Finally, it can be readily checked that the highest degree q of the polynomials

contained in Wm,p
α,β (�

N
+ ) is given by

q =




m − (Np + α)− 1 if
{

N
p + α ∈ {1, . . . , m} and (β − 1)p � −1
N
p + α ∈ {j ∈ Z; j � 0} and βp � −1

[m − (Np + α)] otherwise,

where [s] denotes the integer part of s.
In the sequel, for any integer q � 0, we will use the following polynomial spaces:
— Pq (P∆q ) is the space of polynomials (respectively, harmonic polynomials) of

degree � q,
— P ′

q is the subspace of polynomials in Pq depending only on the N − 1 first
variables, x′ = (x1, . . . , xN−1),
— A∆q (N

∆
q ) is the subspace of polynomials P

∆
q satisfying the condition p(x′, 0) = 0

(respectively, ∂p
∂xN
(x′, 0) = 0) or equivalently odd with respect to xN (even with

respect to xN ), with the convention that Pq, P
∆
q , P ′

q, . . . are reduced to {0} when q

is negative.

2. The spaces of traces

In order to define the traces of functions of Wm,p
α,β (�

N
+ ), we introduce for any

σ ∈]0, 1[ the space

W σ,p
0 (�

N ) =
{
u ∈ D′(�N ); w−σu ∈ Lp(�N ),(2.1) ∫ +∞

0
t−1−σp dt

∫
�N

|u(x+ tei)− u(x)|p dx < ∞
}
,

where

w =

{
� if N

p �= σ,

�(lg �)1/σ if N
p = σ,
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and e1, . . . , eN is a canonical basis of �N . It is a reflexive Banach space equipped
with its natural norm

‖u‖W σ,p
0 (�N) =

(∥∥∥ u

wσ

∥∥∥p

Lp(�N)
+

N∑
i=1

∫ ∞

0
t−1−σp dt

∫
�N

|u(x+ tei)− u(x)|p dx
)1/p

which is equivalent to the norm

(∥∥∥ u

wσ

∥∥∥p

Lp(�N)
+

∫
�N×�N

|u(x)− u(y)|p
|x − y|N+σp

dxdy
)1/p

.

For any s ∈ �
+ , we set

(2.2) W s,p
0 (�

N ) =
{

u ∈ W
[s],p
[s]−s(�

N ); ∀|λ| = [s], Dλu ∈ W
s−[s],p
0 (�N )

}
.

It is a reflexive Banach space equipped with the norm

‖u‖W s,p
0 (�N) = ‖u‖

W
[s],p
[s]−s

(�N)
+

∑
|λ|=s

‖Dλu‖
W

s−[s],p
0 (�N)

.

We notice that this definition and the next one coincide with the definition in the
first section when s = m is a nonnegative integer. For any s ∈ �

+ and α ∈ �, we
then set

(2.3) W s,p
α (�

N ) =
{
u ∈ W

[s],p
[s]+α−s(�

N ), ∀|λ| = [s], �αDλu ∈ W
s−[s],p
0 (�N )

}
.

Finally, for any integer m � 1, we define the space

(2.4)
Xm,p
0 (�N

+ ) =
{
u ∈ D′(�N

+ ); 0 � |λ| � k, �′|λ|−m(lg �′)−1Dλu ∈ Lp(�N
+ ),

k + 1 � |λ| � m, �′|λ|−mDλu ∈ Lp(�N
+ )

}

with �′ = (1 + |x′|2)1/2 and lg �′ = ln(2 + |x′|2). It is a reflexive Banach space. We
can prove that

D(�N
+ ) is dense in Xm,p

0 (�N
+ ).

We observe that the functions from Xm,p
0 (�N

+ ) and Wm,p
0 (�N

+ ) have the same traces
on Γ = �

N−1 (see below). If u is a function, we denote its traces on Γ = �
N−1 by

x′ ∈ �
N−1 , γ0u(x′) = u(x′, 0), . . . , γju(x′) = ∂ju

∂xj
N

(x′, 0).

As in [3], we can prove the following trace lemma:
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Lemma 2.1. For any integer m � 1 and real number α, the mapping

γ : D(�N
+ )→

m−1∏
j=0

D(�N−1 )

u �→ (γ0u, . . . , γm−1u)

can be extended by continuity to a linear and continuous mapping still denoted by

γ from Wm,p
α (�N

+ ) to
m−1∏
j=0

W
m−j− 1

p ,p
α (�N−1 ). Moreover, γ is onto and

Ker γ =
◦

Wm,p
α (�N

+ ).

3. The Laplace equation

The aim of this section is to study the problem (P):

(P)

{−∆u = f in �
N
+ ,

u = g in Γ = �
N−1 .

Theorem 3.1. Let � � 0 be an integer and assume that

(3.1)
N

p′
/∈ {1, . . . , �}

with the convention that this set is empty if � = 0. For any f in W−1,p
� (�N

+ ) and g

in W
1
p′ ,p

� (Γ) satisfying the compatibility condition

(3.2) ∀ϕ ∈ A∆[�+1− N
p′ ], 〈f, ϕ〉

W−1,p
� ×W 1,p′

−�

=
〈
g,

∂ϕ

∂γN

〉
Γ

where 〈·, ·〉Γ denotes the duality betweenW
1
p′ ,p

� (Γ) andW
− 1

p′ ,p′

−� (Γ), problem (P) has
a unique solution u ∈ W 1,p

� (�
N
+ ) and there exists a constant C independent of u, f

and g such that

(3.3) ‖u‖W 1,p
� (�N

+)
� C(‖f‖W−1,p

� (�N
+)
+ ‖g‖

W

1
p′ ,p

� (Γ)
).

�����. First, the kernel of the operator

(−∆, γ0) : W 1,p
� (�

N
+ )→ W−1,p

� (�N
+ )× W

1
p′ ,p

� (Γ)
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is precisely the space A∆[�+1−N/p′] for any integer � and A∆
[�+1− N

p′ ]
is reduced to {0}

when � � 0. Thanks to Lemma 2.1, let ug ∈ W 1,p
� (�

N
+ ) be the lifting function of g

such that
ug = g on Γ and ‖ug‖W 1,p

� (�N
+)

� C1‖g‖
W

1
p′ ,p

� (Γ)
.

Then problem (P) is equivalent to

(3.4)

{−∆v = f +∆ug in �
N
+ ,

v = 0 on Γ.

Set h = f +∆ug. For any ϕ ∈ W 1,p′
−� (�

N ) set

�ϕ(x′, xN ) = ϕ(x′, xN )− ϕ(x′,−xN ) if xN > 0.

It is clear that �ϕ ∈
◦

W 1,p′
−� (�

N
+ ). Then h can be extended to hπ ∈ W−1,p

� (�N )
defined by

ϕ ∈ W 1,p′
−� (�

N ), hπ(ϕ) = 〈h,�ϕ〉
W−1,p

� (�N
+)×W 1,p′

−� (�
N
+)

.

Moreover,
‖hπ‖W−1,p

� (�N) = ‖h‖W−1,p
� (�N

+)
.

Let q be a polynomial in P∆[�+1−N/p′]. We can write it in the form

q = r + s, r ∈ A∆[�+1−N/p′] and s ∈ N∆[�+1−N/p].

Then,
〈hπ, q〉 = 〈f +∆ug, r〉W−1,p

� (�N
+)×W 1,p′

−� (�
N
+)

and applying the Green formula we get

〈∆ug, r〉 = −
∫
�N
+

∇ug · ∇r dx

= −
〈
g,

∂r

∂xN

〉
W

1
p′ ,p

� (Γ)×W
− 1

p′ ,p′
−� (Γ)

(note that ∆r = 0 in �N
+ and r = 0 on Γ). Thus, hπ ∈ W−1,p

� (�N ) and it satisfies

∀q ∈ P∆[�+1−N/p′], 〈hπ, q〉 = 0.

Recall that (cf. [1]) since (3.1) holds, the operators

∆: W 1,p
� (�

N )→ W−1,p
� ⊥ P∆[�+1− N

p′ ]
if � � 1,

∆: W 1,p
0 (�

N )/P[1−N
p ]

→ W−1,p
0 (�N ) ⊥ P[1− N

p′ ] if � = 0
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are isomorphisms. Hence, there exists ṽ in W 1,p
� (�

N ) such that −∆ṽ = hπ. Now we
remark that the function w = 1

2 � ṽ belongs to W 1,p
� (�

N
+ ) and

−∆w = h in �
N
+ and w = 0 on Γ,

i.e.w is a solution of (3.4). �

������. The kernel A∆[−�+1−N/p] is reduced to {0} if � � 0 and to P[1−N/p] if
� = 0.

With similar arguments, we can prove the following theorem:

Theorem 3.2. Let � � 1 be an integer and assume that

(3.5)
N

p
/∈ {1, . . . ,−�}.

Then for any f in W−1,p
−� (�

N
+ ) and g in W

1
p′ ,p

−� (Γ), problem (P) has a unique solution
u ∈ W 1,p

−� (�
N
+ )/A

∆
[�+1−N/p] and there exists a constant C independent of u, f and g

such that

inf
q∈A∆

[�+1− N
p
]

‖u+ q‖W 1,p
−� (�

N
+)

� C(‖f‖W−1,p
−� (�N

+)
+ ‖g‖

W

1
p′ ,p

−� (Γ)
).

Theorem 3.3. Let m be a nonnegative integer, let g belong to W
1
p′+m,p

m (Γ) and
assume that

(3.6) f ∈ W−1+m,p
m (�N

+ ) if
N

p′
�= 1 or m = 0,

or

(3.7) f ∈ W−1+m,p
m (�N

+ ) ∩ W−1,p
0 (�N

+ ) if
N

p′
= 1 and m �= 0.

Then problem (P) has a unique solution u ∈ W 1+m,p
m (�N

+ ) and u satisfies

‖u‖W m+1,p
m (�N

+)
� C(‖f‖W−1+m,p

m (�N
+)
+ ‖g‖

W

1
p′ +m,p

m (Γ)
) if

N

p′
�= 1 or m = 0

and

‖u‖W m+1,p
m (�N

+)
� C(‖f‖W 1,p

0 (�N
+)
+ ‖f‖W−1+m,p

m (�N
+)
+ ‖g‖

W

1
p′ +m,p

m (Γ)
)

if
N

p′
= 1 and m �= 0.
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�����. First, we observe that for any integer m � 0 we have the inclusion

W−1+m,p
m (�N

+ ) ⊂ W−1,p
0 (�N

+ )

if N
p′ �= 1 or m = 0. Thus, under the assumptions (3.6) or (3.7) and thanks to

Theorem 3.1, there exists a unique solution u ∈ W 1,p
0 (�

N
+ ) of problem (P). Let us

prove by induction that

(3.8) g ∈ W
1
p′+m,p

m (Γ) and f satisfies (3.6) or (3.7) =⇒ u ∈ Wm+1,p
m (�N

+ ).

For m = 0, (3.8) is valid. Assume that (3.8) is valid for 0, 1, . . . , m and suppose that

g ∈ W
1
p′+m+1,p

m+1 (Γ) and f ∈ Wm,p
m+1(�

N
+ ) with

N
p′ �= 1 (a similar argument can be used

for f satisfying (3.7)). Let us prove that u ∈ Wm+2,p
m+1 (�

N
+ ). We observe first that

Wm,p
m+1(�

N
+ ) ⊂ Wm−1,p

m (�N
+ ) and W

1
p′+m+1,p

m+1 (Γ) ⊂ W
1
p′+m,p

m (Γ),

hence u belongs to Wm+1,p
m (�N

+ ) thanks to the induction hypothesis. Now, for i =
1, . . . , N − 1,

∆(�∂iu) = �∂if +
2
�
r · ∇(∂iu) +

(2
�
+
1
�3

)
∂iu.

Thus, ∆(�∂iu) ∈ Wm−1,p
m (�N

+ ) and γ0(�∂iu) ∈ Wm+1,p
m (�N−1 ). Applying the induc-

tion hypothesis, we can deduce that

∂iu ∈ Wm+1,p
m+1 (�

N
+ ) for i = 1, . . . , N − 1.

It remains to prove that v = ∂Nu ∈ Wm+1,p
m+1 (�

N
+ ). This is a consequence of the fact

that v belongs to Wm,p
m (�N

+ ) and

∂i∂Nu = ∂N∂iu ∈ Wm,p
m+1(�

N
+ ), i = 1, . . . , N − 1,

∂N (∂Nu) = ∆u −
N−1∑
i=1

∂2i u ∈ Wm,p
m+1(�

N
+ ).

We can conlude that u ∈ Wm+2,p
m+1 (�

N
+ ). �

Corollary 3.4. Let � � 1 and m � 1 be two integers.
(i) Under the assumption

N

p′
/∈ {1, . . . , �+ 1},
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for any f ∈ Wm−1,p
m+� (�

N
+ ) and g ∈ W

1
p′+m,p

m+� (Γ) satisfying the compatibility condition
(3.2) there exists a unique solution u ∈ Wm+1,p

m+� (�
N
+ ) of (P) and u satisfies

‖u‖W m+1,p
m+� (�N

+)
� C(‖f‖W m−1,p

m+� (�N
+)
+ ‖g‖

W

1
p′ +m,p

m+� (Γ)
)

where C = C(m, p, �, N) is a constant independent of u, f and g.
(ii) Under the assumption

m � � or
N

p
/∈ {1, . . . , � − m},

for any f ∈ Wm−1,p
m−� (�

N
+ ) and g ∈ W

1
p′+m,p

m−� (Γ) there exists a unique solution u ∈
Wm+1,p

m−� (�
N
+ )/A

∆
[1+�−N/p] of (P) and u satisfies

inf
q∈A∆[1+�−N/p]

‖u+ q‖W m+1,p
m−�

(�N
+)

� C(‖f‖W m−1,p
m−� (�N

+)
+ ‖g‖

W

1
p′ +m,p

m−� (Γ)
).
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