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1. Introduction

In robotics a basic theoretical tool is the Lie group SE(3) of Euclidean motions

(rotations, translations, helical motions) in the Euclidean space E3. Then every

property of this group, its Lie algebra se(3) and its dual space se∗(3) has useful

applications in robotics. Throughout this paper we prefer the matrix form of in-

vestigation. It means that the elements of se(3) are considered as couples of two

vectors called twists (this notion is often used in robotic literature). Analogously the

elements of se∗(3) are couples of two vectors called wrenches.

In the second chapter of this paper we recall some basic notions of the Lie algebra

se(3) such as the representation Ad : SE(3) → GL(se(3)) of the group SE(3) in

the vector space se(3), the representation ad : se(3) → end(se(3)) of the Lie algebra

se(3) in the vector space se(3), Klein’s and Killing’s bilinear forms in se(3). The

third chapter is devoted to the space se∗(3). We recall robotic interpretations of the

wrench such as pure forces, pure torques, the internal map iKl : se(3) → se∗(3), (its

inversion) determined by Klein’s formKl, the representation of se(3) in se∗(3) which

is dual to ad and their properties. The main goal of this paper is to investigate some

cohomological properties of the Lie algebra se(3). In the fourth chapter we deal with
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some graded operators on the complexes of spaces Λrg∗, Λrg∗⊗g, Λrg∗⊗g∗ inspired

by the external derivative d on differential manifolds and by the 0-representation of

se(3) in R, by the representations ad and ad∗. We compute the first cohomological

groups of these operators. The basic literature we refer to is [1], [2], [3], [5], [6], [7],

[8], especially [9] for the matrix twist and wrench calculus in robotics and [4] for the

cohomological considerations and its technical applications.

2. Some properties of the Lie algebra se(3)

The Lie group SE(3) of Euclidean motions (rotations, translations, helical mo-

tions) in the Euclidean space E3 and its Lie algebra se(3) are the basic means for

the description of robot activities. In this chapter we briefly recall some basic notions

of SE(3) and first of all se(3) which we will need. For details we refer to [1], [9].

Let S0 be a coordinate system in E3. If we use homogeneous coordinates

(x1, x2, x3, 1)T ≡

(
x̄

1

)
∈ E3, where x̄ = (x1, x2, x3)

T are the coordinates of the

position vector OL in S0 then the left action L′ = HL of SE(3) in E3, H ∈ SE(3),

has the matrix form




x′
1

x′
2

x′
3

1


 =

(
A p̄

0 1

)



x1

x2

x3

1


 , H =

(
A p̄

0 1

)

where A is an orthogonal 3×3matrix, detA = 1 andOP =




p1

p2

p3


 = p̄ is the position

vector of the point P at which the origin O goes in the action of the element H ∈

SE(3). It is easy to see that the coordinate system S0 determines the isomorphism

SE(3) ≃ SO(3) ⋊R
3 where SO(3) denotes the Lie group of all orthogonal matrices

A, detA = 1, which represents the Lie group of all spherical motions around O,

R
3 means the Lie group of all translations in E3 and ⋊ denotes the semidirect

product of these groups. In this paper we deal only with structural properties of the

group SO(3) ⋊R
3 and its Lie algebra with the dual space. Taking into account the

isomorphism SE(3) ≃ SO(3) ⋊R
3 all our assertions about these properties are true

for the group SE(3) and its Lie algebra se(3) with the dual space se∗(3).

A Euclidean motion κ(t) can be written in the form L(t) = H(t)L0, where

H(0) = E is the unit matrix. Differentiation of the matrix H(t) at t = 0 gives

Ḣ(0) =

(
Cω b̄

0 0

)
, where Cω =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 is skewsymmetric and b̄ =
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(b1, b2, b3)
T , ω = (ω1, ω2, ω3)

T are vectors where b̄ is the instantaneous velocity of

the origin O and ω is the angular velocity of the instantaneous helical motion ̺

around the axis o through the point C, OC = ω × b̄/ω2, with the direction vector

ω. If ω · b̄ = 0, ω 6= 0̄, then ̺ is a rotation. If ω = 0̄ the ̺ is a translation with the

vector b̄. Recall that the velocities of any point L0 at the motion ̺ and κ(t) at t = 0

are equal. Throughout this paper we use the column coordinate form of vectors,

v =




v1

v2

v3


 = (v1, v2, v3)

T where T denotes the transpose of a matrix. Let us recall

that Cωv = (ω × v) where ω × v denotes the cross product of the vectors ω and v.

In robotics the “twist” form X =

(
ω

b̄

)
:= Ḣ(0) or (ω, b̄)T =

(
ω

b̄

)
is often used.

All twists form the Lie algebra se(3) in which the Lie bracket is

(1) [X1, X2] =

(
ω1 × ω2

ω1 × b̄2 + b̄1 × ω2

)
≈ Ḣ1Ḣ2 − Ḣ2Ḣ1.

Let us recall two representations.

1. The adjoint representation Ad : SE(3) → GL(se(3)) of the group SE(3) in the

vector space se(3) where AdH is determined by the tangential prolongation of the

internal automorphism H 7→ HHH−1 at the unit e ∈ SE(3), H ∈ SE(3) and it has

the matrix form (see [9])

(2) AdH(X) =

(
A 0

C p̄A A

) (
ω

b̄

)
=

(
Aω

C p̄Aω + Ab̄

)
.

2. The representation ad of the Lie algebra se(3) in the vector space se(3) is

deduced from Ad and its matrix form is (see [9])

adX1
X2 =

(
Cω1 0

C b̄1 Cω1

) (
ω2

b̄2

)
=

(
Cω1ω2

C b̄1ω2 + Cω1 b̄2

)
(3)

=

(
ω1 × ω2

b̄1 × ω2 + ω1 × b̄2

)
= [X1, X2].

Let us recall the well known relations which we will use:

AdH [X1, X2] = [AdHX1, AdHX2],(4)

adX [X1, X2] = [adXX1, X2] + [X1, adXX2],(5)

Adexp X = expadX ,(6)

where exp denotes the exponential map exp: g → G from any Lie algebra g into its

Lie group G.
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We will use two bilinear forms defined in se(3).

1. Klein’s form Kl is defined by the rule

(7) Kl(X1, X2) = ω1 · b̄2 + b̄1 · ω2, Xi =

(
ωi

b̄i

)
, i = 1, 2,

where dot denotes the scalar product of a vector in the Euclidian space.

2. Killing’s form K fulfils

(8) K(X1, X2) = ω1 · ω2.

It is well known that the forms Kl and K are Ad-invariant and thus their values

do not depend on the choice of the coordinate system S0. In the case of the Lie

algebra g of a general Lie group G, Killing’s form is defined by the prescription

K̃(X1, X2) = tr(adX1
adX2

) where on the right hand side there is the trace of the

linear map adX1
adX2

∈ end(g), where end(g) denotes the space of all linear maps

the on the vector space g. Using (3) in the case of g = se(3) we have

tr(adX1
adX2

) = tr

( (
Cω1 0

C b̄1 Cω1

) (
Cω2 0

C b̄2 Cω2

) )
= 2 trCω1Cω2 = −4ω1 · ω2.

So we have

(9) K̃(X1, X2) = −4K(X1, X2).

Killing’s form is evidently singular since K(X, X) = 0 for any translating twist

X =

(
0̄

b̄

)
. Recall that a twist X =

(
ω

b̄

)
is translating or rotational or helical

if K(X, X) = 0, i.e. ω = 0̄ or Kl(X, X) = 2ω · b̄ = 0, ω 6= 0̄ or ω 6= 0̄, ω · b̄ 6= 0

respectively. The maps Ad preserve the kind of twists (for example if X is rotational

then AdH(X) is also rotational). The maps ad preserve only translating twists.

3. On the space se∗(3) dual to se(3)

The dual space se∗(3) to the vector space se(3) is the vector space of all linear

functions (1-forms) ξ : se(3) → R. We consider se(3) as the space of twists (of

couples X =

(
ω

b̄

)
of vectors); then an element of se∗(3) is also a couple ξ =

(
m

f

)

of vectors called the wrench (see [9], [3]), where the value of ξ on X (the evaluation

of ξ on X) can be expressed in the form

(10) ξ ◦ X =

(
m

f

)
◦

(
ω

b̄

)
:= (m, f)

(
ω

b̄

)
= m · ω + f · b̄.

Evidently it does not depend on the choice on S0.
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R em a r k 1. A wrench (m, f)T can be interpreted by momenta and force:

(a) (m = r̄ × f, f)T , f is the force and m = r̄ × f is the moment of force f at the

point with the position vector r̄. In general the wrench (m, f)T , m · f = 0,

f 6= 0̄, is called the pure force.

(b) ξ = (m, 0̄)T is the so-called pure torque and represents a double force.

(c) Every wrench ξ = (m, f)T is a linear combination of the pure force and the pure

torque.

The evaluation ξ ◦ X we interpret as the work of ξ on X .

R em a r k 2. Klein’s form Kl determines a (1,1)-correspondence iKl : se(3) →

se∗(3) by the rule iKl(X) ≡ iXKl ∈ se∗(3), where iXKl(Y ) = Kl(X, Y ), i.e.

iXKl = Kl(X, ·). If X = (ωX , b̄X)T , Y = (ωY , b̄Y )T then iKl(X) = (b̄X , ωX)T

as iXKl(Y ) = Kl(X, Y ) = ωX · b̄Y + b̄X · ωY . In the matrix form iKl =

(
0 E

E 0

)

as

(
0 E

E 0

) (
ωX

b̄X

)
=

(
b̄X

ωX

)
. The inverse matrix is the same, i.e.

(
0 E

E 0

)
.

R em a r k 3. A twist X = (ω, b̄)T , ω 6= 0̄ determines a line p (axis of X) through

the point C with the position vector OC = (ω × b̄)/ω2 and with the direction vector

ω. Analogously the line of a wrench ξ =

(
m

f

)
, f 6= 0̄, goes through the point C,

OC = (f × m)/f2 and f is its direction vector. Then the axis of X and the line of

iXKl coincide.

From the relation (2) it is clear that by the rule H 7→ (AdH−1 )∗ dual to AdH−1

determines a representation ̺ of the group SE(3) in the vector space se∗(3). Then

the map X 7→ (ad−X)∗ dual to ad−X determines the so-called from ad deduced rep-

resentation of the Lie algebra se(3) in the vector space se∗(3), i.e. the homomorphism

ad∗ : se(3) → end(se∗(3)) where end(se∗(3)) is the Lie algebra of all linear maps on

se∗(3) with the Lie bracket [α, β] = αβ−βα ∈ end(se∗(3)) . The relation (3) implies

that the matrix of the map ad∗(X) = (ad−X)∗ is

(
Cω C b̄

0 Cω

)
=

(
C−ω 0

C−b̄ C−ω

)T

.

Let us denote (see [9])

(11) {X, ξ} := (ad−X)∗ξ, ξ ∈ se∗(3), X ∈ se(3).

In the matrix form we have for X = (ω, b̄)T , ξ = (m, f)T

(11′) {X, ξ} =

(
Cω C b̄

0 Cω

) (
m

f

)
=

(
Cωm + C b̄f

Cωf

)
=

(
ω × m + b̄ × f

ω × f

)
.
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Recall that the space Λrse∗(3) is the vector space of all scalar skewsymmetric forms

of degree r (shortly of r-forms on se(3)). In general, Λrse∗(3)(V ) ≡ Λrse∗(3) ⊗ V

denotes the space of all skewsymmetric forms of degree r with values in a vector space

V . In this spirit, Λrse∗(3) ≡ Λrse∗(3)(R) and Λse∗(3) denotes the graded algebra

of all skewsymmetric scalar forms with external product of scalar forms which is in

the case of 1-forms of the form α ∧ β(X, Y ) = α(X)β(Y ) − α(Y )β(X). Analogously

we use the notation Λrg∗, Λrg∗(V ) = Λrg∗ ⊗ V for any Lie algebra g.

4. Operators d̂, d̃ and d̃∗. Cohomological properties

First we recall the operator d : Λrg ⊗ V → Λr+1g ⊗ V which is inspired by the

external differentiation on manifolds, see for example [4]. Let ̺ be a representation

of a Lie algebra g in a vector space V , i.e. ̺ : g → end(V ) is a homomorphism of Lie

algebras. Let α ∈ Λrg∗ ⊗ V . Then the operator d is defined by the rule

(12) dα(X1, . . . , Xr+1) =

r+1∑

j=1

(−1)j+1̺(Xj)α(X1, . . . , X̂j , . . . , Xr+1)

+
∑

i<j

(−1)i+jα([Xi, Xj], . . . , X̂i, . . . , X̂j , . . . , Xr+1), X1, . . . , Xr+1 ∈ g,

where X̂ denotes the omission of X . For r = 0, 1, 2 this gives

v ∈ V ⇒ dv(X) = ̺(X)v,(120)

α ∈ g∗ ⊗ V ⇒ dα(X, Y ) = ̺(X)α(Y ) − ̺(Y )α(X) − α([X, Y ]),(121)

α ∈ Λ2g∗ ⊗ V ⇒ dα(X, Y, Z) = ̺(X)α(Y, Z) − ̺(Y )α(X, Z)(122)

+ ̺(Z)α(X, Y ) − α([X, Y ], Z) + α([X, Z], Y ) − α([Y, Z], X).

It is clear that d2 = dd = 0 and we get the cohomological complex

V
d
→ g∗ ⊗ V

d
→ Λ2g∗ ⊗ V

d
→ . . .

d
→ Λng∗ ⊗ V

d
→ 0, n = dim g.

We use the standard notation:

Br = d(Λr−1g∗ ⊗ V ) ⊂ Λrg∗ ⊗ V—the rth co-boundary of d,

Zr = {α ∈ Λrg∗ ⊗ V, dα = 0 ∈ Λr+1g∗ ⊗ V }—the rth co-cycle of d,

Hr = Zr/Br—the rth cohomological group of d.

We will treat three cases:
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(a) V = R, with the trivial zero-representation ̺ = 0,

(b) V = g, with the representation ̺ = ad,

(c) V = g∗, with the representation ̺ = ad∗.

(a) Let V = R, ̺ = 0 and let the operator d be rewritten as d̂. We have

c ∈ R, d̂c(X) = 0 and thus B1(d̂) = 0,(1̂20)

α ∈ g∗, d̂α(X, Y ) = −α([X, Y ]),(1̂21)

α ∈ Λ2g∗, d̂α(X, Y, Z) = −α([X, Y ], Z) + α([X, Z], Y ) − α([Y, Z ], X),(1̂22)

R
d̂
→ g∗

d̂
→ Λ2g∗

d̂
→ . . .

d̂
→ Λng∗

d̂
→ 0.

Proposition 1. Let A ⊂ g be a subspace. Let A⊥ = {α ∈ g∗, α(A) = 0} be

the subspace of all 1-forms α ∈ g∗ for which α(X) = 0 for all X ∈ A. Then A is a

subalgebra of g iff d̂α|A = 0, i.e. iff d̂α(X, Y ) = 0 for all X, Y ∈ A and any α ∈ A⊥.

P r o o f. The proof follows from (121) as d̂α(X, Y ) = −α([X, Y ]) is zero for all

X, Y ∈ A and any α ∈ A⊥ iff [X, Y ] ∈ A. �

Corollary 1. As in g = se(3) there is no 5-dimensional subalgebra (see [6]) there-

fore the restriction d̂α, α ∈ se∗(3), α 6= 0 to the space kerα = {X ∈ se(3), α(X) = 0}

cannot be zero.

P r o o f. In the case α 6= 0 we have dim(kerα) = 5. If d̂α|ker α = 0 then by

Proposition 1 kerα is a subalgebra but this is impossible. �

R em a r k 4. Recall that the Jacobian of an n-parametric robot (robot with

n joints) is a map J : Rn → se(3), J(u̇1, . . . , u̇n) = u̇1Y1 + . . . + u̇nYn where

u̇1(t), . . . , u̇n(t) are the joint velocities and Yi(t) is the twist determined by the

position of the i-th joint at time t. The map J∗ : se∗(3) → Rn dual to J maps

wrenches into joint moments such that, if X = J(u̇ = (u̇1, . . . , u̇n)) and α ∈ se∗(3)

then α(X) = J∗α(u̇). So if α ∈ kerJ∗ and X = J(u̇) then α(X) = 0. Therefore

(J(Rn))⊥ = kerJ∗. Therefore J(Rn) is a subalgebra of se(3) iff d̂α|J(Rn) = 0 for all

α ∈ kerJ∗.

Recall that the Lie bracket [ , ] in a Lie algebra g is a skew bilinear map [ , ] : g×g →

g. Let Im[ , ] denote the set of all images of the map [ , ]. Evidently we have: if α ∈ g∗

then d̂α = 0 iff Im[ , ] ⊂ kerα.

In what follows we will use the fact that se(3) = so(3) ⊕̄ R3 is a semi-direct

sum where so(3) =

{
X =

(
ω

b̄

)
, b̄ = 0̄

}
, R3 =

{
X =

(
ω

b̄

)
, ω = 0̄

}
and thus

[(
ω1

0̄

)
,

(
ω2

0̄

)]
=

(
ω1 × ω2

0̄

)
,

[(
0̄

b̄1

)
,

(
0̄

b̄2

)]
=

(
0̄

0̄

)
.
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Lemma 1. Let α ∈ se∗(3). Then d̂α = 0 iff α = 0.

P r o o f. It is sufficient to show that Im[ , ] = g. Let X =

(
ω

b̄

)
∈ g. Then there

are such vectors ω1, ω2, b̄2 that ω = ω1 × ω2 and b̄ = ω1 × b̄2. In detail, if ω, b̄ are

collinear then ω1, ω2, b̄2 are complanar with a plane orthogonal to ω. If ω, b̄ are not

collinear then ω1 is collinear to the intersection of two planes when one of them is

orthogonal to ω and the other to b̄. We have

(
ω

b̄

)
=

[(
ω1

0̄

)
,

(
ω2

b̄2

)]
. �

Corollary 2. The co-cycle Z1 of d̂ is Z1(d̂) = 0 and so H1 = Z1(d̂)/B1(d̂) = 0.

Proposition 2. The second co-cycle of d̂ is isomorphic to se(3)∗, i.e. Z2(d̂) ≈

se(3)∗.

P r o o f. By the relation (1̂21) the second co-boundary of d̂ is isomorphic

to se(3)∗, B2(d̂) ≈ se(3)∗. Therefore it is sufficient to show that dimZ2(d̂) =

dim se(3)∗. We choose basis vectors E1 = (1, 0, . . . , 0)T =

(
ē1

0̄

)
, E2 =

(
ē2

0̄

)
,

E3 =

(
ē3

0̄

)
, . . ., E6 =

(
0̄

ē3

)
in se(3) and the dual basis E1 =

(
ē1

0̄

)
, . . .,

E6 =

(
0̄

ē3

)
in se(3)∗, (i.e. Ei(Ej) = Ei ◦ Ej = δi

j = 1 for i = j or δi
j = 0 for

i 6= j and ē1, ē2, ē3 is an orthonormal basis in the Euclidian vector space E3). Any 2-

form α ∈ Λ2se∗(3) is of the coordinate form α =
6∑

i<j

αikEi∧Ek, αik = −αki. We have

Ei∧Ek(Ej , Eh) = (Ei ◦ Ej)(E
k ◦ Eh)−(Ei ◦ Eh)(Ek ◦ Ej) = δi

jδ
k
h−δi

hδk
j . If (i, k) 6=

(j, h) then Ei ∧Ek(Ej , Eh) = 0, Ei ∧Ek(Ei, Ek) = 1. Evidently dim Λ2se∗(3) = 15.

The condition d̂α = 0 is satisfied iff d̂α(Ei, Ej , Ek) = 0 for i, j, k = 1, . . . , 6, i < j < k.

Using the relation (1̂22) we obtain 9 independent linear equations for αik. For ex-

ample: 0 = d̂α(E1, E3, E6) = −α([E1, E3], E6) + α([E1, E6], E3) − α([E3, E6], E1) =

−α(−E2, E6)+α(−E5, E3)−α(0̄, E1) = α26 +α35. Therefore all 2-forms α fulfilling

d̂α = 0 form a 15 − 9 = 6 dimensional vector space. Therefore dim Z2(d̂) = 6 and

Z2(d̂) ≈ se∗(3). �

Corollary 3. The second cohomological group of d̂ is zero: H2(d̂) = Z2(d̂)/B2(d̂)

= se∗(3)/se∗(3) = 0.

R em a r k 5. Recall that if G is a semi-simple group (its Killing’s form is regular)

then H1(d̂) = 0, H2(d̂) = 0. Killing’s form of the group SE(3) is singular. Also in

this case H1(d̂) = 0, H2(d̂) = 0.
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We will show the connections of the bracket {X, α} to the operator d̂. Our con-

siderations will be general for any Lie group G, its Lie algebra g and g∗. Recall

that the map (Adexp(−X))
∗ : g∗ → g∗ is dual to the map Adexp(−X) = (Adexp X)−1.

In general, if f : V1 → V2 is a linear map from a vector space V1 into another

vector space V2 then the dual map f∗ : V ∗
2 → V ∗

1 to f is defined by the relation

f∗(α) ◦ X = α ◦ f(X), X ∈ V1, α ∈ V ∗
2 . This relation for V1 = V2 and for a regular

f gives α ◦ X = (f∗)−1(α) ◦ f(X) = (f−1)∗(α) ◦ f(X). As

d

dt
(Adexp tX)t=0Y = adXY = [X, Y ],

d

dt
(Adexp(−tX))

∗

t=0(α) = (ad−X)∗(α) = {X, α},

the differentiation of the relation

(Adexp(−tX))
∗(α) ◦ Adexp tX(Y ) = α ◦ Y

with respect to t at t = 0 gives (ad−X)∗(α) ◦ Y + α ◦ adXY = 0, i.e.

(13) {X, α} ◦ Y = −α ◦ [X, Y ].

Proposition 3. If α ∈ g∗, X, Y ∈ g then d̂α(X, Y ) = {X,α} ◦ Y .

Corollary 4. iX d̂α = {X, α}.

R em a r k 6. The relation LX = iXd + diX well known for the Lie derivation on

differentiable manifolds can be thought of as the definition of LX in g∗. Then for

α ∈ g∗ we get LXα = iX d̂α + d̂iXα = iX d̂α = {X, α}.

(b) We turn to the case when V = se(3) and ̺ = ad, ̺(X) = adX . The operator

d will be denoted by d̃. So we have

d̃α(X1, . . . , Xr+1) =

r+1∑

j=1

(−1)j+1[Xj , α(X1, . . . , X̂j , . . . , Xr+1)]

+
∑

i<j

(−1)i+jα([Xi, Xj ], . . . , X̂i, . . . , X̂j , . . . , Xr+1),

X ∈ se(3) ⇒ d̃X(Y ) = adXY = [X, Y ],(1̃20)

α ∈ L(se(3), se(3)) ≡ se∗(3) ⊗ se(3)(1̃21)

⇒ d̃α(X, Y ) = [X, α(Y )] − [Y, α(X)] − α([X, Y ]),

se(3)
d̃
→ se∗(3) ⊗ se(3)

d̃
→ Λ2se∗(3) ⊗ se(3)

d̃
→ . . .

d̃
→ Λnse∗(3) ⊗ se(3)

d̃
→ 0.
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The relation (1̃20) gives d̃X = adX and so the first co-boundary B1(d̃) is iso-

morphic to se(3). Let α ∈ L(se(3), se(3)) = se∗(3) ⊗ se(3). Then by (1̃21),

α ∈ Z1(d̃) = {β ∈ se∗(3)⊗ se(3), d̃β = 0} iff α[X, Y ] = [α(X), Y ] + [X, α(Y )], i.e. iff

α is a derivation on the Lie algebra se(3). The equation (5) gives that adX ∈ Z1(d̃).

It is well known, see for example [4], that in the case of the Lie algebra so(3) all

derivations on so(3) are of type adX . This immediately follows from the property

that so(3) is isomorphic to R
3 with the Lie bracket [y, z] = y × z and that the

only matrices of type 3 × 3 for which A(y × z) = Ay × z + y × Āz are skewsym-

metric matrices. We find all derivations on se(3). We will use again the fact that

se(3) = so(3) ⊕̄ R3 where the bracket on R3 is trivial, i.e. [v1, v2] = 0̄.

The matrix form of any linear map on se(3) is X ′ = HX , i.e.

(
ω′

b̄′

)
=

(
H1 H2

H3 H4

) (
ω

b̄

)
=

(
H1ω + H2b̄

H3ω + H4b̄

)
,

where H1, . . . ,H4 are 3×3 matrices. We find the conditions for H1, . . . ,H4 to satisfy

the relation

(14) H[X, Y ] = [HX, Y ] + [X,HY ] for all X = (ωX , b̄X)T , X = (ωY , b̄Y )T ∈ se(3).

The restriction of (14) to so(3) ⊕̄ 0̄, b̄X = 0̄, b̄Y = 0̄ gives H1(ωX × ωY ) =

H1ωX × ωY + ωX × H1ωY , H3(ωX × ωY ) = H3ωX × ωY + ωX × H3ωY . There-

fore the matrices H1, H3 are skewsymmetric. Restricting (14) to the subal-

gebra 0 ⊕̄ R3(ωX = 0̄, ωY = 0̄) we get 0̄ = H2b̄X × b̄Y + b̄X × H2b̄Y for all

b̄X , b̄Y ∈ R3. This is possible iff H2 = 0. If X = (ωX , 0̄)T , Y = (0̄, b̄Y )T

then H4(ωX × b̄Y ) = H1ωX × b̄Y + ωX × H4b̄Y . As H1 is skewsymetric there-

fore H1ωX × b̄Y = H1(ωX × b̄Y ) − ωX × H1b̄Y . Then (H4 −H1)(ωX × b̄Y ) =

ωX × (H4 −H1)b̄Y . This is true iff H4 −H1 = kE, where E is the 3× 3 unit matrix

and k ∈ R. We conclude: A linear map se(3) → se(3) is a derivation iff it is of the

form
(

ω′

b̄′

)
=

(
Cv, 0

Cz , Cv + kE

) (
ω

b̄

)

=

(
Cvω

Czω + Cv b̄ + kb̄

)
= ad(v,z)T

(
ω

b̄

)
+ k

(
0̄

b̄

)
.

Let pr2 : (ω, b̄)T → (0̄, b̄)T be the projection se(3) = so(3) ⊕̄ R3 → R3 onto the

second factor. We have proved

Proposition 4. A linear map d on se(3) is a derivation on se(3) iff it is of the

form adX + k pr2.
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Corollary 5. The co-cycle Z1 of the operator d̃ is isomorphic to se(3) ⊕̄ R and

thus the first cohomology group of d̃ is isomorphic to R, H1 ≈ R.

(c) Let d̃∗ denote the operator d when V = g∗ and ̺ = ad∗, ad∗(X) = (ad−X)∗,

(ad−X)∗(α) = {X, α}, X ∈ g, α ∈ g∗. Now for α ∈ Λrg∗ ⊗ g∗ we have

d̃∗α(X1, . . . , Xr+1) =

r+1∑

j=1

(−1)j+1{Xj, α(X1, . . . , X̂j , . . . , Xr+1)}

+
∑

i<j

(−1)i+jα([Xi, Xj], . . . , X̂i, . . . , X̂j , . . . , Xr+1),

α ∈ g∗ ⇒ d̃∗α(X) = {X, α}, d̃∗α ∈ g∗ ⊗ g∗,(12∗0)

λ ∈ g∗ ⊗ g∗ ⇒ d̃∗λ(X, Y ) = {X,λ(Y )} − {Y,λ(X)} − λ([X, Y ]),(12∗1)

g∗
d̃∗

→ g∗ ⊗ g∗
d̃∗

→ Λ2g∗ ⊗ g∗
d̃∗

→ . . .
d̃∗

→ Λng∗ ⊗ g∗
d̃
→ 0.

From (12∗0) it is clear that for α ∈ g∗ we have d̃∗α = 0 iff α = 0. Then

B1(d̃∗) ≈ g∗. We are interested in Z1(d̃∗) in the case of g = se(3), g∗ = se∗(3).

We find all λ ∈ se∗(3) ⊗ se∗(3), i.e. the linear maps λ : se(3) → se∗(3) for which

d̃∗λ = 0. If α ∈ se∗(3) then d̃∗α ∈ se∗(3) ⊗ se∗(3) determines a linear map

λα : se(3) → se∗(3), λα(X) = {X, α}. Equation (11′) implies that the matrix of λα

is

(
−Cm −Cf

−Cf 0

)
for α =

(
m

f

)
. Indeed, if X =

(
ω

b̄

)
then

(
−Cm, −Cf

−Cf , 0

) (
ω

b̄

)
=

(
−Cmω − Cf b̄

−Cfω

)
=

(
ω × m + b̄ × f

ω × f

)
= {X, α}.

The map iKl : se(3) → se∗(3) is regular and the matrix of its inversion is again(
0 E

E 0

)
. Denote (iKl)−1α ≡ Xα, α ∈ se∗(3). Using (3) we get λα = −iKladXα

.

Then {X, α} = λα(X) = −iKladXα
X = −iKl[Xα, X]. Every λ can be expressed in

the form λ = iKlH, H : se(3) → se(3). We have {X, λ(Y )} = −iKl[Xλ(Y ), X] =

−iKl[XiKlH(Y ), X] = −iKl[HY, X] = iKl[X,HY ]. Then (12∗1) is of the form

d̃∗λ(X, Y ) = iKl([X,HY ] + [HX, Y ] −H[X, Y ]).

Proposition 5. A linear map λ : se(3) → se∗(3) has the property d̃∗λ = 0 iff it

is of the form λ = λα + k iKl pr2.

P r o o f. d̃∗λ(X, Y ) = 0 iff [X,HY ] + [HX, Y ] = H[X, Y ]. By Proposition 4

this is possible iff H = adX + k pr2, i.e. iff λ = iKl(ad−X + k pr2) = λα + k iKl pr2,

X = X−α. �
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Corollary 6. Z1(d̃∗) ≈ se(3)∗ ⊕ R, B1(d̃∗) ≈ se(3) and H1(d̃∗) ≈ R

E x am p l e 1. Recall the linear map iKl : se(3) → se∗(3), iKl(X) = iXKl

introduced in Remark 2. We have d̃∗iKl(X, Y ) = {X, iKlY } − {Y, iKlX} −

iKl[X, Y ] =

{(
ωX

b̄X

)
,

(
b̄Y

ωY

)}
−

{(
ωY

b̄Y

)
,

(
b̄X

ωX

)}
−

(
ωX × b̄Y + b̄X × ωY

ωX × ωY

)
=

(
ωX × b̄Y + b̄X × ωY − ωY × b̄X + b̄Y × ωX − ωX × b̄Y − b̄X × ωY

ωX × ωY − b̄Y × ωX − ωX × ωY

)
=

(
ωX × b̄Y + b̄X × ωY

ωX × b̄Y

)
= {X, iKlY }. We get d̃∗iKl(X, Y ) = {X, iKlY }.

E x am p l e 2. Let N be the general inertion bilinear form on se(3) connected

with a solid body with mass m and with the position vector r̄ of its centre of mass.

Its 6 × 6 matrix is N =

(
I mC r̄

−mC r̄ mE

)
, where I is the inertia tensor in E3, SE

is the 3 × 3 identity matrix, see [9]. Recall that SEK = 1
2N(X, X) is the kinetic

energy of the body at the motion exp tX . It determines a map iN : se(3) → se∗(3),

iN (X) = iXN, iXN(Y ) = N(X, Y ). By direct calculation we get that the values of

the form d̃∗iN ∈ Λ2se∗(3) ⊗ se∗(3) are pure torques.

R em a r k 7. Remark 4 and Example 2 show the possibilities of some applications

of our considerations in robotics. We intend to direct our further investigations to

deeper applications of cohomological properties of the spaces se(3) and se∗(3) in

dynamic and statics in the spirit of the papers [2], [5], [8].

References

[1] J.Bakša: Three-parametric robot manipulators with parallel rotational axes. Appl.
Math., Praha 52 (2007), 303–319. zbl

[2] D.P.Chevallier: On the foundations of ordinary and generalized rigid body dynamics
and the principle of objectivity. Arch. Mech. 56 (2004), 313–353. zbl

[3] A.Dekrét, J. Bakša: Applications of line objects in robotics. Acta Univ. M. Belii, Ser.
Mat. 9 (2001), 29–42. zbl

[4] M.Fecko: Differential Geometry and Lie Groups for Physicists. Cambridge University
Press, 2006. zbl

[5] K.Hao: Dual number method, rank of a screw system and generation of Lie subalgebras.
Mech. Mach. Theory 33 (1998), 1063–1084. zbl

[6] A.Karger: Robot-manipulators as submanifolds. Math. Pannonica 4 (1993), 235–247. zbl
[7] A.Karger: Classification of three-parametric spatial motions with a transitive group of
automorphisms and three-parametric robot manipulators. Acta Appl. Math. 18 (1990),
1–16. zbl

[8] J. Lerbet: Some explicit relations in kinematics of mechanisms. Mech. Res. Commun. 27
(2000), 621–630. zbl

[9] J. Selig: Geometrical Methods in Robotics. Springer, New York, 1996. zbl

Authors’ addresses: Marta Bakšová, Technical University, Zvolen, Slovak Republic,
e-mail: baksova@vsld.tuzvo.sk; Anton Dekrét, Matej Bell University, Banská Bystrica,
Slovak Republic, e-mail: dekret@fpv.umb.sk.

348

http://www.emis.de/MATH-item?pre05371864
http://www.emis.de/MATH-item?1076.70002
http://www.emis.de/MATH-item?1046.70004
http://www.emis.de/MATH-item?1121.53001
http://www.emis.de/MATH-item?1049.70505
http://www.emis.de/MATH-item?0793.53011
http://www.emis.de/MATH-item?0699.53013
http://www.emis.de/MATH-item?0987.70002
http://www.emis.de/MATH-item?0861.93001

