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Abstract. In this paper, we prove some multiplicity results for sign-changing solutions of
an operator equation in an ordered Banach space. The methods to show the main results
of the paper are to associate a fixed point index with a strict upper or lower solution. The
results can be applied to a wide variety of boundary value problems to obtain multiplicity
results for sign-changing solutions.
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1. Introduction

In recent years, many authors studied the existence of sign-changing solutions for

various nonlinear problems, see [4]–[10] and the references therein. For example, by

using the fixed point index method, the authors of [12] obtained a result of at least

one sign-changing solution for the three-point boundary value problem

(1.1)

{

y′′(t) + f(y) = 0, 0 6 t 6 1,

y(0) = 0, αy(η) = y(1),

where f ∈ C(R,R), α ∈ [0, 1), η ∈ (0, 1).

Recently, the authors of [11] considered the four-point boundary value problem

(1.2)

{

y′′(t) + f(t, y(t), y′(t)) = 0, 0 < t < 1,

y(0) = α1y(η1), y(1) = α2y(η2),
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where 0 6 α1 6 1, 0 6 α2 6 1, 0 < η1 < η2 < 1, f ∈ C([0, 1] × R
2,R). They

obtained in [11] the existence of at least four sign-changing solutions for the four-

point boundary value problem (1.2).

By using the Leray-Schauder degree and the fixed point index method, the authors

of [10] obtained the existence of at least two sign-changing solutions for somem-point

boundary value problems. In [14] the authors obtained by using bifurcation theory

some results concerning infinite sign-changing solutions for some m-point boundary

value problems.

Let E be a real Banach space which is ordered by a cone P , that is, x 6 y if and

only if y − x ∈ P . If x 6 y and x 6= y, we write x < y. Consider the operator

equation in a real Banach space E

(1.3) x = Ax,

where A = KF, K : E → E is a completely continuous linear operator, F : E → E

is a nonlinear continuous and bounded operator.

Let x̄ be a non-zero solution of the operator equation (1.3). If x̄ ∈ (−P ) or

x̄ ∈ P or x̄ ∈ E \ ((−P ) ∪ P ), then we say x̄ is a negative or positive or sign-

changing solution of the equation (1.3), respectively. The purpose of this paper is

to prove some multiplicity results for sign-changing solutions of the equation (1.3).

The methods to show the results are to associate a fixed point index with a strict

upper or lower solution. The results can be applied to a wide variety of boundary

value problems to obtain multiplicity results for sign-changing solutions.

2. Main results

Let θ denote the zero element of E. In this section we will always assume that P

is a solid normal cone, e ∈ P \ {θ} and ‖e‖ 6 1. Let Q = {x ∈ P ; x > ‖x‖e}. Then

Q is also a cone of E.

Definition 2.1 [12]. An operator T : D(T )(⊃ P ) → E is called e-positive if for

every u ∈ P \ {θ}, there are numbers α = α(u), β = β(u) > 0 such that

αe 6 Tu 6 βe.

Definition 2.2 [10]. An operator T : D(T ) ⊂ E → E is called e-continuous at

x0 ∈ D(T ) if for every ε > 0, there is a number δ > 0 such that

−εe 6 Tx − Tx0 6 εe
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for every x ∈ D(T ) with ‖x − x0‖ < δ. The operator T is called e-continuous on

D(T ) if T is e-continuous at every x ∈ D(T ). From [4, Lemma 5.2] we have the

following result.

Lemma 2.1. Let E be an ordered Banach space with a solid cone P . LetK : E →

E be a compact, e-positive, linear operator and let F : E → E be a map such that,

for some u0 ∈ E, u0 = KF (u0). Suppose F is Gâteaux differentiable at u0 with a

strictly positive derivative F ′(u0). Denote by r(T ) the spectral radius of the operator

T = KF ′(u0) and by h0 a positive eigenfunction of T corresponding to r(T ). Then

there exists a τ0 > 0 such that, for all 0 < τ < τ0,

r(T ) > 1 implies

{

KF (u0 + τh0) > u0 + τh0

KF (u0 − τh0) < u0 − τh0

and

r(T ) < 1 implies

{

KF (u0 + τh0) < u0 + τh0

KF (u0 − τh0) > u0 − τh0.

From [14, Theorem 19.2] we have the following Lemma 2.2.

Lemma 2.2 (Krein-Rutman). Let E be a Banach space, P ⊂ E a total cone and

let K ∈ L(E) be compact positive with r(K) > 0. Then r(K) is an eigenvalue with

a positive eigenvector.

Let us list the following conditions which will be used in this section.

(H1) K : E → E is e-positive, e-continuous and linear completely continuous,

K(P ) ⊂ Q, r(K) > 0.

(H2) F : E → E is strictly increasing, bounded and continuous, F (θ) = θ,

F ′(θ) = β0I, where 0 < β0 < (r(K))−1, I is the identical operator of E,

F ′(θ) denotes the Fréchet derivative of F at θ.

We have the following main results.

Theorem 2.1. Suppose that (H1) and (H2) hold. Moreover, let there exist

u1, v1 ∈ E \ ((−P ) ∪ P ) and m0 > 0 such that

−m0e 6 u1 < v1 6 m0e

and u1 < Au1, Av1 < v1. Then (1.3) has at least three sign-changing solutions x1, x2

and x3. Also, (1.3) has at least one positive solution x4 and one negative solution x5.

P r o o f. The proof is completed in four steps.
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S t e p 1. Clearly, A : E → E is a strictly increasing operator. From the Krein-

Rutman Theorem, the eigenvalue r(K) of the operator K has a corresponding

positive eigenvector h0. Since K : E → E is e-positive, then there are numbers

αh0
, βh0

> 0 such that

(2.1) αh0
e 6 h0 6 βh0

e.

By Lemma 2.1, there exists τ0 > 0 such that for every τ ∈ (0, τ0]

(2.2) −τh0 < A(−τh0), A(τh0) < τh0.

We claim that there exist τ1, τ2 ∈ (0, τ0] such that

(2.3) −τ1h0 66 v1, τ2h0 6> u1.

By contradiction, assume that −τh0 6 v1 for all τ ∈ (0, τ0]. Letting τ → 0, we have

θ 6 v1, which contradicts v1 ∈ E \ ((−P ) ∪ P ). The second relation can be proved

analogously. Hence, (2.3) holds. Let u2 = −τ1h0 and v2 = τ2h0. From (2.1)–(2.3),

we have

u2 < Au2, Av2 < v2, u2 66 v1, v2 6> u1

and

(2.4) −m1e 6 u2 < v2 6 m1e,

where m1 is a positive number.

S t e p 2. Let D1 = Au1 + Q. Then D1 is a closed convex subset of E. For any

x ∈ D1 we have x > Au1 > u1. Since F is strictly increasing and K : P → Q, we

have

Ax − Au1 = K(Fx − Fu1) > ‖K(Fx − Fu1)‖e = ‖Ax − Au1‖e,

that is

Ax > ‖Ax − Au1‖e + Au1.

This implies that Ax ∈ D1, and so A(D1) ⊂ D1.

Let sets Ω10, Ω11 and Ω12 be defined by

Ω10 = {x ∈ D1 ; Ax 6> u2},

Ω11 = {x ∈ D1 ; there exists τ > 0 such that Ax 6 Av1 − τe},

Ω12 = {x ∈ D1 ; Ax 66> u2, Ax 66 v1}.
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From (2.4) we have

(2.5) u2 − u1 6 (m1 + m0)e.

For any x ∈ D1, if ‖x‖ > m1 + m0 + ‖Au1‖, then

x > ‖x − Au1‖e + Au1 > (‖x‖ − ‖Au1‖)e + u1 > u2

and so

Ax > Au2 > u2.

This implies Ω10 is a bounded set. Clearly, Ω11 ⊂ Ω10, Ω12 ⊂ Ω10 and Ω11∩Ω12 = ∅.

Thus, Ω11, Ω12 and Ω10 are three bounded sets. Since K is e-positive, we have Au1 ∈

Ω11 ⊂ Ω10, and thus Ω11 and Ω10 are two nonempty bounded sets. We claim that

Ω12 6= ∅. Indeed, if Ω12 = ∅, then D1 = S11 ∪ S12, where S11 = {x ∈ D1 ; Ax 6 v1}

and S12 = {x ∈ D1 ; Ax > u2}. Since u2 66 v1, we have S11 ∩ S12 = ∅. S11 is a

nonempty closed set since Au1 ∈ S11. Take z0 ∈ D1 with ‖z0‖ > m0 + m1 + ‖Au1‖.

By (2.5) we have

z0 > ‖z0 − Au1‖e + Au1 > (‖z0‖ − ‖Au1‖)e + Au1 > (m0 + m1)e + u1 > u2

and so Az0 > Au2 > u2, z0 ∈ S12. S12 is a nonempty closed set. Hence, the

connected set D1 can be represented as a union of two disjoint nonempty closed sets

S11 and S12, which is a contradiction. Therefore, Ω12 6= ∅.

It is easy to see that Ω10 and Ω12 are two open subsets of D1. For any x0 ∈ Ω11

there exists τ ′ > 0 such that Ax0 6 Av1 − τ ′e. By (H1) and (H2), A : E → E is

e-continuous. Hence, there exists δ0 > 0 such that

−
τ ′

2
e 6 Ax − Ax0 6

τ ′

2
e

for all x ∈ D1 with ‖x − x0‖ < δ0. Thus, for all x ∈ D1 with ‖x − x0‖ < δ0

Ax 6 Ax0 +
τ ′

2
e 6 Av1 −

τ ′

2
e.

This implies that x ∈ Ω11. Hence, Ω11 is a nonempty open subset of D1.

S t e p 3. Now we will show that

(2.6) x 6= λAx + (1 − λ)Au1, x ∈ ∂D1
Ω11, λ ∈ [0, 1],
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where ∂D1
Ω11 denotes the boundary of Ω11 in D1. Suppose this is not the case.

Then there exist x0 ∈ ∂D1
Ω11 and λ0 ∈ [0, 1] such that x0 = λ0Ax0 + (1 − λ0)Au1.

Since Au1 ∈ Ω11, we have λ0 ∈ (0, 1]. It is easy to see that Ax0 6 Av1 < v1, and so

x0 = λ0Ax0 + (1 − λ0)Au1 < λ0v1 + (1 − λ0)Au1 6 v1.

Consequently, we have

Av1 − Ax0 > ‖Av1 − Ax0‖e,

that is

Ax0 6 Av1 − ‖Av1 − Ax0‖e.

This implies that x0 ∈ Ω11, which contradicts x0 ∈ ∂D1
Ω11. Thus, (2.6) holds.

From the homotopy invariance and normalization properties of the fixed point

index, we have

(2.7) i(A, Ω11, D1) = i(Au1, Ω11, D1) = 1.

Then A has at least one fixed point x1 ∈ Ω11. Clearly,

(2.8) u1 < Au1 6 x1 = Ax1 6 Av1 < v1.

From (2.8) and the fact that u1, v1 ∈ E \((−P )∪P ) we see that x1 ∈ E \((−P )∪P ).

Next we will show that A has at least one other fixed point x2 ∈ ClD1
Ω10 \ Ω11,

where ClD1
Ω10 denotes the closure of Ω10 in D1. Assume on the contrary that A

has no fixed point on ClD1
Ω10 \ Ω11. We claim that

(2.9) x − Ax 6= λe, x ∈ ∂D1
Ω10, λ > 0.

In fact, assuming contrary, there exist x0 ∈ ∂D1
Ω10 and λ0 > 0 such that x0 −

Ax0 = λ0e. The fact that A has no fixed point on ∂D1
Ω10 ⊂ ClD1

Ω10 \ (Ω11 ∪ Ω12)

implies that λ0 > 0. Since x0 ∈ ∂D1
Ω10(x0 6∈ Ω10), we have Ax0 > u2, and so

x0 = Ax0 + λ0e > u2 + λ0e. By (H1) and (H2) we have

Ax0 > A(u2 + λ0e) > Au2 + ‖A(u2 + λ0e) − Au2‖e.

Let γ0 = ‖A(u2 + λ0e)−Au2‖ > 0. Then there exists δ0 > 0 small enough such that

−
γ0

2
e 6 Ax − Ax0 6

γ0

2
e

for any x ∈ D1 with ‖x−x0‖ < δ0. Thus, we have for any x ∈ D1 with ‖x−x0‖ < δ0

Ax > Ax0 −
γ0

2
e > Au2 +

γ0

2
e > Au2 > u2.
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Take z0 ∈ Ω10 with ‖z0−x0‖ < δ0. Then we have Az0 > u2, which is a contradiction.

Thus, (2.9) holds. For any x ∈ D1 and λ > 0 we have

Ax + λe > ‖Ax − Au1‖e + λe + Au1

> ‖Ax + λe − Au1‖e + Au1 + λ(1 − ‖e‖)e

> ‖Ax + λe − Au1‖e + Au1.

Thus, Ax + λe ∈ D1 for all x ∈ D1. Let a = sup
x∈ClD1

Ω10

‖Ax‖ and b = sup
x∈ClD1

Ω10

‖x‖.

Take s0 > 0 such that s0‖e‖ > a+b. Let an operatorA1 be defined by A1x = Ax+s0e

for all x ∈ ClD1
Ω10. Then we have

‖A1x‖ > s0‖e‖ − ‖Ax‖ > b > ‖x‖, x ∈ ClD1
Ω10.

From the solution property of the fixed point index we have

(2.10) i(A1, Ω10, D1) = 0.

Let H(t, x) = (1 − t)Ax + tA1x for all (t, x) ∈ [0, 1] × ClD1
Ω10. From (2.9) we see

that H(t, x) 6= x for all (t, x) ∈ [0, 1] × ∂D1
Ω10. Then, by the homotopy invariance

property of the fixed point index and (2.10), we have

(2.11) i(A, Ω10, D1) = i(A1, Ω10, D1) = 0.

From (2.7) and (2.11) we have

i(A, Ω12, D1) = i(A, Ω10, D1) − i(A, Ω11, D1) = −1.

Therefore, A has at least one fixed point in Ω12 ⊂ ClD1
Ω10 \ Ω11,which is a con-

tradiction. The contradiction obtained proves that A has at least one fixed point

x2 ∈ ClD1
Ω10 \ Ω11. Now we show that u2 6< x2. Indeed, if u2 < x2, then we have

Ax2 − Au2 > ‖Ax2 − Au2‖e.

Let γ1 = ‖Ax2 − Au2‖ > 0. Since A is e-continuous, there exists δ1 > 0 such that

for any x ∈ E with ‖x − x2‖ < δ1

−
γ1

2
e 6 Ax − Ax2 6

γ1

2
e

and so

Ax > Ax2 −
γ1

2
e > Au2 +

γ1

2
e > Au2 > u2.
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This implies that B(x2, δ1) ∩ Ω10 = ∅, which contradicts x2 ∈ ClD1
Ω10. Thus,

u2 6< x2, and so x2 6> θ. If x2 6 θ, since u1 < Au1 6 Ax2 = x2, we have u1 < θ,

which contradicts u1 ∈ E \ ((−P ) ∪ P )). Therefore, x2 ∈ E \ ((−P ) ∪ P ), and x2 is

a sign-changing solution of (1.3).

S t e p 4. Let D2 = Av1 − Q, Ω20 = {x ∈ D2 ; Ax 66 v2} and Ω21 = {x ∈

D2 ; there exists τ > 0 such that Ax > Au1 + τe}. Essentially the same argument

as in Step 3 shows that A has at least one fixed point x3 ∈ ClD2
Ω20 \ Ω21 and x3 is

a sign-changing solution of (1.3).

Finally, we shall show the existence of positive solutions and negative solutions.

Let D3 = Q(= Aθ + Q), Ω30 = {x ∈ D3 ; Ax 6> u1} and Ω31 = {x ∈ D3 ;

there exists τ > 0 such that Ax 6 Av2 − τe}. Then A has at least one fixed

point x4 such that x4 ∈ ClD3
Ω30 \ Ω31 and x4 is a positive solution of (1.3).

Let D4 = −Q(= Aθ − Q), Ω40 = {x ∈ D4 ; Ax 66 v1} and Ω41 = {x ∈ D4 ;

there exists τ > 0 such that Ax > Au2 + τe}. Then A has at least one fixed point x5

such that x5 ∈ ClD4
Ω40 \ Ω41 and x5 is a negative solution of (1.3). This completes

the proof. �

R em a r k 2.1. The position of u1, u2, v1 can be illustrated roughly by the fol-

lowing figure.

Au1

u2

v1

D1 = Au1 + Q

Au1 + P

θ

P

x1

x2

R em a r k 2.2. The position of u1, u2, v1, v2 and x1, x2, x3, x4, x5 in Theorem 2.1

can be illustrated roughly by the following figure.

u1 v1

v2
θu2

x1

x4

x2x3

x5
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R em a r k 2.3. The two pairs of strict lower and upper solutions u1, v1 and u2,

v2 in Theorem 2.1 satisfy u1 66 v2 and u2 66 v1. We say these two pairs of strict

lower and upper solutions are parallel to each other. We should point out that this

condition was first put forward in [14]. The above u1, v2 and u2, v1 are also two pairs

of non-well-ordered upper and lower solutions. For other discussions concerning the

non-well-ordered upper and lower solutions, the reader is refered to [11, 5.4B].

3. Applications

Consider the two-point boundary value problem

(3.1)

{

u′′ + f(t, u) = 0, 0 < t < 1,

u(0) = u(1) = 0,

where f : [0, 1]×R → R is continuous and strictly increasing in the second argument,

f(·, 0) ≡ 0.

Theorem 3.1. Suppose that there exist u1, v1 ∈ C2[0, 1] which are sign-changing

on [0, 1], m0 > 0 such that u1 6≡ v1 on [0, 1], and

{

u′′

1(t) + f(t, u1(t)) > 0, 0 < t < 1,

u1(0) 6 0, u1(1) 6 0,
(3.2)

{

v′′1 (t) + f(t, v1(t)) < 0, 0 < t < 1,

v1(0) > 0, v1(1) > 0,
(3.3)

−m0t(1 − t) 6 u1(t) 6 v1(t) 6 m0t(1 − t), t ∈ [0, 1]

and

0 < β0 = lim
u→0

f(t, u)

u
< π

2 uniformly on [0, 1].

Then (3.1) has at least three sign-changing solutions. Moreover, (3.1) has at least

one non-zero non-negative solution and one non-zero non-positive solution.

P r o o f. Let E be the Banach space C[0, 1] with the maximum norm. Let

P = {x ∈ E ; x(t) > 0, t ∈ [0, 1]}. Then E is a real Banach space and P is a solid

cone of E. Let e(t) = t(1−t) for t ∈ [0, 1] andQ = {x ∈ P ; x(t) > ‖x‖e(t), t ∈ [0, 1]}.

Q is also a cone of E. Let operators K, F and A be defined by

(Kx)(t) =

∫ 1

0

G(t, s)x(s) ds, t ∈ [0, 1], x ∈ E,

(Fx)(t) = f(t, x(t)), t ∈ [0, 1], x ∈ E
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and A = KF , where

G(t, s) =

{

t(1 − s), t 6 s,

s(1 − t), t > s.

It is easy to see that

(3.4) e(t)G(τ, s) 6 G(t, s) 6 e(t), t, s, τ ∈ [0, 1].

For each x ∈ P \ {θ}, we have from (3.4)

‖x‖e(t) > (Kx)(t) > (Kx)(τ)e(t), t, τ ∈ [0, 1], x ∈ P,

and thus

‖x‖e(t) > (Kx)(t) > ‖Kx‖e(t), t ∈ [0, 1], x ∈ P.

This implies that K is e-positive. Thus, we have for each x, y ∈ E

−‖x − y‖e(t) 6 (K(x − y))(t) 6 ‖x − y‖e(t), t ∈ [0, 1].

This implies that K is e-continuous. The sequence of eigenvalues of K is {(n2
π
2)−1}.

Since lim
x→0

f(t, x)/x = β0, F is Fréchet differentiable at θ and r(A′(θ)) = β0π
−2 < 1.

From (3.2) and (3.3), it is easy to prove that u1 < Au1 and Av1 < v1. Consequently,

all conditions of Theorem 2.1 are satisfied. By Theorem 2.1, the conclusion of The-

orem 3.1 holds. �

R em a r k 3.1. Obviously, Theorem 2.1 can be applied to other types of nonlinear

boundary value problems to obtain multiplicity results for sign-changing solutions.

References

[1] H.Amann: On the number of solutions of nonlinear equations in ordered Banach spaces.
J. Functional Anal. 11 (1972), 346–384.

[2] H.Amann: Fixed point equations and nonlinear eigenvalue problems in ordered Banach
spaces. SIAM Review 18 (1976), 620–709.

[3] T.Bartsch, K.C. Chang, Z.Q.Wang: On the Morse indices of sign changing solutions
of nonlinear elliptic problems. Math. Z. 233 (2000), 655–677. zbl

[4] E.N.Dancer, Y.Du: Existence of changing sign solutions for some semilinear prob-
lems with jumping nonlinearities at zero. Proc. Royal Soc. Edinburgh 124 A (1994),
1165–1176.

[5] E.N.Dancer, Y.Du: On sign-changing solutions of certain semilinear elliptic problems.
Appl. Anal. 56 (1995), 193–206. zbl

[6] K.Deimling: Nonlinear Functional Analysis. Springer, 1985.
[7] Pavel Drábek, Jaroslav Milota: Methods of Nonlinear Analysis. Applications to Differ-
ential Equations, Birkhäuser, Basel, 2007.

408

http://www.emis.de/MATH-item?0946.35023
http://www.emis.de/MATH-item?0835.35051


[8] Fuyi Li: Solutions of nonlinear operator equations and applications. Ph. D. Thesis,
Shandong University, 1996.

[9] Zhaoli Liu: Localized Critical Points in Banach Spaces and Sign Changing Solutions
of Nonlinear p-Laplacian Equations. Topological Methods, Variational Methods. World
Scientific Press, New Jersey, 2002.

[10] Xian Xu: Multiple sign-changing solutions for some m-point boundary value problems.
Electron. J. Differ. Equ. 89 (2004), 1–14. zbl

[11] Xian Xu, Donal O’Regan: Multiplicity of sign-changing solutions for some four-point
boundary value problem. Nonlinear Analysis 69 (2008), 434–447. zbl

[12] Xian Xu, Jingxian Sun: On sign-changing solution for some three-point boundary value
problems. Nonlinear Analysis 59 (2004), 491–505. zbl

[13] Xian Xu, Jingxian Sun, Donal O’Regan: Nodal solutions for m-point boundary value
problems using bifurcation methods. Nonlinear Analysis, 68 (2008), 3034–3046. zbl

[14] Kemei Zhang, Jingxian Sun: Multiple solutions for superlinear operator equations in
Banach spaces and applications. Acta Math. Sinica (Chin. Ser.) 48 (2005), 99–108. zbl

Authors’ address: Xian Xu, Bingjin Wang, Department of Mathematics, Xuzhou Nor-
mal University, Xuzhou, Jiangsu, 221116, P. R.China, e-mail: xuxian68@163.com.

409

http://www.emis.de/MATH-item?1058.34013
http://www.emis.de/MATH-item?1152.34006
http://www.emis.de/MATH-item?1069.34019
http://www.emis.de/MATH-item?1141.34009
http://www.emis.de/MATH-item?1117.47304

