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ORDERED PRIME SPECTRA OF BOUNDED DRl-MONOIDS
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Abstract. Ordered prime spectra of Boolean products of bounded DRl-monoids are
described by means of their decompositions to the prime spectra of the components.
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R. Cignoli and A. Torrens in [4] described the ordered prime spectrum of an MV -

algebra which is a weak Boolean product of MV -algebras by means of the ordered
spectra of those simpler algebras. In [8] and [9] it is shown that MV -algebras are

in a one-to-one correspondence with DRl-monoids from a subclass of the class of
bounded DRl-monoids. The boundedness of DRl-monoids leads to the fact that in

any MV -algebra the ideals in the sense of MV -algebras coincide with those in the
sense of DRl-monoids, and by [10], Proposition 4, the analogous relationship is also

valid for the prime ideals.

In this paper we generalize the result of Cignoli and Torrens in [4] concerning the

prime spectra of weak Boolean products of MV -algebras to bounded DRl-monoids.

Let us recall the notions of an MV -algebra and a DRl-monoid.

An algebra A = (A,⊕,¬, 0) of signature 〈2, 1, 0〉 is called an MV-algebra if it

satisfies the following identities:

(MV1) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z;

(MV2) x⊕ y = y ⊕ x;

(MV3) x⊕ 0 = x;

(MV4) ¬¬x = x;

(MV5) x⊕ ¬0 = ¬0;
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(MV6) ¬(¬x ⊕ y) ⊕ y = ¬(x⊕ ¬y) ⊕ x.

It is known that MV -algebras were introduced by C. C. Chang in [2] and [3] as an
algebraic counterpart of the �Lukasiewicz infinite valued propositional logic and that

by D. Mundici [6] they can be viewed as intervals of commutative lattice ordered
groups (l-groups) with a strong order unit.

If A is an MV -algebra, set x∨ y = ¬(¬x⊕ y)⊕ y and x∧ y = ¬(¬x∨¬y) for any
x, y ∈ A. Then (A,∨,∧, 0,¬0) is a bounded distributive lattice and (A,⊕,∨,∧) is a

lattice ordered monoid (l-monoid).

An algebra A = (A,+, 0,∨,∧,−) of signature 〈2, 0, 2, 2, 2〉 is called a DRl-monoid

if it satisfies the following conditions:

(1) (A,+, 0) is a commutative monoid;

(2) (A,∨,∧) is a lattice;

(3) (A,+, 0,∨,∧) is an l-monoid, i.e. A satisfies the identities

x+ (y ∨ z) = (x+ y) ∨ (x+ z);

x+ (y ∧ z) = (x+ y) ∧ (x+ z);

(4) if � denotes the order induced by (A,∨,∧) then x− y is the smallest element

z ∈ A such that y + z � x for each x, y ∈ A;

(5) A satisfies the identity

((x − y) ∨ 0) + y = x ∨ y.

DRl-monoids were introduced by K. L. N. Swamy in [11], [12], [13] as a common gen-
eralization of, among others, commutative l-groups and Brouwerian and Boolean al-

gebras. By [11], the DRl-monoids form a variety of algebras of signature 〈2, 0, 2, 2, 2〉.
If A is a DRl-monoid then by [11], Theorem 2, the lattice (A,∨,∧) is distributive.

Moreover, if there exists a greatest element 1 in A then by [5], Theorem 1.2.3, the
lattice (A,∨,∧) is bounded also below and 0 is a least element.

Connections between MV -algebras and bounded DRl-monoids were described in

[8] and [9]. In the sequel we will consider bounded DRl-monoids as algebras A =
(A,+, 0,∨,∧,−, 1) of signature 〈2, 0, 2, 2, 2, 0〉 enlarged by one nullary operation 1.

Denote by DRl1(i) the equational category of bounded DRl-monoids satisfying the
condition

(i) 1 − (1 − x) = x

and by MV the equational category of MV -algebras. By [9], Theorem 3, the cate-
gories DRl1(i) and MV are isomorphic.
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If A is a bounded DRl-monoid and ∅ �= I ⊆ A then I is called an ideal in A if

1. ∀a, b ∈ I; a+ b ∈ I,

2. ∀a ∈ I, x ∈ A; x � a =⇒ x ∈ I.

For any elements c and d of a DRl-monoid A set c ∗ d = (c − d) ∨ (d − c). Then

we have

Lemma 1. Let A be a DRl-monoid and I ∈ I(A). If a, b ∈ A, a ∗ b ∈ I and

a ∈ I, then b ∈ I.

�����. For any a, b ∈ A we have

b � ((a− b) + a) ∨ b � ((a− b) + a) ∨ ((b − a) + a)

= ((a− b) ∨ (b− a)) + a = (a ∗ b) + a.

Hence a ∗ b ∈ I and a ∈ I imply b ∈ I. �

The MV -algebra corresponding to a givenDRl-monoidA = (A,+, 0,∨,∧,−) from
DRl1(i) is (A,⊕,¬, 0), where x⊕y = x+y and ¬x = 1−x for any x, y ∈ A. Hence we

have ([8]) that ideals in the mutually corresponding MV -algebras and DRl-monoids
coincide. By [10] this is also true for prime ideals, and by [10], Propositions 4 and 5,

prime ideals are in both types of algebras just finitely meet irreducible elements of
the lattices of ideals. That means, if I(A) denotes the lattice of ideals of a bounded

DRl-monoid A then I ∈ I(A) is a prime ideal in A if it satisfies

∀J,K ∈ I(A); J ∩K = I =⇒ J = I or K = I.

Equivalently, I ∈ I(A) is prime if and only if

∀x, y ∈ A;x ∧ y ∈ I =⇒ x ∈ I or y ∈ I.

Let us denote by SpecA the prime spectrum of A, i.e. the set of all proper prime
ideals of a DRl-monoid A. SpecA endowed with the spectral (i.e. hull-kernel)

topology is a compact topological space by [7], Corollary 6.
Recall that a weak Boolean product (a Boolean product) of an indexed family (Ax;

x ∈ X) of algebras over a Boolean space X is a subdirect product A �
∏

x∈X

Ax such

that
(BP1) if a, b ∈ A then [[a = b]] = {x ∈ X ; a(x) = b(x)} is open (clopen);

(BP2) if a, b ∈ A and U is a clopen subset of X , then a|U ∪ b|X\U ∈ A, where(
a|U ∪ b|X\U

)
(x) = a for x ∈ U and

(
a|U ∪ b|X\U

)
= b for x ∈ X \U . (See [1] or [4].)

The following theorem makes it possible to compose the ordered prime spectrum
of a weak Boolean product of bounded DRl-monoids from the prime spectra of the
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components of this product and so it is a generalization of Theorem 2.3 in [4] for

MV -algebras.

Theorem 2. Let a DRl-monoid A with a greatest element 1 be a weak Boolean
product over a Boolean space X of a system (Ax; x ∈ X) of DRl-monoids with

greatest elements. Then the ordered prime spectrum (SpecA,⊆) is isomorphic to
the cardinal sum of the ordered prime spectra (SpecAx,⊆), x ∈ X .

�����. Let us denote Ix = {c ∈ A; c(x) = 0} for any x ∈ X . Let P ∈ SpecA
and let us suppose that Ix �⊆ P for each x ∈ X . Then for any x ∈ X there exists

bx ∈ Ix \ P . Obviously X =
⋃

x∈X

[[bx = 0]]. Hence by condition (BP1) there is

a finite subset {x1, . . . , xn} ⊆ X such that X =
n⋃

i=1
[[bxi = 0]]. Since 0 � bx1 ∧

. . . ∧ bxn � bxi for each i = 1, . . . , n, we have [[bxi = 0]] ⊆ [[bx1 ∧ . . . ∧ bxn = 0]],

hence
n⋃

i=1
[[bxi = 0]] ⊆ [[bx1 ∧ . . . ∧ bxn = 0]], and thus bx1 ∧ . . . ∧ bxn = 0 ∈ P . By

the assumption P is prime, therefore bxk
∈ P for some k = 1, . . . , n, a contradiction.

This implies that there exists at least one x ∈ X such that Ix ⊆ P . We will show that

such x is unique for P . For this, let x, y ∈ X , x �= y, be such that Ix ⊆ P , Iy ⊆ P .
The space X is Boolean, hence there is a clopen subset V ⊆ X such that x ∈ V and

y ∈ X \ V . A is a subalgebra of
∏

x∈X

Ax, thus 0 = (. . . , 0, . . .), 1 = (. . . , 1, . . .) ∈ A.

Hence by (BP2), 0|V ∪ 1|X\V ∈ A, and so 0|V ∪ 1|X\V ∈ Ix ⊆ P . Analogously

1|V ∪ 0|X\V ∈ Iy ⊆ P . Moreover, (0|V ∪ 1|X\V ) + (1|V ∪ 0|X\V ) = 1, hence 1 ∈ P ,
and therefore P = A, a contradiction.

Let us now set H(Ix) = {P ∈ SpecA; Ix ⊆ P} for any x ∈ X . Then from the
preceding part it is clear that (SpecA,⊆) is isomorphic to the cardinal sum of the

ordered sets (H(Ix),⊆), x ∈ X . We will show that the ordered sets (H(Ix),⊆) and
(SpecAx,⊆) are isomorphic for any x ∈ X .

Let P ∈ H(Ix) and ϕx(P ) = {c(x); c ∈ P}. We will show that ϕx(P ) ∈ SpecAx.
Since P ∈ I(A) and A is a subdirect product of Ax, it is obvious that ϕx(P ) ∈ I(Ax).

Suppose 1 ∈ ϕx(P ). Then there exists c ∈ P such that c(x) = 1. Hence (c∗1)(x) =

0, thus c∗1 ∈ Ix ⊆ P . Moreover, c ∈ P , therefore 1 ∈ P by Lemma 1, a contradiction
with P ∈ SpecA. Hence ϕx(P ) is a proper ideal in Ax.

Let v, z ∈ Ax and v ∧ z ∈ ϕx(P ). Then there exist c, d ∈ A and a ∈ P such that
c(x) = v, d(x) = z and a(x) = v ∧ z = (c ∧ d)(x). Hence ((c ∧ d) ∗ a)(x) = 0, that

means (c∧d)∗a ∈ Ix ⊆ P , and since a ∈ P , we get c∧d ∈ P by Lemma 1. Therefore
c ∈ P or d ∈ P , and so v ∈ ϕx(P ) or z ∈ ϕx(P ). That means ϕx(P ) is a prime ideal

in Ax.

Therefore the assignment ϕx : P �−→ ϕx(P ) is a mapping fromH(Ix) into SpecAx.

508



Let Q ∈ SpecAx. Put ψx(Q) = {a ∈ A; a(x) ∈ Q}. Clearly ψx(Q) �= A and hence

it is obvious that ψx(Q) is a proper ideal in A. Moreover, Ix ⊆ ψx(Q). Let c, d ∈ A

be such that c ∧ d ∈ ψx(Q). Then c(x) ∈ Q or d(x) ∈ Q, therefore c ∈ ψx(Q) or
d ∈ ψx(Q). That means ψx(Q) ∈ H(Ix).

From this we get that ϕx is a bijection of H(Ix) onto SpecAx and that ψx = ϕ−1
x .

Moreover, both the bijections respect set inclusion, hence they are order isomor-

phisms. �

������. It is obvious that the assertion of Theorem 2 can be modified for any
subvariety of the variety DRl1 of all bounded DRl-monoids. For instance, it is valid

for MV -algebras (see [4], Theorem 2.3) and Brouwerian algebras.
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