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ORDERED PRIME SPECTRA OF BOUNDED DRI-MONOIDS
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Abstract. Ordered prime spectra of Boolean products of bounded D RI-monoids are
described by means of their decompositions to the prime spectra of the components.
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R. Cignoli and A. Torrens in [4] described the ordered prime spectrum of an MV-
algebra which is a weak Boolean product of MV-algebras by means of the ordered
spectra of those simpler algebras. In [8] and [9] it is shown that MV-algebras are
in a one-to-one correspondence with D RIl-monoids from a subclass of the class of
bounded D RI-monoids. The boundedness of D RI-monoids leads to the fact that in
any MV-algebra the ideals in the sense of MV -algebras coincide with those in the
sense of DRI-monoids, and by [10], Proposition 4, the analogous relationship is also
valid for the prime ideals.

In this paper we generalize the result of Cignoli and Torrens in [4] concerning the
prime spectra of weak Boolean products of M V-algebras to bounded D RI-monoids.

Let us recall the notions of an M V-algebra and a D Rl-monoid.

An algebra A = (A,®,—,0) of signature (2,1,0) is called an MV-algebra if it
satisfies the following identities:

MV)z@ (y®2)=(zdy) ® z;

MV2)zpy=y®ua;
(MV3) 2@ 0 = x;
(MV4) =~z = x;
(MV5) @ =0 = —0;

Supported by the Council of Czech Government, J 14/98:153100011.

505



(MV6) ~(~z@y)®y=-(rdy) ® .

It is known that M V-algebras were introduced by C. C. Chang in [2] and [3] as an
algebraic counterpart of the Lukasiewicz infinite valued propositional logic and that
by D. Mundici [6] they can be viewed as intervals of commutative lattice ordered
groups (I-groups) with a strong order unit.

If Ais an MV-algebra,set zVy = (- ®y) Dy and z Ay = ~(—-x V —y) for any
x,y € A. Then (4, V,A,0,-0) is a bounded distributive lattice and (A4, ®, V,A) is a
lattice ordered monoid (I-monoid).

An algebra A = (A4,+,0,V, A, —) of signature (2,0,2,2,2) is called a DRI-monoid
if it satisfies the following conditions:

(1) (A,+,0) is a commutative monoid;

(2) (A,V,A) is a lattice;

(3) (A,+,0,V,A) is an l-monoid, i.e. A satisfies the identities

r+(yVvz)=(z+y)V(r+2);
z+(ynz)=(z+y) A(z+2);

(4) if < denotes the order induced by (4, V,A) then z — y is the smallest element
z € A such that y + z > « for each z,y € A;
(5) A satisfies the identity

(z=y)v0)+ty=zVy.

D RI-monoids were introduced by K. L. N. Swamy in [11], [12], [13] as a common gen-
eralization of, among others, commutative [-groups and Brouwerian and Boolean al-
gebras. By [11], the D Rl-monoids form a variety of algebras of signature (2,0, 2, 2, 2).

If A is a DRI-monoid then by [11], Theorem 2, the lattice (A, V, A) is distributive.
Moreover, if there exists a greatest element 1 in A then by [5], Theorem 1.2.3, the
lattice (A, V, A) is bounded also below and 0 is a least element.

Connections between M V-algebras and bounded D RI-monoids were described in
[8] and [9]. In the sequel we will consider bounded D RI-monoids as algebras A =
(A4,4,0,V,A,—, 1) of signature (2,0,2,2,2,0) enlarged by one nullary operation 1.
Denote by DRI, ;) the equational category of bounded D RI-monoids satisfying the
condition

(1) 1-(1-2)==

and by MYV the equational category of MV-algebras. By [9], Theorem 3, the cate-
gories DRIy and MYV are isomorphic.
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If A is a bounded DRI-monoid and () # I C A then I is called an ideal in A if

1. Va,bel;a+bel,

2.Vacl,reA;x<a=zxzcl.

For any elements ¢ and d of a DRI-monoid A set ¢cxd = (¢ —d) V (d — ¢). Then

we have

Lemma 1. Let A be a DRI-monoid and I € Z(A). If a,b € A, a+b € I and
a€l,thenbel.

Proof. For any a,b € A we have

b<((a=b)+a)vb< ((a—b)+a)V((b—a)+a)
=((a=b)V(b—a))+a=(axb)+a.

Hence axbe I and a € I imply b e 1. ]

The MV -algebra corresponding to a given DRI-monoid A = (4, +,0,V, A, —) from
DRIy is (A, ®,—,0), where 2@y = v+y and -~z = 1 —x for any z,y € A. Hence we
have ([8]) that ideals in the mutually corresponding M V-algebras and D RI-monoids
coincide. By [10] this is also true for prime ideals, and by [10], Propositions 4 and 5,
prime ideals are in both types of algebras just finitely meet irreducible elements of
the lattices of ideals. That means, if Z(A) denotes the lattice of ideals of a bounded
DRI-monoid A then I € Z(A) is a prime ideal in A if it satisfies

VI KeI(A;JNK=1=J=ITor K=1.
Equivalently, I € Z(A) is prime if and only if
Ve,y€ AjeANyel =z ecloryel.

Let us denote by Spec A the prime spectrum of A, i.e. the set of all proper prime
ideals of a DRI-monoid A. Spec A endowed with the spectral (i.e. hull-kernel)
topology is a compact topological space by [7], Corollary 6.

Recall that a weak Boolean product (a Boolean product) of an indexed family (A,;

x € X)) of algebras over a Boolean space X is a subdirect product A < [[ A, such
zeX
that

(BP1) if a,b € A then [[a = b]] = {z € X; a(z) = b(x)} is open (clopen);

(BP2) if a,b € A and U is a clopen subset of X, then a|y Ub|x\y € A, where
(alu Ublx\v)(z) = afor z € U and (aly Ub|x\¢/) = b for € X\ U. (See [1] or [4].)

The following theorem makes it possible to compose the ordered prime spectrum
of a weak Boolean product of bounded D RI-monoids from the prime spectra of the
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components of this product and so it is a generalization of Theorem 2.3 in [4] for
MYV -algebras.

Theorem 2. Let a DRI-monoid A with a greatest element 1 be a weak Boolean
product over a Boolean space X of a system (A,; x € X) of DRI-monoids with
greatest elements. Then the ordered prime spectrum (Spec A, C) is isomorphic to
the cardinal sum of the ordered prime spectra (Spec A;,C), x € X.

Proof. Let us denote I, = {c € A; ¢(x) = 0} for any x € X. Let P € Spec 4
and let us suppose that I, € P for each z € X. Then for any « € X there exists

by € I; \ P. Obviously X = |J [[bs =0]]. Hence by condition (BP1) there is

zeX
n

a finite subset {z1,...,2,} € X such that X = |J [[bs, =0]]. Since 0 < by, A

i=1
S Nby, < by, for each ¢ = 1,...,n, we have [[by, =0]] C [[bs; A...Aby, =0]],

hence | [[bz; = 0]] C [[bzy A ... Absy, =0]], and thus by, A...Ab,, =0 € P. By
i=1
the assumption P is prime, therefore b,, € P for some k = 1,...,n, a contradiction.

This implies that there exists at least one x € X such that I, C P. We will show that
such z is unique for P. For this, let z,y € X, « # y, be such that I, C P, I, C P.
The space X is Boolean, hence there is a clopen subset V' C X such that € V' and

y € X\ V. Ais asubalgebra of [[ Ay, thus0=¢(...,0,...),1=(...,1,...) € A
reX
Hence by (BP2), 0]y U1l|x\v € 4, and so 0|y U1l|x\yv € I, € P. Analogously

Iy U0|x\v € I, € P. Moreover, (0ly U1|x\v)+ (1lv UO|x\v) = 1, hence 1 € P,
and therefore P = A, a contradiction.

Let us now set H(I,) = {P € SpecA; I, C P} for any x € X. Then from the
preceding part it is clear that (Spec A, C) is isomorphic to the cardinal sum of the
ordered sets (H(I),C), v € X. We will show that the ordered sets (H(I,),C) and
(Spec A, C) are isomorphic for any z € X.

Let P € H(I;) and ¢, (P) = {c(z); ¢c € P}. We will show that ¢, (P) € Spec A,.
Since P € Z(A) and A is a subdirect product of A,, it is obvious that ¢, (P) € Z(Ay).

Suppose 1 € p,(P). Then there exists ¢ € P such that ¢(x) = 1. Hence (cx1)(x) =
0, thus cx1 € I, C P. Moreover, ¢ € P, therefore 1 € P by Lemma 1, a contradiction
with P € Spec A. Hence ¢, (P) is a proper ideal in A,.

Let v,z € A, and v A z € p,(P). Then there exist ¢,d € A and a € P such that
c(z) = v, d(z) = z and a(z) = v Az = (¢ Ad)(x). Hence ((¢ Ad) *a)(z) = 0, that
means (cAd)*a € I, C P, and since a € P, we get cAd € P by Lemma 1. Therefore
c€Porde P,and so v € p,(P) or z € ¢, (P). That means ¢,(P) is a prime ideal
in A,.

Therefore the assignment ¢,,: P —— ¢, (P) is a mapping from H (I,) into Spec A4,..
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Let Q € Spec A;. Put ¢,(Q) = {a € A4; a(x) € Q}. Clearly ¥,(Q) # A and hence
it is obvious that 1, (Q) is a proper ideal in A. Moreover, I, C 9,(Q). Let c,d € A
be such that ¢ A d € ¥,(Q). Then c(z) € Q or d(z) € Q, therefore ¢ € ¥,(Q) or
d € ¥,(Q). That means ¥,(Q) € H(I,).

From this we get that ¢, is a bijection of H(I,) onto Spec A, and that 1, = ¢, *.
Moreover, both the bijections respect set inclusion, hence they are order isomor-
phisms. U

Remark. It is obvious that the assertion of Theorem 2 can be modified for any
subvariety of the variety DRI of all bounded D RIl-monoids. For instance, it is valid
for MV -algebras (see [4], Theorem 2.3) and Brouwerian algebras.
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