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Preface 

Theoretical models and numerical studies for geophysical interpretations of 

the Earth’s gravity field described here were formulated and compiled during 

my research stay in the Department of Remote Sensing and Geosciences at the 

Technical University in Delft (The Netherlands), and further developed during 

my lecturing in the National School of Surveying at the University of Otago 

(New Zealand) and the School of Geodesy and Geomatics at the Wuhan 

University (P.R. China). Theoretical definitions presented here were discussed 

with Prof. Lars E. Sjöberg (Royal Institute of Technology), Prof. Mohammad 

Bagherbandi (IT and Land Management University of Gävle), Prof. Mehdi 

Eshagh (University West), Prof. Pavel Novák (University of West Bohemia), and 

Dr. Peter Vajda (Slovak Academy of Sciences). The numerical studies were 

conducted with the help of Wenjin Shen (Wuhan University), Hamayun 

(Technical University in Delft), and Dr. Vladislav Gladkikh (University of Otago).  
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Resume 
 

The research presented here describes methods for the gravimetric 

interpretation of the lithospheric density structure, and particularly the 

gravimetric determination of the crust-mantle (Moho) density interface. 

Moreover, methods for the gravimetric interpretation of geodynamic 

phenomena related with the mantle convection are presented, namely 

investigating the signature of the ocean-floor spreading and the sub-crustal 

stress in the gravity field. Focusing on global applications, all functional 

models are defined in the spectral domain. These functional models utilize 

methods for a spherical harmonic analysis and synthesis of the gravitational 

field and the lithospheric density structure. The practical applications of these 

methods are demonstrated in numerical studies for computing the Earth’s 

spherical crustal density model, the gravimetric forward modeling of major 

known crustal density structures, compilation of the synthetic gravitational 

model of the oceanic lithosphere, solving the gravimetric inverse problem for 

finding the Moho depth, and the determination of the sub-crustal stress field.    

After a brief introduction into the topic in Chapter 1, the fundamental 

definitions of the gravity field quantities are recapitulated in Chapter 2. In 

theoretical definitions, the spectral representation of a 3-D density 

distribution of volumetric mass layers is defined in Chapter 3. In practical 

examples, theoretical density models of the seawater and marine sediments 

are established based on analysis of available density samples in Chapter 4. 

The functional definitions describing a mass density distribution (in Chapter 3) 

are facilitated to compile the Earth’s spectral crustal model (ESCM180) based 

on applying methods for a spherical harmonic analysis of the crustal density 

structures in Chapter 5. This functional density distribution model is further 

facilitated in deriving the spectral expressions for the gravimetric forward 

modeling in Chapter 6. The expressions for the gravimetric forward modeling 

are then applied to compute the gravitational contributions of major known 

crustal density structures based on applying methods for a spherical harmonic 

synthesis of the Earth’s crustal structures. The applied methods and numerical 

results are discussed and presented in Chapter 7. The methods for the 

gravimetric forward modeling (Chapter 6) and theoretical density models 
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(Chapter 4) are also used to compile the synthetic gravitational model of the 

oceanic lithosphere in Chapter 8. This synthetic model describes the 

gravitational signature of a thermal state of the oceanic lithosphere as a 

function of the ocean-floor spreading (reflecting the density increase with age 

of the oceanic lithosphere) and the oceanic deepening (caused by a thermal 

contraction of the oceanic lithosphere). The spectral expressions for solving 

the gravimetric inverse problem for finding the Moho depth are provided in 

Chapter 9, and applied for a global Moho recovery in Chapter 10. The a priori 

models of the Earth’s lithospheric structure and the Moho depth applied in 

these numerical studies were obtained from analysis of seismic results. In this 

way, the applied processing strategies combine the gravity and seismic models. 

The method of computing the horizontal components of the sub-crustal stress 

field is presented in Chapter 11. This method combines the Runcorn’s solution 

to the Navier-Stokes’ problem with the Vening Meinesz-Moritz’s (VMM) 

inverse problem of isostasy for a simultaneous determination of the sub-

crustal stress and the Moho depth. The distribution of the terrestrial sub-

crustal stress field and its relation with tectonism is investigated in Chapter 12, 

and a similar study is conducted to investigate the stress pattern on Mars in 

Chapter 13. It is demonstrated that the spatial distribution of the sub-crustal 

stress on the Earth closely resembles global tectonic configuration, with 

maximum stress intensity induced by the mantle convection along active 

convergent tectonic margins. The Martian sub-crustal stress is, on the other 

hand, mainly attributed to the crustal loading and the regional tectonism 

associated with a volcanic evolution on Mars.  
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1. INTRODUCTION 
Seismic data represent the primary source of information used in studies of 

the Earth’s inner density structure. However, large parts of the Earth are not 

yet sufficiently covered by seismic surveys. In areas where seismic data are 

sparse or completely missing, gravity measurements can be used. With the 

advent of three dedicated satellite-gravity missions, namely the Challenging 

Mini-satellite Payload (CHAMP), the Gravity Recovery and Climate Experiment 

(GRACE), and the Gravity field and steady-state Ocean Circulation Explorer 

(GOCE), the external gravitational field of the Earth has being observed with a 

high resolution and accuracy. The latest global gravitational models derived 

from these satellite missions have a spatial resolution about 80 km (in terms 

of a half-wavelength). Moreover, these gravitational models have (almost) 

global and homogeneous coverage, with well-defined stochastic properties. 

Further improvement by means of the resolution and accuracy of these 

models has been achieved by combining the satellite-gravity data with the 

ground-based, air-borne, and sea-borne gravity measurements over certain 

parts of the world where these gravity measurements are available, while the 

satellite-altimetry data improved the gravitational information over the 

oceans. 

This improved information on the Earth’s gravitational field was facilitated in 

numerous studies investigating the Earth’s interior, focusing mainly on the 

crust and upper-mantle density composition, and including also studies of the 

Moho density interface and the structure of large sedimentary basins. 

Moreover, this information has been used for a better understanding of 

various geodynamic processes based on analysis of the temporal gravity 

variations as well as the spatial pattern of static gravity field. Whereas the 

long-wavelength spectrum of the Earth’s gravitational field comprises mainly 

the signature of deep mantle density heterogeneities, the medium-to-higher 

frequency gravitational spectrum reflects the density composition of more 

shallow sources within the lithosphere. This allows studying and interpreting 

the gravitational features which are related, for instance, to the mantle 

convection, the global tectonism (such as the oceanic subduction, orogenic 

formations, earthquake mechanisms, and lithospheric plate configuration), 

the lithospheric stress field, the isostatic compensation mechanisms, the 

glacial isostatic adjustment, and other related geodynamic phenomena. Since 
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the gravity observations could not solely be used to interpret the Earth’s inner 

density structure due to a non-uniqueness of gravimetric inverse solutions, 

additional information is needed to constrain the gravimetric solutions. The 

methods applied in studies of the Earth’s structure and processes thus should 

optimally combine various data and additional geophysical, geothermal or 

geochemical constraining information.  

In recent years, global and regional gravity data have been used extensively to 

study the Moho density interface. However, classical isostatic models are 

typically not able to model realistically the actual Moho geometry, due to the 

fact that the actual isostatic balance depends on numerous factors, which 

could not accurately be described by isostatic theories. To overcome some 

theoretical deficiencies of classical isostatic models, the processing strategies 

based on combining gravity and seismic data (with additional constraining 

information) have been developed and applied. In this way, the gravitational 

data could improve the results over large parts of the world where seismic 

data are sparse or absent, while gravity also provide additional information 

over regions which are sufficiently covered by seismic surveys.  

The gravimetric methods for studying the Earth’s inner density structure 

comprise - in principle - two processing steps. The gravimetric forward 

modeling is first applied to model (and remove) the gravitational contribution 

of known density structures in order to uncover the gravitational signature of 

unknown (and sought) density structure or density interface. The gravimetric 

inverse methods are then used to interpret these unknown density structures 

based on analysis of refined gravity data (corrected for the gravitational 

contributions of known density structures). In both processing steps, seismic 

data can be used to constrain the gravimetric results. Such methods and their 

practical applications in context of modeling and interpreting the Earth’s 

lithospheric structure and the Moho interface are presented and discussed 

here. Moreover, the examples of gravimetric methods for the interpretation 

of geodynamic processes related to the mantle convection are given, 

particularly studding the gravitational signature of the ocean-floor spreading 

and the sub-crustal stress field.   
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2. EARTH’S GRAVITY FIELD  
The Earth’s gravity field is commonly described by means of residual 

quantities of the gravity field, namely using the disturbing potential T , the 

gravity disturbance g , and the gravity anomaly g . These residual 

quantities are obtained from the Earth’s gravity field after subtracting the 

normal gravity field.  

The disturbing potential T  at an arbitrary point  ,r
 
is defined by (e.g., 

Heiskanen and Moritz 1967) 
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where GM  is the geocentric gravitational constant, R  is the Earth’s mean 

radius, 
mn,

Y

 

are the (fully-normalized) surface spherical functions of degree n 

and order m, and 
mn,

T

 

are the (fully-normalized) numerical coefficients of the 

disturbing potential T . The coefficients 
mn,

T

 

are obtained from the GGM 

coefficients after subtracting the spherical harmonic coefficients of the GRS80 

normal gravity field (Moritz 2000). The 3-D position is defined in the spherical 

coordinate system  ,r ; where r  is the spherical radius, and  ,  is 

the spherical direction with the spherical latitude   and longitude  . 

By analogy with Eq. (2.1), the gravity disturbances g  and the gravity 

anomalies g  are computed from the disturbing potential coefficients 
mn,

T  as 

follows (ibid.)
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and  
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3. EARTH’S DENSITY MODEL 
To study the relation between the Earth’s gravitational field and the Earth’s 

inner density structure, the Earth’s interior is divided into a finite number of 

volumetric mass density layers, which represent particular geological or 
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tectonic features. This description is then applied to compute and 

subsequently remove the gravitational contributions of known density 

structures from the Earth’s gravitational field in order to reveal the 

gravitational signature of an unknown (and sought) density structure or 

density interface. Tenzer (2015) derived a generalized mathematical model of 

the Earth’s density structure. This model is defined based on utilizing the 

spectral expressions for a 3-D density distribution within an arbitrary 

volumetric mass layer.  

For this purpose, the actual density within an arbitrary volumetric mass layer 

is approximated by the laterally distributed radial density variation model 

using the following polynomial function (for each lateral column) 
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where Q  is a total number of volumetric mass layers used to describe the 

Earth’s inner structure. Adopting the Earth’s spherical approximation, the 

geometry of each volumetric layer is defined by depths 
U

D  and 
L

D  of the 

upper and lower bounds respectively. These depths are stipulated with 

respect to the Earth’s mean radius R . For the upper and lower bounds 

located above the geoid surface (which is approximated by the sphere of 

radius R ), the values 
U

D  and 
L

D  become negative. The 3-D density 

distribution in Eq. (3.1) is described by a (nominal) lateral density  ,
qUq

D  

at an upper bound 
qU

D
 
and a location  . A radial density change with 

respect to  ,
qUq

D
 
is then described by the parameters 

q
 and 

{
qiq

Ii ...,,2,1:  }, where 
q

I  is a maximum order of the density function 

used to define a radial density change within a particular volumetric mass 

layer q.   

For the 3-D density distribution model in Eq. (3.1), the spherical lower- and 

upper-bound density functions and their higher-order terms, i.e., 
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et al. 2012b)   
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and 
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The methods for a spherical harmonic analysis of the Earth’s density structure 

are applied to generate the coefficients  ik

q



mn,
L  and  ik

q



mn,
U  from discrete data 

of depth, thickness, and density distribution within a particular volumetric 

mass layer. These coefficients can then be used to compute the respective 

gravitational contributions (Chapter 6).   

 

4. EXAMPLES OF DENSITY MODELS  
To improve results of interpreting the marine gravity data, Gladkikh and 

Tenzer (2011) and Tenzer and Gladkikh (2014) developed density models of 

the seawater and marine sediments. Gu et al. (2014) applied these density 

models to predict density contrasts of the oceanic sedimentary basins with 

respect to the overlying seawater and the underlying bedrock. These density 

models were also utilized in marine gravity studies. Tenzer et al. (2011a) 
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compared the accuracy of the bathymetric-stripping gravity correction (i.e., 

the gravity correction due to the ocean density contrast) computed for the 

uniform and depth-dependent seawater density models. Tenzer et al. (2012a) 

and Tenzer and Novák (2012) applied the depth-dependent seawater density 

model in computing the bathymetric-stripping corrections to gravity and 

gravity gradient data. Chen et al. (2014) facilitated the density model of 

marine sediments in computing the sediment-stripping correction to marine 

gravity data. Tenzer et al. (2015b) applied these density models to compile the 

synthetic gravitational model of the oceanic lithosphere (Chapter 8). The 

density models of the seawater and marine sediments are presented in this 

chapter.  

 

4.1 Seawater density model  

The actual seawater density variations due to salinity, temperature, and 

pressure are typically at the interval from 1020 to 1050 kg m-3, with most of 

this range being due to pressure. According to Garrison (2001), the surface 

seawater density varies between 1020 and 1029 kg m-3. The largest vertical 

seawater density variations are within the pycnocline (i.e., the sub-surface 

layer with the largest seawater density gradient). These large density 

variations are mainly due to the decreasing seawater temperature with depth 

as well as a complex behavior of the seawater salinity at the upper oceanic 

layer. There are several other oceanographic phenomena, which contribute to 

the global seawater density variations such as the global oceanic circulation, 

the continental hydrology, and the ocean-floor relief. 

When the actual seawater density distribution is approximated by a uniform 

density model, a relative inaccuracy up to 2% is expected in the gravimetric 

forward modeling of the bathymetric-stripping correction (cf. Tenzer et al. 

2010a). It corresponds to errors in computed values of the gravitational 

potential and attraction (due to the ocean density contrast) to about 550 m2s-2 

and 17 mGal respectively. To reduce these errors, Gladkikh and Tenzer (2011) 

introduced a more accurate model of the seawater density. They used 

experimental data of the practical salinity, pressure, and temperature from 

the World Ocean Atlas 2009 (WOA09) and the World Ocean Circulation 

Experiment 2004 (WOCE04) to calculate the seawater density values 

according to TEOS‐10 (Millero et al. 2008), and used these values to formulate 
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a theoretical model of the global seawater density distribution as a function of 

the oceanic depth (to account for density variations due to pressure) and the 

geographical latitude (to account for density variations due to salinity and 

temperature). They also incorporated the pycnocline density-gradient 

correction into the seawater density model. This correction approximates 

more closely density variations within the pycnocline caused by a combination 

of the decreasing temperature and the increasing salinity with depth.  

As mentioned above, the seawater density variations are mainly due to 

pressure, while additional smaller density changes are caused by salinity and 

temperature changes. The global seawater temperature and salinity changes 

have a prevailing zonal (latitudinal) distribution (Stewart 2008). The seawater 

density variations w  can then be described as a function of the oceanic 

depth 
w

d  and the geographic latitude   in the following form (Gladkikh and 

Tenzer 2011) 

                                         
ww

dd  0.1000,w .                              (4.1) 

The parameters  ,  , and   in Eq. (4.1) were estimated by applying a least-

squares analysis. These parameters are defined for the argument of latitude 

  as follows  

                                5

0161.0exp06.291.27   ,                                 (4.2) 

                                66.4

017.0exp00828.000637.0   ,                    (4.3) 

                                5

016.0exp091.0964.0   .                                 (4.4) 

According to Eq. (4.1), a theoretical value of the surface seawater density at 

the equator equals 1027.91 kg m-3. The parameter   describes a global 

latitudinal distribution of the surface seawater density, which increases 

towards higher latitudes. A change of the seawater density with depth is 

defined by the third term on the right-hand side of Eq. (4.1).  

To improve the fit at shallow depths, the pycnocline-corrected seawater 

density model was proposed in the following form (Gladkikh and Tenzer 2011) 

          
ww

dd 1000,w
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where the latitude-dependent parameter   reads     

                                 053.0cos079.0928.0  .                                            (4.6) 

 

 
Fig. 4.1 Fit of the latitude-averaged seawater density data by the seawater density 

model (dashed line) in Eq. (4.1) and the pycnocline-corrected seawater density model 

(solid line) in Eq. (4.5). 

 

The approximation of the actual seawater density distribution by a mean 

value yields relative errors up to 2%. A theoretical model defined in terms of 

the depth and latitudinal seawater density variations (Eq. 4.1) approximates 

experimental data with a relative accuracy better than 0.45%. When 

incorporating the pycnocline density-gradient correction to the seawater 

density model (Eq. 4.5), a relative accuracy further improved to about 0.25%, 

especially within the pycnocline (see Fig. 4.1). 

The analysis revealed that the seawater densities of experimental data vary 

between 1020 and 1055 kg m-3 within the depth range 6 km. The 

corresponding mean seawater density is 1038.5±2.4 kg m-3. The surface 

seawater densities of experimental data vary from 1022 to 1027.3 kg m-3, with 

a mean 1024.8±3.0 kg m-3. This mean value closely agrees with the mean 

surface seawater density 1025.3 kg m-3 computed according to Eq. (4.5).    
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4.2 Marine sediment density model 

The density heterogeneities of marine sediments depend on their physical 

properties and mineral composition, which are the result of a complex 

interaction among geological, oceanographic, and biological processes (e.g., 

Hüneke and Mulder 2011). Several authors developed and applied more 

complex density models taking into consideration a particular sediment type 

and its specific physical properties such as porosity and compaction (e.g., 

Hamilton and Menard 1956, Hamilton 1976, Cowie and Karner 1990, and 

Sykes 1996). Analyzing the density samples from the Deep Sea Drilling Project 

(DSDP), Tenzer and Gladkikh (2014) developed a density model of marine 

sediments s as a function of the ocean-floor depth 
w

D  and the sediment 

thickness 
s

d in the following form   

                               5s 105.01.502.066.1, 
wws

DDd  

                                               007.0766.00002.00037.0 
s

d .                                   (4.7) 

The transportation distance, depositional environment conditions (depth, 

temperature, concentrations of dissolved gas, calcium carbonate, and silica), 

and ocean fertility control both, the sediment structure and sedimentation 

process. Among these factors, the lateral density distribution depends 

primarily on a mineral composition and transportation distance. Light and fine 

particles are transported at longer distances. Consequently, there is a clear 

pattern in the size distribution, for instance, of lithogenous sediments in the 

oceans (forming about 70% of total volume of marine sediments). Coarse 

particles (gravels, sands) form mostly near-shore deposits, while the grain-size 

typically decreases offshore with clays occupying the deep-ocean basins. This 

might explain a prevailing trend of the decreasing upper-sediment density 

with the increasing ocean-floor depth (see Fig. 4.2). The increasing sediment 

density with sediment depth (see Fig. 4.3) is explained by the compaction and 

further lithification. 
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Fig. 4.2 Relation between the upper-sediment density (for ds<50 m) and the ocean-floor 

depth. Theoretical density values (red line) were calculated according to Eq. (4.7). 

 
Fig. 4.3 Relation between the marine sediment density and the sediment depth. 

Theoretical density values (red line) were calculated according to Eq. (4.7). 

 

5. EARTH’S CRUSTAL DENSITY MODEL  
Chen and Tenzer (2015) utilized the expressions for a spherical harmonic 

analysis of crustal density structures (Chapter 3) to generate the Earth’s 

Spectral Crustal Model 180 (ESCM180) with a spectral resolution complete to 

a spherical harmonic degree 180 (which corresponds to a half-wavelength of 1 
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arc-deg, or about 100 km at the equator). They used the ETOPO1 topographic 

and bathymetric data (Amante and Eakins 2009), the GOCO-03S geoid model 

(Mayer-Guerr et al. 2012), the Kort and Matrikelstyrelsen (KMS) ice-thickness 

data for Greenland (Ekholm 1996), the updated ice-thickness data for 

Antarctica assembled by the BEDMAP project (Lythe et al. 2001), and the 

CRUST1.0 sediment and consolidated crustal data (Laske and Masters 1997, 

and Laske et al. 2012). Moreover, the density models of seawater and marine 

sediments (Chapter 4) were adopted to represent the density distribution 

within the ocean and marine sediment layers.  

 
Fig. 5.1 Power spectrum of the ESCM180 crustal density components. The crustal 

density components were evaluated from the ESCM180 coefficients as a product T or 

T; where   and  is the density or density contrast respectively, and T is the 

thickness of crustal layers (t - topography, b - bathymetry, i - ice, s - sediment, c - 

consolidated crust). Log scale is used for vertical axis.    

 

The spectrum of the ESCM180 components is plotted in Fig. 5.1. The ocean 

density contrast has the largest signal among the ESCM180 components at the 

whole investigated spectrum (up to degree 180). The topographic and 

sediment layers have a similar energy at the medium wavelengths (at degrees 

60 to 85). The signal of the ice density contrast prevails over the signal of the 

sediment density contrast at the long wavelengths up to degree 10, while 

both these signals are very similar at degrees from 10 to 25. Above this 
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interval, the signal of the ice density contrast becomes the smallest (among all 

components). This behavior is explained by a more concentrated spatial 

distribution of the glacial ice in Greenland and Antarctica. The global sediment 

distribution is, on the other hand, much more irregular and characterized by 

large variations in its thickness and density. Therefore, the signal of the 

sediment density contrast prevails at the medium-to-higher frequencies, while 

the ice density contrast has a stronger signal at the longer wavelengths.  

The ESCM180 parameters were further used to estimate average densities of 

the Earth’s crustal structures. The analysis revealed that the average crustal 

density including the seawater is 2490 kg m-3, while the solid crust density 

(i.e., excluding the seawater) is 2830 kg m-3. These estimates were obtained by 

applying a spatial average operator over crustal layers (while taking into 

consideration the convergence of meridians). The average continental crustal 

density including continental margins (which comprise igneous, sedimentary, 

and metamorphic rocks) is 2790 kg m-3. This value differs about 1.6% from the 

value 2835 kg m-3 reported by Christensen and Mooney (1995). These two 

density estimates of the whole continental crust are obviously larger than the 

average density of the upper continental crust 2670 kg m-3 (mentioned by 

Hinze 2003) due to the increasing density within deeper crustal structures.  

The oceanic crust (composed primarily of mafic rocks) is typically heavier than 

the continental crust (e.g., Rogers et al. 2008). The analysis revealed that the 

average density of the ESCM180 oceanic crust (without the seawater, but 

including marine sediments) is 2860 kg m-3. This value is obviously smaller 

than the average density of the oceanic crust (without marine sediments) 

2890 kg m-3 estimated by Carlson and Raskin (1984). Tenzer and Gladkikh 

(2014) confirmed a similar value of the average density of the oceanic crust 

(without marine sediments) 2900 kg m-3, based on analysis of the DSDP 

marine bedrock density samples. They also found that the average density of 

the DSDP marine sediments data is 1700 kg m-3. Sykes (1996) reported the 

average density of marine sediments between 1700 and 1950 kg m-3. 

 

6. GRAVIMETRIC FORWARD MODELING  
Tenzer et al. (2012b, 2012d) derived generic expressions for computing the 

gravitational field quantities generated by an arbitrary volumetric mass layer 

with a variable depth and thickness having a 3-D density (or density contrast) 
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distribution (Chapter 3). The gravitational attraction g

 

(defined 

approximately as a negative radial derivative of the gravitational potential V ) 

reads     
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where n

 

is the upper summation index of spherical harmonics. The potential 
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where Earth  is the Earth’s mean density. The numerical coefficients 
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and 



- 18 - 

 

    

     

   

       

   

























































....,,2,1YU

P
π4

12

0YU

P,
π4

12

U

n

nm

mn,

1

mn,

n

1

n

nm

mn,

1

mn,

n

1

1

n

Ii

dtD
n

i

dtDD
n

ik

ik

Ui

k

k

UU

ik





                  (6.5) 

The generic expressions for computing the gravitational field quantities 

presented in this chapter can readily be simplified for the radial, lateral or 

uniform density models.  

  

7. GRAVITATIONAL FIELD OF CRUSTAL STRUCTURES 
Tenzer et al. (2012b, 2012e) and Novák et al. (2013) applied the expressions 

presented in Chapter 6 in the gravimetric forward modeling of crustal density 

structures. Tenzer et al. (2015e) used the ESCM180 coefficients to compute 

the gravitational contributions of major crustal density structures. They also 

investigated the spatial and spectral characteristics of the consolidated crust-

stripped gravity disturbances csg  (Tenzer et al. 2009a) computed from the 

gravity disturbances g  according to the following scheme  

                                    

CSIBT ggggggg cs  ,                                   (7.1) 

where

 

Tg  is the topographic gravity correction, and Bg , Ig , Sg  and Cg  are, 

respectively, the stripping gravity corrections due to density contrasts of the 

ocean (bathymetry), ice, sediments and consolidated crust. Global maps of the 

gravity corrections and the (step-wise) corrected gravity disturbances are 

presented in Figs. 7.1 and 7.2. The statistical summaries of these results are 

given in Tables 7.1 and 7.2.  
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a b  

c d  

e  

Fig. 7.1 Global maps of the gravity corrections (mGal): (a) the topographic correction 

gT, (b) the bathymetric-stripping correction gB, (c) the ice-striping correction gI, (d) the 

(complete) sediment-stripping correction gS, and (e) the (complete) consolidated crust-

stripping correction gC. 

a b  



- 20 - 

 

c d  

e f  

Fig. 7.2 Global maps of the (step-wise) corrected gravity disturbances (mGal): (a) the 

GOCE-03S gravity disturbances g, (b) the topography-corrected gravity disturbances 

gT, (c) the topography-corrected and bathymetry-stripped gravity disturbances gTB, (d) 

the topography-corrected and bathymetry- and ice-stripped gravity disturbances gTBI, 

(e) the topography-corrected and bathymetry- and ice- and sediments-stripped gravity 

disturbances gTBIS, and (f) the consolidated crust-stripped gravity disturbances gcs.  

 

Table 7.1 Statistics of the gravity corrections (mGal): the topographic gT; the 

bathymetric-stripping gB; the ice-striping gI; the upper, middle, and lower sediment-

stripping guS, gmS, and glS; and the upper, middle, and lower consolidated crust-stripping 

guC, gmC, and glC. 

Gravity 
corrections 

Min [mGal] Max [mGal] Mean [mGal] STD [mGal] 

gT -701 5 -71 104 
gB 89 725 332 165 
gI -27 311 25 61 

guS -3 105 34 21 
gmS -17 87 11 14 
glS -5 29 1 2 
guC -141 52 -20 24 
gmC -199 -22 -71 35 
glC -526 -106 -202 40 
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Table 7.2 Statistics of the (step-wise) corrected gravity disturbances (mGal): the GOCE-

03S gravity disturbances g, the topography-corrected gravity disturbances gT; the 

topography-corrected and bathymetry-stripped gravity disturbances gTB; the 

topography-corrected and bathymetry- and ice-stripped gravity disturbances gTBI; the 

topography-corrected and bathymetry- and ice- and sediment-stripped gravity 

disturbances gTBIS (including intermediate results: gTBIuS - after applying the upper-

sediment-stripping correction to gTBI, and gTBIuSmS - after applying the upper- and 

middle-sediment stripping corrections to gTBI); and the consolidated crust-stripped 

gravity disturbances gcs (including the intermediate results: gTBISuC - after applying the 

upper-crust-stripping correction to gTBIS, and gTBISuCmC  - after applying the upper- and 

middle-crust-stripping corrections to gTBIS).  

Gravity 
disturbance 

Min [mGal] Max [mGal] Mean [mGal] STD [mGal] 

g -229 257 -1 30 

gT -648 167 -72 107 

gTB -511 634 260 233 

gTBI -508 638 285 202 

gTBIuS -494 664 319 203 

gTBIuSmS -487 669 330 200 

gTBIS -486 669 331 200 

gTBISuC -579 667 311 219 

gTBISuCmC -709 625 240 249 

gcs -954 460 38 275 

 

As seen in Fig. 7.2a, the GOCO-03S gravity disturbances globally vary mostly 

within ±250 mGal. This small range of gravity disturbances indicates that the 

Earth’s lithosphere is in a relatively good isostatic balance at the long-to-

medium wavelengths. The application of the topographic gravity correction 

(Fig. 7.1a) exhibited the isostatic signature in the gravity data over major 

orogens, marked there by large negative values of the gravity disturbances 

(see Fig. 7.2b). The application of the bathymetric-stripping gravity correction 

(Fig. 7.1b) significantly changed a spatial pattern of the marine gravity 

disturbances, revealing the gravitational signature of the ocean-floor relief 

(see Fig. 7.2c). The application of the ice-stripping gravity correction (Fig. 7.1c) 

modified the gravity disturbances in Greenland and Antarctica (Tenzer et al. 

2010b), particularly over areas with the largest glacial ice cover (see Fig. 7.2d). 

The application of the sediment-stripping gravity correction (Fig. 7.1d) slightly 

changed a spatial pattern of the gravity disturbances over large continental 
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sedimentary basins and to some extent also enhanced the contrast between 

the continental and oceanic crustal structures along the continental margins, 

especially over the largest sedimentary accumulations of deep-sea fans (i.e., 

large marine sediment accumulations deposited on the slope and adjacent 

sea-floor, originated during the ice-age climatic episodes) and the sediment 

discharge of large rivers (see Fig. 7.2e). The consolidated crust-stripped gravity 

disturbances, obtained after applying the stripping gravity correction due to 

remaining crustal density heterogeneities (Fig. 7.1e), are mostly positive over 

oceans and negative over continents (see Fig. 7.2f). Their gravity maxima 

correspond with locations of the old oceanic lithosphere, while the 

corresponding gravity maxima are seen over large orogens. It is worth 

mentioning that the atmospheric gravity correction was not applied here, 

because is completely negligible in context of this study. Tenzer et al. (2009c) 

demonstrated that this gravity correction globally varies only between -0.18 

and 0.03 mGal. 

As seen in the global gravity maps (Fig. 7.2), the successive application of the 

gravity corrections revealed a gravitational signature, which spatially closely 

resembles major features of the solid topography and the Moho geometry. 

The spatial correlation between the (step-wise) corrected gravity disturbances 

and the crustal geometry (i.e., the solid topography and the Moho geometry) 

is summarized in Table 7.3. 

 

Table 7.3 Correlations of the step-wise corrected gravity disturbances with the 

ESCM180 solid topography and the CRUST1.0 Moho geometry. 

Gravity 
disturbances 

Correlation 

Solid topography Moho geometry 

g -0.01 -0.09 

gT -0.55 -0.68 

gTB -0.89 -0.95 

gTBI -0.92 -0.97 

gTBIS -0.94 -0.97 

gcs -0.95 -0.98 
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The degree-correlation coefficients were further calculated to assess the 

spectral correlation pattern between the (step-wise) corrected gravity 

disturbances and the crustal geometry. The spectral correlations of the (step-

wise) corrected gravity disturbances with the crustal geometry (up to degree 

180) are shown in Fig. 7.3.  
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Fig. 7.3 Degree-correlation spectrum of the step-wise corrected gravity disturbances 

with: (a) the ESCM180 solid topography, and (b) the CRUST1.0 Moho geometry.  
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Despite the consolidated crust-stripped gravity disturbances are highly 

spatially correlated with the Moho geometry (cf. Table 7.3), this correlation 

prevails at the long wavelengths, while attenuates significantly at higher 

degrees of the gravitational spectrum (Tenzer et al. 2009b). The signature of 

the Moho geometry is thus prominent mainly at the long-to-medium 

wavelengths of the gravitational spectrum (cf. Fig. 7.3b), while the higher-

degree spectrum is dominated mainly by the signature of the solid topography 

(cf. Fig. 7.3.a). This finding agrees with the fact that more detailed topographic 

features and anomalous crustal density structures are not fully isostatically 

compensated.  

 

8. GRAVITATIONAL MODEL OF OCEANIC LITHOSPHERE 
Tenzer et al. (2015d) compiled the synthetic gravitational model of the 

oceanic lithosphere over the world’s oceans. This synthetic model describes 

the gravitational signature of the oceanic lithosphere attributed to the 

conductive cooling and thermal contraction of the oceanic lithosphere, which 

is isostatically compensated by the oceanic deepening (e.g., Williams 1975, 

and Parsons and Sclater 1977). This model was established based on finding 

that a spatial pattern of the mantle gravity disturbances (corrected for the 

long-wavelength gravitational contribution of deep mantle heterogeneities) 

over the world’s oceans reflects mainly the compositional and thermal 

structure of the oceanic lithosphere (cf. Tenzer et al. 2012e, 2012f, 2013), 

except for some systematic discrepancies which could not accurately be 

described by a simple analytical function.  

To unmask the gravitational signature of the oceanic lithosphere in marine 

gravity data, the gravitational contributions of anomalous crustal density 

structures were first subtracted from the gravity disturbances. This numerical 

procedure yields the consolidated crust-stripped gravity disturbances (Tenzer 

at al. 2009a, 2015e; see also Eq. 7.1). As demonstrated in Chapter 7, these 

gravity data comprise mainly the gravitational signatures of the Moho 

geometry and the mantle density heterogeneities. The gravitational 

contribution of the Moho geometry was further removed from the 

consolidated crust-stripped gravity disturbances in order to enhance the 

gravitational signature of the mantle. The resulting mantle gravity 

disturbances comprise the gravitational signal of the lithospheric mantle, 
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which is superposed over the (long-wavelength) gravitational signal of the 

sub-lithospheric mantle. To enhance the gravitational signature of the 

lithospheric mantle, the gravitational contribution of the sub-lithospheric 

mantle was finally subtracted from the mantle gravity disturbances. The 

computation of the long-wavelength contribution of the sub-lithospheric 

mantle was realized according to Bagherbandi and Sjöberg (2012b). They 

proposed a procedure of treating the gravitational signal of the whole mantle 

in solving the Vening Meinesz-Moritz inverse problem of isostasy by applying 

the method of Eckhardt (1983) and Bowin et al. (1986). The resulting gravity 

data were described analytically.  

Tenzer et al. (2015d) demonstrated that the gravitational changes due to the 

lithospheric conductive cooling can be described as a function of the ocean-

floor age in the following form    

                                           aag ol  1ln6.52827 ,                                         (8.1) 

where olg  
is the predicted value of the gravitational contribution of the 

oceanic lithosphere o lg  (mGal), and a
 
is the ocean-floor age (Myr). This 

relation is illustrated in Fig. 8.1. The differences between the actual and 

theoretical values  agg olol   were then used to find an additional 

systematic trend with respect to the oceanic deepening caused by the 

lithospheric thermal contraction. A following linear trend was found (ibid.)   

                                         w

olol Dgg 044.0183  ,                                         (8.2) 

where 
w

D  
 denotes the bathymetric depth (in m). This relation is shown in 

Fig. 8.2. 

Combining Eqs. (8.1) and (8.2), the gravitational model of the oceanic 

lithosphere was obtained in the following form   

                                 
ww

ol DaDag 044.01ln6.52644,  .                          (8.3)  

The gravitational field of the oceanic lithosphere reflects its thermal state. The 

gravitational signature of the ocean-floor spreading was explained by an 

increasing density with age due to the lithospheric conductive cooling (Fig. 

8.1). This increasing density translates into the increasing gravitational signal 

with the gravitational minima over the mid-oceanic ridges and the 

gravitational maxima over the oceanic subduction zones. The gravitational 

signature of the lithospheric thermal contraction, which is isostatically 
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compensated by the oceanic deepening, was confirmed by a spatial 

correlation between the gravitational field and the ocean-floor depth (Fig. 

8.2). 
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Fig. 8.1 Scatter plot between the gravitational contribution of the oceanic lithosphere 

and the ocean-floor age. Approximation function is defined in Eq. (8.1).  
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Fig. 8.2 Scatter plot between the (age-adjusted) gravitational contribution of the 

oceanic lithosphere and the ocean-floor depth. Approximation function is defined in Eq. 

(8.2).  
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9. GRAVIMETRIC MOHO RECOVERY  
Seismic data are primarily used in geophysical studies investigating the Moho 

geometry. In the absence or a low coverage of seismic data, the gravimetric or 

combined gravimetric-seismic methods can be applied. Several different 

gravimetric methods for finding the Moho depth have been developed and 

applied in global and regional studies. Examples of gravimetric methods 

include, but are not limited to, studies by Čadek and Martinec (1991), 

Braitenberg and Zadro (1999), Arabelos et al. (2007), Sjöberg (2009), 

Braitenberg et al. (2010), Sampietro (2011), Eshagh et al. (2011), Bagherbandi 

and Eshagh (2011, 2012), Sampietro et al. (2013), Bagherbandi et al. (2013, 

2015), Bagherbandi and Tenzer (2013), and Tenzer et al. (2015f). These 

gravimetric methods are typically formulated for a chosen isostatic scheme. 

The Pratt’s isostatic model is based on the assumption of a variable 

compensation density (Pratt 1855), while a variable compensation depth is 

considered in the Airy’s isostatic model (Airy 1855). Vening Meinesz (1931) 

modified the Airy-Heiskanen’s theory by introducing a regional isostatic 

compensation based on a thin plate lithospheric flexure model. The regional 

compensation model was later adopted in the Parker-Oldenburg’s isostatic 

method (Oldenburg 1974). Moritz (1990) utilized the Vening Meinesz’s 

isostatic problem for the Moho depth determination. Sjöberg (2009, 2013) 

reformulated the Moritz’s problem, called the Vening Meinesz-Moritz’s 

(VMM) inverse problem of isostasy, by means of solving a non-linear 

Fredholm integral equation of the first kind.  

The isostatic balance depends on the loading and effective elastic thickness, 

rigidity, rheology of the lithosphere, and viscosity of the asthenosphere. 

Moreover, the glacial isostatic adjustment, the present-day glacial melting, 

plate tectonics, the mantle convection, and other factors contribute to the 

overall isostatic balance. Kaban et al. (1999), for instance, demonstrated that 

the isostatic mass balance takes place not only within the crust, but essentially 

within the whole lithosphere (see also Kaban et al. 2004, and Tenzer et al. 

2009a, 2012e). Isostatic gravity data also contain the long-wavelength 

signature of thermal and compositional structure of the mantle, which are 

typically not taken into consideration in classical isostatic models. 

Furthermore, these isostatic models often assume only a constant 
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compensation depth or density. However, the results of seismic studies 

revealed that both, the Moho depth and density contrast vary significantly 

(e.g., Geiss 1987, Martinec 1994, Kaban et al. 2003, and Sjöberg and 

Bagherbandi 2011). To overcome some theoretical deficiencies of classical 

isostatic models, the gravimetric methods for a Moho recovery should 

optimally combine the gravity and seismic data with additional constraining 

information. A combined data-processing strategy for the Moho recovery was 

applied, for instance, by Braitenberg and Zadro (1999). They proposed a 

method based on the iterative 3-D gravity inversion with integrated seismic 

data. Sjöberg and Bagherbandi (2011) developed and applied a least-squares 

approach, which combined seismic and gravity data in the VMM isostatic 

inverse scheme for a simultaneous estimation of the Moho depth and density 

contrast. They also presented and applied the non-isostatic correction term to 

account for discrepancies between the isostatic and seismic models (cf. 

Bagherbandi and Sjöberg 2012b, and Bagherbandi et al. 2013, 2015). 

The isostatic problems are commonly formulated in terms of the isostatic 

gravity anomalies. Vajda et al. (2007) argued that these definitions in terms of 

the gravity disturbances are theoretically more appropriate. Following this 

concept, Tenzer and Bagherbandi (2012) reformulated the VMM isostatic 

model by means of the isostatic gravity disturbances (see also Bagherbandi et 

al. 2013). They also demonstrated that the Moho depths determined using 

the isostatic gravity disturbances better agree with a global seismic model 

than those obtained from the isostatic gravity anomalies. Sjöberg (2013) 

summarized definitions of the isostatic gravity field quantities for the 

potential and gravity data types. He also gave a theoretical explanation to the 

numerical results of Tenzer and Bagherbandi (2012). 

Tenzer (2013a) and Tenzer and Chen (2014a, 2014b) developed a novel 

approach to determine the Moho depths using the global and regional 

gravitational and crustal structure models, and Tenzer (2013b) modified this 

approach for a determination of the Moho density contrast. This approach 

utilizes a relation between the consolidated crust-stripped gravity 

disturbances and the Moho depths (by means of a non-linear Fredholm’s 

integral equation of the first kind). As it was demonstrated in Chapter 8, the 

consolidated crust-stripped gravity disturbances have a maximum spatial 

correlation with the Moho geometry. These gravity data are thus the most 
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suitable for the gravimetric Moho recovery. Since the relation between the 

consolidated crust-stripped gravity disturbances and the Moho depth is non-

linear, a linearization is applied in order to establish a system of linearized 

observation equations for solving the gravimetric Moho inversion problem. 

The applied linearization procedure involves a compensation scheme, which 

minimizes a spatial correlation between the mantle gravity disturbances and 

the Moho geometry in order to obtain the initial solution that closely 

approximates the a priori Moho model. The mantle gravity disturbances are 

then used as input gravity data in an iterative process of solving the inverse 

problem for finding the Moho-depth corrections. Tenzer and Chen (2014a) 

defined this functional model in the spectral domain for global applications. 

Tenzer and Chen (2014b) derived the respective expressions in the spatial 

domain for a regional Moho inversion. Despite the consolidated crust-stripped 

gravity disturbances have a maximum correlation with the Moho geometry 

these gravity data still contain the gravitational signature of the (unmodelled) 

mantle density heterogeneities. To account for the density variations within 

the upper mantle, Tenzer et al. (2015f) reformulated the gravimetric inverse 

problem for a Moho recovery by assuming a variable Moho density contrast 

    cmc/m ρ ρρ , which is defined as the difference between the 

(laterally varying) upper mantle density mρ  
and the (constant) crustal density 

cρ . According to their definition, the linearized relation between the (known) 

mantle gravity disturbances ρ,mg and the (unknown) Moho depths reads   
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    The Moho-depth correction coefficients δM

mn,
F ρ  is given by     
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10. GLOBAL GRAVIMETRIC MOHO MODEL 
As discussed in Chapter 9, the uniform density contrast at the Moho interface 

has been often assumed in gravimetric methods for the regional and global 

Moho recovery. Several different average values of the Moho density contrast 

were reported and applied in various gravimetric studies. The average value 

600 kg m-3 (see e.g., Heiskanen and Moritz 1967) is, for instance, typically used 

to compute the Airy’s isostatic gravity anomalies. Dziewonski and Anderson 

(1981) adopted the value 480 kg m-3 in the definition of the PREM parameters. 

This value was derived from the analysis of available global seismic data. 

Tenzer et al. (2009a) estimated the average value of the Moho density 

contrast based on minimizing the global spatial correlation between the 

mantle gravity disturbances and the Moho depths taken from the CRUST2.0 

seismic crustal model (Bassin et al. 2000). According to their result, the 

average Moho density contrast is 520 kg m-3. Later, Tenzer et al. (2012c) 

updated this value to 485 kg m-3 based on using more recent datasets and 

more accurate numerical models. Sjöberg and Bagherbandi (2011) estimated 

the global average of the Moho density contrast based on solving the VMM 

isostatic model. They reported the value 448±187 kg m-3.  

In the most recent study, Tenzer et al. (2015f) estimated the average value of 

the Moho density contrast based on minimizing a spatial correlation between 

the mantle gravity disturbances and the CRUST1.0 Moho geometry. Their 

results revealed that the minimum correlation was attained for the Moho 

density contrast 445 kg m-3. This value very closely agrees with the global 

average 448 kg m-3 estimated by Sjöberg and Bagherbandi (2011), but differs 

about 7% from the value 485 kg m-3 reported by Tenzer et al. (2012c) and 

from the PREM value 480 kg m-3 (cf. Dziewonski and Anderson 1981).  

The results of seismic and gravimetric studies revealed that the Moho density 

contrast varies significantly. Goodacre (1972), for instance, reported the 

continental Moho density contrast 200 kg m3 in Canada. Martinec (1994) 

claimed that the value 600 kg m-3 agrees better with the Moho density 

contrast under the oceanic crust. He also estimated the average value 280 kg 

m-3 under the continental crust by minimizing the external gravitational 

potential induced by the Earth's topographic masses and the Moho 

discontinuity by assuming that the Moho density contrast is constant. Niu and 

James (2002) and Jordi (2007) determined the Moho density contrast 
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regionally from seismic studies using the wave-receiver functions. Their results 

indicate that the density contrast regionally varies as much as from 160 kg m3 

(for the mafic lower crust) to 440 kg m-3 (for the felsic lower crust), with an 

apparently typical value 440 kg m-3 for the craton. Sjöberg and Bagherbandi 

(2011) estimated that the Moho density contrast varies globally from 81.5 kg 

m-3 (in the Pacific region) to 988 kg m-3 (beneath the Tibetan Plateau). 

Furthermore, they provided the average values 678±78 kg m-3 and 334±108 kg 

m-3 for the continental and oceanic areas respectively. Tenzer et al. (2013) 

reported a similar range of the Moho density contrast (taken relative to the 

reference crustal density 2670 kg m-3) between 82 and 965 kg m-3, with a 

mean 441 kg m-3. They also demonstrated that the Moho density contrast 

under the oceanic crust is highly spatially correlated with age of the the 

oceanic lithosphere. Tenzer and Bagherbandi (2013) investigated the structure 

of the Moho density contrast beneath the Antarctic crust. They reported large 

values of the Moho density contrast in the central part of East Antarctica and 

the Transantarctic mountain range, with values there typically exceeding 500 

kg m-3, and maxima up to 682 kg m-3. According to their result, the Moho 

density contrast in West Antarctica is typically between 400 and 500 kg m-3 

(apart from local maxima up to about 550 kg m-3 in the central Antarctic 

Peninsula). They also explained the local minima (400-450 kg m-3) beneath the 

West-Antarctic rift zone and Ross Embayment by volcanic compositions along 

this divergent tectonic zone. These large Moho density contrast variations 

indicate that the assumption of a uniform model might not be sufficient for an 

accurate determination of the Moho geometry from gravity data, especially in 

global studies and in areas with a complex lithospheric structure. A possible 

method of dealing with this problem was proposed by Sjöberg and 

Bagherbandi (2011) based on a simultaneous estimation of the Moho depth 

and density contrast. An alternative approach was applied by Tenzer et al. 

(2015f) by incorporating the variable Moho density contrast as the a priori 

information in the gravimetric determination of the Moho depth (Chapter 9). 

This method is applied in this chapter to determine globally the Moho depth.  

The mantle gravity disturbances were obtained from the consolidated crust-

stripped gravity disturbances after removing the gravitational signature of the 

Moho geometry. The resulting gravity disturbances comprise mainly the 

gravitational signal of density heterogeneities within the mantle lithosphere 
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and the sub-lithospheric mantle (i.e., the asthenosphere). However, these 

gravity data still comprise some redundant gravitational signal of crustal 

structures and possibly also from the Moho geometry due to the ESCM180 

and CRUST1.0 model uncertainties. The gravitational signature of the sub-

crustal lithospheric structure is evident, for instance, over oceans (Fig. 10.1). 

The gravity minima are along the mid-oceanic ridges and hotspots, and the 

corresponding gravity maxima are along the oceanic subduction zones. As 

demonstrated in Chapter 8, these features are attributed to a thermal state of 

the oceanic lithosphere (Tenzer et al. 2015d). The gravity minima over land 

coincide with the divergent tectonic plate boundaries, and distinctively mark 

the continental rift zones (e.g., the West-Antarctic, East-African, and Baikal rift 

zones). In contrast, the gravity maxima are seen mainly over significant 

orogens. The mantle gravity disturbances are everywhere positive. This is 

explained by the presence of a systematic bias due to unmodelled mantle 

density heterogeneities. This systematic bias propagates into the gravimetric 

Moho solution. The mantle gravity disturbances were used to determine the 

Moho depths according to Eq. (9.1). The result is shown in Fig. 10.2. 

 

 
Fig. 10.1 Mantle gravity disturbances (mGal). 

 

Table 10.1 Statistics of the CRUST1.0 
1.0CRUST

D
 
and gravimetric 


D  Moho depths.  

Moho depths Min [km] Max [km] Mean [km] STD [km] 

D
 

0.9 71.8 13.2 12.4 

DCRUST1.0 7.4 74.8 22.9 12.4 
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Fig. 10.2 Gravimetric Moho depth solution (km). 

 

The gravimetric Moho solution exhibited a typical pattern of the Moho 

geometry, with an enhanced contrast between the thick continental and 

thinner oceanic crust. The Moho depth maxima were confirmed under 

orogens of Andes, Himalayas, and Tibet. The validation of the gravimetric 

Moho solution with CRUST1.0 seismic Moho model revealed that gravimetric 

solution is systematically biased about 9.7 km relative to CRUST1.0 (cf. Table 

10.1). This systematic bias is explained by the gravitational signal of 

unmodelled deep mantle density heterogeneities. On the other hand, the 

gravimetric solution has a relatively good agreement with CRUST1.0 in terms 

of the RMS of their differences of only 3.0 km.  

 

11. SUB-CRUSTAL STRESS FIELD  
To investigate the sub-crustal stress induced by the mantle convection, 

Runcorn (1964, 1967) formulated its functional relation with the gravity field. 

He simplified the Navier-Stokes’ equations to derive the horizontal 

components of the sub-crustal stress based by assuming a two-layered Earth’s 

model. He then used low-degree spherical harmonics of the Earth’s gravity 

field to deduce the global horizontal stress pattern, and found a correlation 

between the convergent and divergent sites established by the plate theory. 

The sub-crustal stress is generated mainly by the mantle convection, active 

tectonics, crustal and mantle density heterogeneities, crustal load of 
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isostatically uncompensated topographic features and mass density 

heterogeneities, crustal flexure, and thermal stresses (see Zoback and Zoback 

1980). The sub-crustal stress has been studied also in context of interpreting 

the mantle convection, tectonic and magnetic features, deep earthquake 

mechanisms, volcanism, subduction, heat flow, kimberlite magmatism, and 

ore concentration (cf. Liu 1977, 1978, 1979). Eshagh and Tenzer (2015) argued 

that the Runcorn’s definition has a limited spectral resolution only up to 

degree 25 of spherical harmonics due to the divergence of an asymptotically-

convergent series above this degree. Moreover, Runcorn (1964) assumed only 

a constant value of the Moho depth. To overcome these theoretical 

deficiencies, Eshagh and Tenzer (2015) proposed a procedure based on 

utilizing the stress function with a subsequent numerical differentiation in 

order to improve the spectral resolution of the sub-crustal stress. They 

demonstrated that a series expansion of the stress function is convergent (at 

least) up to degree 180. They also incorporated the VMM isostatic model 

(Sjöberg 2009) in definition of the stress function. The stress field is then 

computed for a variable Moho geometry instead of assuming only a constant 

Moho depth (Runcorn 1964). Eshagh and Tenzer (2015) derived the stress 

function S in the following form   
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where g  is the mean gravity at the Earth’s surface, c/mρ

 

is a constant value 

of the Moho density contrast, the argument RDs
M

/1  is a function of the 

Moho depth  
M

D ,  
n

M  denote the Moho-depth spherical functions,  and 

 
n

c Hρ

 

are the spherical harmonics of the solid topography (scaled by a 

crustal density distribution function). The Moho-depth spherical functions 

n
M  are determined according to Sjöberg (2009) by solving the VMM inverse 

problem of isostasy. The computation of the horizontal coordinate 

components 
θ

e
x

S  and 


e
y

S  from the stress function S
 
is then realized by 

applying the numerical differentiation.  This method allows computing the 

horizontal sub-crustal stress components with a spectral resolution 

compatible with the global crustal models currently available. In contrast, the 

Runcorn’s (1967) formula has a limited spatial resolution up to degree 25 due 
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to the divergence of an asymptotically-convergent series. This improvement 

was achieved by applying the stress function which is defined based on using 

the Laplace harmonics, instead of their partial derivatives. The convergence 

domain of these two methods is demonstrated in Fig. 11.1.    

a b  

Fig. 11.1 Power spectra of the globally-averaged: (a) sub-crustal stress components
 

H
S  

(i.e., the Runcorn’s method), and (b) the stress function
 
S . 

 

12. TERRESTRIAL SUB-CRUSTAL STRES FIELD  
Eshagh and Tenzer (2015) applied the method reviewed in Chapter 11 to 

investigate a global pattern of the terrestrial sub-crustal stress field and its 

relation with the global tectonic configuration. This method was also applied 

to investigate the regional stress field. Tenzer and Eshagh (2015) studied the 

distribution and tectonic characteristics of the sub-crustal stress in the Taiwan 

region. Tenzer et al. (2015c) studied the stress field under major orogens in 

the central Eurasia.  

The global map of the sub-crustal stress intensity is shown in Fig. 12.1, and the 

regional study in the central Eurasia is shown in Fig. 12.2. As seen in Fig. 12.1, 

the sub-crustal stress distribution closely resembles the global tectonic 

configuration. Most of the stress intensity is accumulated along tectonic plate 

boundaries. The (sub-crustal) intra-plate stress field is, on the other hand, 

much less pronounced or almost completely absent, except for some more 

localized features. Locations of the intra-plate stress anomalies typically 

coincide with the hotspots (i.e., Hawaii, Reunion, Mauritius) and the intra-

plate tectonic features. It is worth mentioning here that the Island hotspot is 
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located directly at the tectonic margin, while the Hawaii, Reunion, and 

Mauritius hotspots have intra-plate locations. The tectonic signature in the 

stress field is superposed over a weaker (long-wavelength) signal of the 

thermal and compositional mantle structure. Moreover, the signature of the 

postglacial rebound in Hudson Bay, Fennoscandia, and Antarctica in the stress 

field is not clearly recognized.  

The stress field along tectonic margins is mainly concentrated along the 

convergent tectonic plate boundaries. Maxima of the sub-crustal stress 

distinctively mark the oceanic subduction zones as well as the tectonically 

active continent-to-continent collision zones. In contrast, the divergent 

tectonic plate boundaries along the mid-oceanic ridges and the continental 

rift zones (i.e., the East-African, West-Antarctic, and Baikal rift zones) are 

without the presence of the sub-crustal stress. The largest stress intensity, 

detected along the oceanic subduction zones (Kurile, Japan, Mariana, 

Philippine, Bougainville, Tonga, and Kermadec trenches in the west Pacific; 

Cascadia, Peru-Chile, and Central America trenches in the East Pacific; 

Aleutian trench in the north Pacific; Puerto-Rico and South Sandwich trenches 

in the Atlantic Ocean; and Java trench in the Indian Ocean), is likely explained 

by a shear stress due to the subduction of the oceanic lithosphere underneath 

either the oceanic or continental plates. Large stress anomalies along the 

(continent-to-continent) collision of the African and Indian plates with the 

Eurasian plate observed along the Himalayan, Alpine, and Anatolian orogenic 

formations are again likely attributed to a shear stress due to the subduction.  

 
Fig. 12.1 Global map of the sub-crustal stress intensity (MPa). Red lines show tectonic 

plate boundaries. 
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Fig. 12.2 Regional map of the sub-crustal stress vectors and their intensity (MPa) in the 

central Eurasia. 

 

As seen from these results, most of the sub-crustal stresses occur along the 

inter-plate tectonic boundaries, while the intra-plate tectonic stress is much 

less pronounced. The largest stress anomalies were detected along the 

seismically active convergent tectonic plate boundaries, with the maximum 

intensity generated by the oceanic subduction. The oceanic subduction 

generates a shear stress along the convergent plate boundaries with possibly 

additional tensional stresses attributed to a back-arc rifting. A shear stress is 

also generated by the continent-to-continent plate collision. The stress 

intensity attenuates along transform zones, and diminishes along divergent 

sections. As seen in Fig. 12.2, the convergent pattern of stress vectors agrees 

with the compressional tectonism of orogenic formations, while their 

divergent orientation indicates the existence of the extensional tectonism of 

continental basins. A spatial distribution of the stress anomalies at the 

hotspots, characterized by the pronounced stress intensity around volcanic 

arcs (including seamounts) and absent directly at the hotspot locations, was 

explained by a crustal load of volcanic accumulations which are not fully 

isostatically compensated.  

 

13. MARTIAN SUB-CRUSTAL STRESS FIELD  
The findings in Chapter 12 support the concept that most of the terrestrial 

sub-crustal stresses are related to the active global tectonism. This, however, 



- 38 - 

 

might not be the case for other planetary bodies in the solar system due to 

their different geological origin and evolution. Recent studies, for instance, 

revealed that tectonic features on the Martian surface have a regional 

character, while there is no evidence of the active global tectonism in a more 

recent geological history of Mars (e.g., Zuber 2001). To address these issues, 

Tenzer at al. (2015a) investigated a possible presence of the global tectonic 

signature in the Martian sub-crustal stress field.  

Tenzer at al. (2015a) used the Mars Orbiter Laser Altimeter (MOLA) 

topographic data and the MRO110B2 Martian gravity model to determine the 

Martian crustal thickness with a spectral resolution complete to a spherical 

harmonic degree 85. The VMM Moho depths were determined for the 

uniform Moho density contrast 600 kg m-3 (Neumann et al. 2004). This density 

contrast is representative for the olivine upper-mantle density 3500 kg m-3, 

derived based on geochemical analysis of the sergottite, nakhlite, and 

chassigny (SNC) class of meteorites (Sohl and Spohn 1997). It is worth 

mentioning that some geochemical models imply pyroxene as a major mineral 

in the olivine-pyroxene-garnet chemical composition of the Martian upper 

mantle. The Martian crustal thickness is shown in Fig. 13.1. This Moho model 

was then used to determine the Martian sub-crustal stress field. The result is 

shown in Fig. 13.2.  

 
Fig. 13.1 Martian crustal thickness (km). 
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The Martian crustal thickness varies between 12.3 and 89.5 km (see Fig. 13.1). 

This range (77.2 km) is about 20% smaller than the crustal thickness variations 

(96.2 km) found by Neumann et al. (2004). Compared to their crustal model, 

the VMM Moho solution presented by Tenzer at al. (2015a) underestimated 

the crustal thickness in the Tharsis province, while overestimated the crustal 

thickness under major impact basins. These differences are due to applying 

the VMM isostatic model based on a global compensation principle that 

better represents the reality than the Airy’s local compensation scheme 

assumed in previous studies. Neumann et al. (2004), however, modeled more 

accurately the actual crustal structures by using different density values for 

specific geological formations on Mars. According to Tenzer at al. (2015a), the 

average Martian crustal thickness is 46.4 km. This average value is within the 

interval of previous estimates reported by Zuber et al. (2000), Neumann et al. 

(2004), and Wieczorek and Zuber (2004).  

The most prominent feature in the crustal geometry is a significant contrast 

between a thicker crust underlying the southern highlands and a thinner crust 

under the northern lowlands. The crustal thickness of the northern lowlands is 

typically less than 40 km. The crustal thickness under most of the heavily 

cratered southern highlands exceeds 45 km, except for much thinner crust 

under Hellas and Argyre basins, with the crustal thickness decreasing to less 

than 30 km under Argyre basin and as low as 13 km under Hellas basin. 

Similarly, Utopia and Isidis basins on the northern hemisphere are 

characterized by a very thin crust, with the thickness locally decreasing to 20 

and 14 km respectively. This significant crustal thinning is explained by a 

Moho uplift after impact (Neumann et al. 1996), followed by a modification 

due to the volcanic and sedimentary surface loads (Buczkowski and Cooke 

2004). This is most prominent in Utopia basin with thick sedimentary deposits 

and lava covers. The crustal thickness in the Tharsis province typically exceeds 

70 km. This large crustal thickness is attributed to a crustal flexure due to a 

load of volcanic accumulations, which is manifested by a Moho deepening 

extending under a broader area of the Tharsis province. The crust under the 

broad Arabia is thickening more gradually. In Arabia and Elysium regions the 

dichotomy boundary is compensated by a crustal thickness variation, with a 

more pronounced relief along the Moho than at the surface. 
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Fig. 13.2 Martian sub-crustal stress vectors and their intensity (MPa). 

 

The Martian sub-crustal stress is attributed mainly to the crustal load of 

volcanic accumulations, the regional tectonism, and the impact of meteorites. 

The crustal load of Tharsis volcanic formations is likely also responsible for a 

regional tectonism of Valles Marineris. In contrast, the stress distribution 

around major impact basins was explained by a crustal extrusion after impact, 

followed by Moho uplift. The crustal loading generates the maximum intensity 

of the sub-crustal stress on Mars. This is evident in the most prominent 

signatures of crustal loads of Tharsis major volcanoes (Olympus, Ascraeus, 

Arsia, and Pavonis Mons) and that of Elysium Mons. These shield volcanoes 

are thus not fully isostatically compensated, the interpretation which agrees 

with the finding of Arkani-Hamed and Riendler (2002). In addition to these 

localized stress anomalies, the crustal load of Tharsis volcanic accumulations 

generates a large-scale stress field, which distinctively marks the Tharsis 

dichotomy. In contrast, the signature of the hemispheric dichotomy is absent. 

The incomplete isostatic compensation of the Tharsis bulge might be 

explained by its more recent formation compared to the (fully compensated) 

southern highlands. This assumption agrees with a theory of the single 

highland formation followed by the additional construction of Tharsis by the 

Hellas impact proposed by Phillips et al. (2001) as well as with the mantle-

plume migration theory of Roberts and Zhong (2007). Despite the fact that the 
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crustal load is likely responsible for most of the Martian sub-crustal stress, the 

signature of polar ice load is missing. A possible explanation of this finding was 

given by Neumann et al. (2004). They suggested that the polar ice caps on 

Mars are geologically relatively young, while the isostatic adjustment to a 

changing load takes place over time scales at 105 to 107 years (Johnson et al. 

2000). Geomorphological features of Valles Marineris and its specific stress 

distribution (characterized by sections of the tensional and compressional 

stress field) are likely explained by a regional tectonism, which is related to a 

crustal load of the Tharsis Bulge. This is in agreement with more recent 

theories of the Valles Marineris formation attributed to either a tensional 

fracturing (Tanaka and Golombek 1989) or a regional extensional tectonism 

(Banerdt et al. 1992). A better understanding of the processes which formed 

Valles Marineris is, however, still open to investigation.  

The stress distribution on Mars and its possible origin are quite different from 

those observed on Earth. Tenzer and Eshagh (2015) and Eshagh and Tenzer 

(2015) demonstrated that most of the sub-crustal stress on Earth is generated 

by the active global tectonism. They also identified the additional, but much 

localized stress anomalies caused by a crustal loading of volcanic 

accumulations in vicinity of the hotspots. On Mars, the situation is opposite. 

Except for the regional tectonism of Valles Marineris, the tectonic signature is 

absent. The Martian lithosphere was thus not fractured by tectonic forces into 

individual plates. This finding supports a theory of the single lithospheric plate 

on Mars (which rotated due to a polar wander) proposed by Zhong (2009) and 

Sramek and Zhong (2010). Moreover, most of the Martian sub-crustal stress is 

generated by a crustal load of volcanic accumulations, which is likely also 

responsible for a regional tectonism along Valleys Marineris. Another 

significant difference between the stress fields of these two planets is the 

signature of impacts on Mars and its absence on Earth.  
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