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Resumé

The Cramér�Rao Lower Bound (CRLB) is a lower bound on the covariance
matrix of the error of unbiased vector parameter estimators. It represents a
bound on an information content of data about an unknown parameter in a
statistical model of the given data. CRLB is a classical tool stemming from the
works of Cramér, Rao [8], [9], and other researchers in 1950's. CRLB has many
extensions and modi�cations: a Bayesian CRLB for random parameters [10],
[11], a hybrid CRLB for a mixture of random and deterministic parameters
[12], a CRLB for biased estimates [13].

Several other more accurate lower bounds were derived, e.g. Barankin
bound [14], Bhattacharyya bound [15], and (in the Bayesian context) a Ziv-
Zakai bound [16], to name a few. However, CRLB remains the most frequently
used lower bound in a very wide variety of signal processing problems thanks
to its mathematical tractability. The bound is used as a performance gauge
for all existing parameter estimators, indicating whether the estimators utilize
the available information about the estimated parameter e�ciently or not, and
in what extent. The CRLB itself is subject of a theoretical research up to now,
see, e.g., [13].

The dissertation consists of seven scienti�c articles on computing di�erent
variants of the CRLB in di�erent applications:

[1] P. Tichavský, �Posterior Cramer-Rao bounds for adaptive harmonic re-
trieval", IEEE Trans. on Signal Processing vol. 43, no.5, pp. 1299-1302,
May 1995.

[2] P. Tichavský, C. Muravchik and A. Nehorai, �Posterior Cramér�Rao bounds
for discrete�time nonlinear �ltering", IEEE Tr. on Signal Processing,
vol. 46, no. 5, pp. 1386-1396, May 1998.

[3] M. �imandl, J. Královec and P. Tichavský, �Filtering, predictive, and
smoothing Cramér-Rao bounds for discrete-time nonlinear dynamic sys-
tems", Automatica, vol. 37, no. 11, pp. 1703-1716, November 2001.

[4] P. Tichavský, K.T. Wong and M.D. Zoltowski, �Near-Field/Far-Field Az-
imuth & Elevation Angle Estimation Using a Single Vector-Hydrophone",
IEEE Tr. on Signal Processing, vol. 49, no. 11, pp. 2498-2510, Novem-
ber 2001.

[5] P. Tichavský and K.T. Wong, �Quasi-�uid-mechanics-based quasi-Bayesian
Cramer- Rao bounds for deformed towed-array direction �nding", IEEE
Tr. on Signal Processing, vol. 52, no.1, pp. 36-47, January 2004.

[6] P. Tichavský, Z. Koldovský, and E. Oja, �Performance Analysis of the
FastICA Algorithm and Cramér-Rao Bounds for Linear Independent
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Component Analysis", IEEE Tr. on Signal Processing, vol. 54, no. 4,
pp.1189�1203, April 2006. Corrections: vol. 56, no. 4, pp. 1715�1716,
April 2008.

[7] P. Tichavský, A.H. Phan, Z. Koldovský, �Cramér-Rao-Induced Bounds for
CANDECOMP/PARAFAC tensor decomposition", IEEE Trans. Signal
Processing, vol. 61, no. 8, pp. 1986�1997, April 2013.

These papers include the Bayesian CRLB derived for the recursive system
identi�cation, and the deterministic and the hybrid CRLB for the recursive
sinusoidal frequency estimation, for nonlinear �ltering, for the direction-of-
arrival estimation, for the independent component analysis, and for the canon-
ical polyadic tensor decomposition, respectively. Although the concept of the
theory of the CRLB is well known, in practical applications its computation
might be quite complicated, and the computation of this bound in particular
applications is novel and important contribution to understanding the relation
between the data and the estimated parameter. Sometimes, analysis of the
CRLB leads to a derivation of new estimators. For example, the performance
analysis of the algorithm FastICA for the independent component analysis
and the computation of the corresponding CRLB [6] has led to a derivation
of the algorithm EFICA [18] .

1 Introduction

Classical Cramér-Rao lower bound is a bound on covariance matrix of error
of unbiased estimates of an unknown deterministic parameter.

Assume we are given a family of distribution functions of theN−dimensional
vector X, indexed by a vector of parameters θ. X represents the random data
and θ is the unknown deterministic parameter. The range Θ of θ is assumed
to be a subset of RM , so θ is a real-valued vector of dimension M . Let fθ(X)
be the probability density of X given θ ∈ Θ. Assume that such probabil-
ity density exists and is twice di�erentiable with respect to θ. The Fisher
information, if exists, is de�ned as

F (θ) = −Eθ
[
∂2 log fθ(X)

∂θ∂θT

]
(1)

where Eθ is the expectation operator with respect to the density fθ(X). Let
θ̂(X) be an unbiased estimate of θ, and assume that

1. support of the density fθ(X), i.e. the set of X ∈ RN , where fθ(X) > 0,
is independent of θ

2. ∀θ ∈ Θ;∀m = 1, . . . ,M ; 0 = ∂
∂θm

∫
fθ(Y )dY =

∫ ∂fθ(Y )
∂θm

dY
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3. ∀θ ∈ Θ;∀m = 1, . . . ,M ; ∂
∂θm

∫
θ̂(Y )fθ(Y )dY =

∫
θ̂(Y )∂fθ(Y )

∂θm
dY

4. F (θ) in (1) exists and is invertible .

Then, the celebrated Cramér-Rao inequality holds,

Eθ
[
(θ̂(X)− θ)(θ̂(X)− θ)T

]
≥ [F (θ)]−1 . (2)

The matrix inequality in (2) means that the di�erence between the left-hand
side and right-hand side of (2) is a positive semi-de�nite matrix.

The classical CRB is very well known. For example, it is known that
equality in the CRB inequality can be achieved if and only if the probability
distribution fθ(X) belongs to the family of exponential distributions. If a
maximum likelihood estimator of parameter θ exists, its variance attains the
CRLB asymptotically.

In comparison to the classical CRLB, the Bayesian CRLB is much less
frequently studied. The set-up is di�erent. It is assumed that the parameter
θ is random, and a joint probability density fθ,X of the pair (θ,X) exists. The
Cramer-Rao inequality reads

E
[
(θ̂(X)− θ)(θ̂(X)− θ)T

]
≥ F−1 (3)

where the expectation is taken with respect to the pair (θ,X), and F is the
information matrix de�ned as

F = −E
[
∂2 log fθ,X(θ,X)

∂θ∂θT

]
. (4)

Indeed, in the case of random parameter θ, the optimum estimator θ̂(X) that
minimizes the left-hand side of (2) exists: it is the conditional mean of θ
given the data X. Covariance matrix of this conditional mean is, in general,
a tighter bound on covariance of all other estimators than the inverse of the
Fisher information matrix in (4). A disadvantage of the exact (tight) bound
is that is may not be mathematically tractable, unlike the CRLB.

The technical assumptions of the CRLB in (3) to be valid are di�erent
than the assumptions of the classical CR inequality. First of all, the estimators
θ̂(X) need not be unbiased, their bias can be nonzero, and the bias conditioned
by given θ,

B(θ) =

∫
(θ̂(X)− θ)fx|θ(x|θ)dX (5)

obeys the condition

lim
θm→∞

B(θ)fθ(θ) = lim
θm→−∞

B(θ)fθ(θ) = 0 (6)
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for m = 1, . . . ,M .
The model of the parameter θ can also be hybrid: a part of θ can be

deterministic and another part random [12]. A typical example is a direction-
of-arrival (DOA) estimation using the sensor array. In this application it is
assumed that there is a number of plane acoustic or electromagnetic waves
impinging on an array of sensors. The main task is the estimation of directions
of arrival of the plane waves, which are the main deterministic parameters of
the model. Usually, there are some other deterministic nuisance parameters
as well, e.g. signal amplitudes, phases, etc. On top of it, there might be ran-
dom parameters that describe random �uctuations of the sensor position and
the orientation from their nominal position, random �uctuations of the sensor
gains, and others. Although the nuisance parameters need not be estimated,
absence of their knowledge and the presence of the random parameters in�u-
ence the estimation of the parameters of the interest and its accuracy. An
example of the analysis of the model uncertainty can be found in the papers
[4] and [5].

2 Research Articles in the Dissertation

2.1 CRLB for the Adaptive Harmonic Retrieval [1]

The �rst paper [1] deals with the computation of CRLB for the adaptive
harmonic retrieval. Here, received data is modeled as a cisoid (complex-
valued sinusoid) which has a frequency that randomly drifts in the interval
(0, 2π). Frequency increments are modeled as independent Gaussian random
variables with the zero mean and a small variance. In addition, the data
contain a complex-Gaussian random noise. The goal is, given variance of
the frequency increments and variance of the additive noise, to estimate the
lowest possible mean square error of a tracking algorithm estimating the in-
stantaneous frequency. Here, �tracking" means a recursive estimation of the
instantaneous frequency at time t given the history of the signal up to time t.
The estimated parameter (the instantaneous frequency) is random, therefore
a Bayesian CRLB is derived. We computed the bound in a closed form and
showed that the bound is attained by certain frequency tracking algorithms
[17]. These algorithms were proved to be statistically e�cient in this way.

2.2 CRLB for Nonlinear Filtering [2], [3]

The second paper [2] (from 1998) is a generalization of the former one to a
very general scenario of nonlinear �ltering. This paper became very popular
in the system identi�cation community and received hundreds of citations in
SCI. Assume that we are given a nonlinear system represented by a state
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vector xn which evolves in time through a possibly nonlinear function fn as
xn+1 = fn(xn, wn), where wn is a random Gaussian noise that enters in the
state evolution equation. The function can be, for example, linear or simply
additive, xn+1 = xn+wn. The challenge is that we cannot observe the state xn
directly but only through a nonlinear observation, as yn = gn(xn, vn), where
gn is nonlinear function and vn is another random noise that enters in the
system. In the special case, the latter noise can be additive, yn = gn(xn)+vn.
The goal is to derive a CRLB on covariance matrix of errors x̂n − xn where
x̂n is a function of the observations up to time n, i.e. . . . yn−2, yn−1, yn. In
this paper, the bound is derived in a recursive form. It has been found useful
in many applications. The nonlinear �ltering algorithms are often realized
through particle �lters. As the computational power of modern computers
grows, the particle �lters become more popular. It is, however, not known a
priori, how many particles have to be used to get close to the best possible
performance. The CRLB helps to answer this question.

The following paper [3] by Královec, �imandl and Tichavský derives a sim-
ilar CRLB for nonlinear prediction and smoothing. Given the measurements
. . . yn−2, yn−1, yn, the goal is to estimate xn+m with m > 1 (prediction) or
xn−m (smoothing).

2.3 CRLB for DOA Estimation Using a Single Hydrophone
[4]

An application of CRLB in underwater statistics is studied in [4]. In par-
ticular, an accuracy of Direction-of-Arrival (DOA) estimation using a single
vector hydrophone is analyzed. A vector hydrophone is composed of two or
three spatially co-located but orthogonally oriented velocity hydrophones plus
another optional co-located pressure hydrophone. It is no longer a tracking
scenario, but a stationary scenario with an unknown deterministic parameter.
The CR bound is used to compare performance of complete and incomplete
vector hydrophones. In the latter case, one or more velocity hydrophones are
absent. The analysis helps to quantify the tradeo� between the estimation
accuracy and complexity (cost) of the hardware.

2.4 CRLB for DOA Estimation Using a Towed Array [5]

The �fth paper [5] studies the accuracy of the DOA estimation using an ar-
ray of classical hydrophones that are placed on a cable towed by a vessel.
The shape of the array is subject to random deformations due to the tow-
ing vessel′s varying speed and transverse motion, by the array′s non-neutral
buoyance and nonuniform density changes, and by hydrodynamic e�ects plus
oceanic swells and currents. The inaccuracy of the array geometry is modeled
using physical considerations. In particular, transverse deformation/vibration
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of a thin �exible cylinder, towed by a vessel, is known to obey a fourth-order
partial di�erential equation known as the Paidoussis equation. This equa-
tion describes the mechanical propagation of the array-deformation down the
array′s length. The equation was used to derive the covariance matrix of ran-
dom deviations of the array from its nominal position, which is further used
in expressions for CRLB for the DOA estimation using a randomly curved
array.

2.5 CRLB for Independent Component Analysis [6]

The sixth paper [6] is related to the independent component analysis (ICA)
and the blind source separation. In the paper we study the task of analysis
of an N × N linear mixture of N independent non-stationary signals. Each
of the signals is modeled as a series of independent realizations of a random
variable having a non-Gaussian distribution 1. The task is to �nd a mixing
matrix of the size N ×N that represents the mixture without any other prior
information about the separated signals. In the literature several popular
algorithms to solve the ICA problem were proposed. In the paper, one of the
most successful ones (FastICA) is studied and its performance is analyzed in
terms of the Interference-to-Signal Ratio (ISR) of the separated signals. In the
same paper, the theoretical CRLB-based bound on accuracy of the separation
is derived and compared to performance of FastICA. The performance and
the CRLB depend namely on the probability distributions of the separated
signals and their length. The analysis was used to propose a novel variant of
FastICA, called EFICA [18].

2.6 CRLB for Canonical Polyadic Tensor Decomposition
[7]

The seventh paper [7] is related to a di�erent area (tensor decompositions),
but can be related to the ICA model in a sense. The statistical estimation
problem is related to stability of canonical-polyadic (CP) tensor decomposi-
tion. The word �tensor" here means a rectangular array of real or complex
numbers. In general it can have a size d1 × d2 × . . .× dN , where N is called
the tensor order. Each element of the tensor has N indices, say ti1,...iN . The
goal of the CP decomposition is to �nd the smallest possible integer R (called
rank of the tensor) and N matrices (called factor matrices) Aj , j = 1, . . . , N
of the size dj×R with elements aj,i,r, i = 1, . . . , dj , r = 1, . . . R, and R scalars

1To be accurate, at most one signal in the mixture is allowed to have Gaussian distri-

bution, the other signals must be non-Gaussian.
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λ1, . . . , λR such that

ti1,...iN =

R∑
r=1

λra1,i1,r · . . . · aN,iN ,r

for all ij = 1, . . . , dj , j = 1, . . . N . Without any loss in generality it can be
assumed that all columns of all factor matrices have the unit Euclidean norm.

The CP decomposition, also known under the acronyms PARAFAC of
CANDECOMP, was found useful namely in several applications as chemo-
metrics, biomedical signal processing, and others.

The CRLB derived in the paper helps to study the stability of the CP
decomposition. It reveals how the small perturbations of the tensor elements
translate in the accuracy of the factor matrices' estimates. The result has led
to derivation of a novel CP decomposition algorithm for high-order tensors,
see [19].

3 Conclusions

The presented dissertation summarizes author's contribution to di�erent ar-
eas of statistical signal processing in the last twenty years. The underlying
theme linking the collection of seven publications that comprise the disser-
tation is the computation of the Cramér�Rao bound. The computation of
the bound has helped to understand the relation between the available data
and its information content about estimated parameters of the models in the
sinusoidal frequency estimation with slowly varying parameters, in nonlinear
�ltering, smoothing and tracking, in the underwater DOA estimation, in the
independent component analysis and in the canonical polyadic tensor decom-
position. A high interest of the research community in these areas is proved by
a signi�cant impact of the presented collection of articles, which is about 589
citations according to the Thomson Reuters citation index (with self�citations
included, for simplicity).
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