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Compressible Navier-Stokes system

Field equations

∂t% + divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu)

Newton’s rheological law

S(∇xu) = µ

(
∇xu +∇t

xu−
2

3
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0

No-slip boundary conditions

u|∂Ω = 0



Thermodynamics stability hypothesis

Pressure potential

P(%) = %

∫ %

1

p(z)

z2
dz

Pressure-density state equation

p ∈ C [0,∞) ∩ C 2(0,∞), p(0) = 0

p′(%) > 0 for % > 0, lim inf
%→∞

p′(%) > 0

lim inf
%→∞

P(%)

p(%)
> 0

Isentropic pressure-density state equation

p(%) = a%γ , a > 0, γ ≥ 1



What is the “right” solution

Several definitions of solutions - no uniqueness

weak solution

limit of suitable approximations

measure-valued solution

(higher) viscosity solution

limits of numerical schemes

Weak-strong uniqueness principle

Generalized and strong solutions emanating from the same initial
data should coincide as long as the latter exists



Hierarchy of solutions

Classical solutions

Solutions are (sufficiently) smooth satisfying the equations
point-wise, determined uniquely by the data. Requires strong a priori
bounds usually not available

Weak solutions

Equations satisfied in the sense of distributions. Requires a priori
bounds to ensure equi-integrability of nonlinearities + compactness

Measure-valued solutions

Equations satisfied in the sense of distributions, nonlinearities
replaced by Young measures (weak limits) f (u)(t, x) ≈ 〈νt,x ; f (v)〉.
Requires a priori bounds to ensure equi-integrability of nonlinearities.

Measure-valued solutions with concentration measure

Measure-valued solutions + concentration defects. Requires a priori
bounds to ensure integrability of nonlinearities.



Dissipative solutions

Energy (entropy) inequality

d
dt

∫
Ω

(
1

2
%|u|2 + P(%)

)
dx +

∫
Ω

S(∇xu) : ∇xu dx ≤ 0

P(%) = %

∫ %

1

p(z)

z2
dz

Known results

Local strong solution for any data and global strong
solutions for small data. Matsumura and Nishida [1983], Valli
and Zajaczkowski [1986], among others

Global-in-time weak solutions. p(%) = %γ , γ ≥ 9/5,N = 3,
γ ≥ 3/2,N = 2 P.L. Lions [1998], γ > 3/2, N = 3, γ > 1,
N = 2 EF, Novotný, Petzeltová [2000], γ = 1, N = 2 Plotnikov
and Vaigant [2014]

Measure-valued solutions. Neustupa [1993], related results
Málek, Nečas, Rokyta, Růžička, Nečasová - Novotný



Bounded sequences of integrable functions

Boundedness

vn → v weakly in L1(Q;RM)

‖F (vn)‖L1(Q) ≤ C ⇒ F (vn) → F (v) 6≡ F (v) weakly-(*) in M(Q)

Biting limit - parameterized Young measure

〈νt,x ;Fk(v)〉 = Fk(v)(t, x), Fk ∈ BC (RM)

〈νt,x ;F (v)〉 = lim
k→∞

Fk(v)(t, x), Fk ↗ F , ‖F (vn)‖L1(Q) ≤ C

Concentration part - defect measure

F (v)(t, x) = 〈νt,x ;F (v)〉︸ ︷︷ ︸
integrable

+
[
F (v)(t, x)− 〈νt,x ;F (v)〉

]
︸ ︷︷ ︸

concentration defect



Measure-valued solutions

Parameterized (Young) measure

νt,x ∈ L∞weak((0,T )× Ω;P([0,∞)× RN), [s, v] ∈ [0,∞)× RN

%(t, x) = 〈νt,x ; s〉 , u = 〈νt,x ; v〉 ∈ L2(0,T ;W 1,2
0 (Ω;RN))

Field equations revisited∫ T

0

∫
Ω

〈νt,x ; s〉 ∂tϕ + 〈νt,x ; sv〉 · ∇xϕ dx dt = 〈R1;∇xϕ〉

∫ T

0

∫
Ω

〈νt,x ; sv〉 ·∂tϕ+ 〈νt,x ; sv ⊗ v〉 ·∇xϕ+ 〈νt,x ; p(s)〉divxϕ dx dt

=

∫ T

0

∫
Ω

S(∇xu) : ∇xϕ dx dt + 〈R2;∇xϕ〉



Dissipativity

Energy inequality

∫
Ω

〈
ντ,x ;

(
1

2
s|v|2 + P(s)

)〉
dx+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt+ D(τ)

≤
∫

Ω

〈
ν0;

(
1

2
s|v|2 + P(s)

)〉
dx

Compatibility∣∣R1[0, τ ]× Ω
∣∣ +

∣∣R2[0, τ ]× Ω
∣∣ ≤ ξ(τ)D(τ), ξ ∈ L1(0,T )

∫ τ

0

∫
Ω

〈
νt,x ; |v − u|2

〉
dx dt ≤ cPD(τ)



Truly measure-valued solutions

Truly measure-valued solutions for the Euler system (with
E.Chiodaroli, O.Kreml, E. Wiedemann)

There is a measure-valued solution to the compressible Euler system
(without viscosity) that is not a limit of bounded Lp weak solutions
to the Euler system.



Do we need measure valued solutions?

Limits of problems with higher order viscosities

Multipolar fluids with complex rheologies (Nečas - Šilhavý)

T(u,∇xu, ∇2
xu, . . . )

= S(∇xu) + δ
k−1∑
j=1

(
(−1)jµj∆

j(∇xu +∇t
xu) + λj∆

jdivxu I
)

+ non-linear terms

Limit for δ → 0

Limits of numerical solutions

Numerical solutions resulting from Karlsen-Karper and other schemes

Sub-critical parameters

p(%) = a%γ , γ < γcritical



Weak (mv) - strong uniqueness

Theorem - EF, P.Gwiazda, A.Świerczewska-Gwiazda, E.
Wiedemann [2015]

A measure valued and a strong solution emanating from the same
initial data coincide as long as the latter exists



Relative energy (entropy)

Relative energy functional

E
(
%,u

∣∣∣r ,U)
(τ)

=

∫
Ω

〈
ντ,x ;

1

2
s|v −U|2 + P(s)− P ′(r)(s − r)− P(r)

〉
dx

=

∫
Ω

〈
ντ,x ;

1

2
s|v|2 + P(s)

〉
dx −

∫
Ω

〈ντ,x ; sv〉 ·U dx

+

∫
Ω

1

2
〈ντ,x ; s〉 |U|2 dx

−
∫

Ω

〈ντ,x ; s〉P ′(r) dx +

∫
Ω

p(r) dx



Relative energy (entropy) inequality

Relative energy inequality

E
(
%,u

∣∣∣r ,U)
+

∫ τ

0

S(∇xu) : (∇xu−∇xU) dx dt +D(τ)

≤
∫

Ω

〈
ν0,x ;

1

2
s|v −U0|2 + P(s)− P ′(r0)(s − r0)− P(r0)

〉
dx

+

∫ τ

0

R
(
%,u

∣∣∣r ,U)
dt



Remainder

R
(
%,u

∣∣∣r ,U)
= −

∫ τ

0

∫
Ω

〈νt,x , sv〉 · ∂tU dx dt

−
∫ τ

0

∫
Ω

[〈νt,x ; sv ⊗ v〉 : ∇xU + 〈νt,x ; p(s)〉divxU] dx dt

+

∫ τ

0

∫
Ω

[〈νt,x ; s〉U · ∂tU + 〈νt,x ; sv〉 ·U · ∇xU] dx dt

+

∫ τ

0

∫
Ω

[〈
νt,x ;

(
1− s

r

)〉
p′(r)∂tr − 〈νt,x ; sv〉 ·

p′(r)

r
∇x r

]
dx dt

+

∫ τ

0

〈
R1;

1

2
∇x

(
|U|2 − P ′(r)

)〉
dt −

∫ τ

0

〈R2;∇xU〉dt



Regularity

Theorem - EF, P.Gwiazda, A. Świerczewska-Gwiazda, E.
Wiedemann

Suppose that the initial data are smooth and satisfy the relevant
compatibility conditions. Let νt,x be a measure-valued solution to
the compressible Navier-Stokes system with a dissipation defect D
such that

supp νt,x ⊂
{

(s, v)
∣∣∣ 0 ≤ s ≤ %, v ∈ RN

}
for a.a. (t, x) ∈ (0,T )× Ω.
Then D = 0 and

νt,x = δ%(t,x),u(t,x)

where %, u is a smooth solution.



Sketch of the proof

The Navier-Stokes system admits a local-in-time smooth
solution

The measure-valued solution coincides with the smooth solution
on its life-span

The smooth solution density component remains bounded by %
as long as the solution exists

Y. Sun, C. Wang, and Z. Zhang [2011]: The strong solution can
be extended as long as the density component remains bounded



Corollary

Convergence of numerical solutions

Bounded numerical solutions emanating from smooth data that
converge to a measure-valued solution converge, in fact,
unconditionally to the unique strong solution


