
Bull. Sci. math. 140 (2016) 86–97
Contents lists available at ScienceDirect

Bulletin des Sciences Mathématiques

www.elsevier.com/locate/bulsci

Maximal multiplier operators in Lp(·)(Rn) spaces ✩

Amiran Gogatishvili a,∗, Tengiz Kopaliani b

a Institute of Mathematics of the Academy of Sciences of the Czech Republic, 
Źitna 25, 115 67 Prague 1, Czech Republic
b Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University,
University St. 2, 0143 Tbilisi, Georgia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 December 2013
Available online 17 April 2015

MSC:
42B25
46E30

Keywords:
Spherical maximal function
Variable Lebesgue spaces
Boundedness result

In this paper we study some estimates of norms in variable ex-
ponent Lebesgue spaces for maximal multiplier operators. We 
will consider the case when multiplier is the Fourier transform 
of a compactly supported Borel measure.
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1. Introduction

Let f∧(ξ) =
∫
Rn e−2πix·ξf(x)dx be a Fourier transform of f . Given a multiplier m ∈

L∞(Rn), we define the operators Mt, t > 0, by (Mtf)∧(ξ) = f̂(ξ)m(tξ) and the maximal 
multiplier operator

✩ The research was in part supported by the grants No. 13/06 and No. 31/48 of the Shota Rustaveli 
National Science Foundation. The research of A. Gogatishvili was partially supported by the grant 
P201/13/14743S of the Grant Agency of the Czech Republic and RVO: 67985840.
* Corresponding author.

E-mail addresses: gogatish@math.cas.cz (A. Gogatishvili), tengiz.kopaliani@tsu.ge (T. Kopaliani).
http://dx.doi.org/10.1016/j.bulsci.2015.04.003
0007-4497/© 2015 Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.bulsci.2015.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bulsci
mailto:gogatish@math.cas.cz
mailto:tengiz.kopaliani@tsu.ge
http://dx.doi.org/10.1016/j.bulsci.2015.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bulsci.2015.04.003&domain=pdf


A. Gogatishvili, T. Kopaliani / Bull. Sci. math. 140 (2016) 86–97 87
Mmf(x) := sup
t>0

|(Mtf)(x)|

which is well defined a priori for a Schwartz functions S(Rn).
It is well known, if multiplier m satisfies the well known Mikhlin–Hörmander condition

|∂αm(ξ)| ≤ Cα|ξ|α

for all (or sufficiently large) multiindices α, if F−1f(ξ) =
∫
Rn e2πix·ξf(x)dx is a reverse 

Fourier transform, then the multiplier operator f �→ F−1[mf̂ ] is bounded in Lp(Rn)
when 1 < p < ∞ (see [12,15,7,11]). Note that maximal operator Mm formed by multi-
plier m with the Mikhlin–Hörmander condition in general not bounded on Lp(Rn). The 
corresponding example can be found in [4].

We will consider the case when multiplier m is the Fourier transform of a compactly 
supported Borel measure. In this case the operator Mt, t > 0, we can represent as a 
convolution operator

Mtf(x) =
∫
S

f(x− ty)dσ(y),

where σ is a compactly supported Borel measure on the set S ⊂ R
n and σ̂(ξ) = m(ξ). 

Obviously we have

Mmf(x) ≡ MSf(x) := sup
t>0

∣∣∣∣∣∣
∫
S

f(x− ty)dσ(y)

∣∣∣∣∣∣ .
We say that σ is locally uniformly β-dimensional (β > 0) if σ(B(x, R)) ≤ CβR

β , where 
B(x, R) is a ball of radius R ≤ 1 centered at x. It is easy to see that a locally uniformly 
β-dimensional measure must be absolutely continuous with respect to β-dimensional 
Hausdorff measure μβ, but such a measure need not exhibit any actual “fractal” be-
havior. Thus, for example, Lebesgue measure is locally uniformly β-dimensional for any 
β < n. We can allow β = 0 in these definitions, in which case a measure σ is uniformly 
0-dimensional if and only if it is finite, and locally uniformly bounded, i.e. σ(B(x, 1)) is 
uniformly bounded in x.

Rubio de Francia [16] proved the following

Theorem 1.1. If m(ξ) is the Fourier transform of a compactly supported Borel measure 
and satisfies |m(ξ)| ≤ (1 + |ξ|)−a for some a > 1/2 and all ξ ∈ R

n, then the maximal 
operator Mm maps Lp(Rn) to itself when p > 2a+1

2a .

The case when σ is normalized surface measure on the (n −1)-dimensional unit sphere 
was investigated by Stein [17]. According to Stein’s theorem for corresponding maximal 
operator (spherical maximal operator)
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‖MSf‖Lp(Rn) ≤ Cp‖f‖Lp(Rn)

holds if p > n/(n − 1), n ≥ 3, where f is initially taken to be in the class of rapidly de-
creasing functions. The two-dimensional version of this result was proved by Bourgain [2]. 
The key feature of the spherical maximal operator is the non-vanishing Gaussian cur-
vature of the sphere. Indeed, one obtains the same Lp bounds if the sphere is replaced 
by a piece of any hypersurface in Rn with everywhere non-vanishing Gaussian curvature 
(see [10]).

Note that for normalized surface measure on the sphere we have |σ̂(ξ)| ≤ C(1 +
|ξ|)−(n−1)/2 and from the Rubio de Francia Theorem follows Stein’s theorem on bound-
edness spherical maximal operator in Lp(Rn) (see [16]). More generally, if σ is smooth 
compactly supported measure in a hypersurface on Rn with k non-vanishing principal 
curvatures (k > 1), then |σ̂(ξ)| ≤ C(1 + |ξ|)−k/2 and from the Rubio de Francia Theorem
follows Greenleaf’s theorem (see [10,16]).

The main tool used in proving Rubio de Francia’s maximal theorems is the square 
function technique. Essentially, this says that if the Fourier transform m(ξ) of a com-
pactly supported Borel measure σ has decay of order −1/2 − ε; ε > 0 i.e.,

|m(ξ)| ≤ C(1 + |ξ|)−1/2−ε (1)

then the maximal operator Mm is bounded on L2. A modified proof of this results due 
by Iosevich and Sawyer (see Theorem 15 in [13]) shows that the condition (1) can be 
replaced by more general conditions

⎧⎨
⎩

2∫
1

|m(tξ)|2dt

⎫⎬
⎭

1/2

≤ C(1 + |ξ|)−1/2γ(|ξ|),

⎧⎨
⎩

2∫
1

|∇m(tξ)|2dt

⎫⎬
⎭

1/2

≤ C(1 + |ξ|)−1/2γ(|ξ|),

where γ is bounded and nonincreasing on [0, ∞), and 
∑∞

n=0 γ(2n) < ∞.
Our aim of this paper is to study boundedness properties of the Rubio de Francia’s 

maximal multiplier operator Mm in variable Lebesgue spaces.
The boundedness of the spherical maximal operator in variable Lebesgue spaces was 

studied in the papers [8] and [9].

2. The main results

The Lebesgue spaces Lp(·)(Rn) with variable exponent and the corresponding variable 
Sobolev spaces W k,p(·)(Rn) are of interest for their applications to modeling problems in 
physics, and to the study of variational integrals and partial differential equations with 
non-standard growth condition (see [6,5]).
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We define P(Rn) to be the set of all measurable functions p : Rn → [1, ∞]. Functions 
p ∈ P(Rn) are called variable exponents on Rn. We define p− = essinfx∈Rn p(x) and 
p+ = esssupx∈Rn p(x). If p+ < ∞, then we call p a bounded variable exponent.

Let p ∈ P(Rn), Lp(·)(Rn) denote the set of measurable functions f on Rn such that 
for some λ > 0

∫
Rn

(
|f(x)|
λ

)p(x)

dx < ∞.

This set becomes a Banach function space when equipped with the norm

‖f‖p(·) = inf

⎧⎨
⎩λ > 0 :

∫
Rn

(
|f(x)|
λ

)p(x)

dx ≤ 1

⎫⎬
⎭ .

Let B(x, r) denote the open ball in Rn of radius r and center x. By |B(x, r)| we denote 
n-dimensional Lebesgue measure of B(x, r). The Hardy–Littlewood maximal operator 
M is defined on locally integrable function f on Rn by the formula

Mf (x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f(y)|dy.

In many applications a crucial step has been to show that the Hardy–Littlewood max-
imal operator is bounded on a variable Lp(·) spaces. Note that many classical operators 
in harmonic analysis such as singular integrals, commutators and fractional integrals 
are bounded on the variable Lebesgue space Lp(·(Rn) whenever the Hardy–Littlewood 
maximal operator is bounded on Lp(·)(Rn).

Let B(Rn) be the class of all functions p ∈ P(Rn) for which the Hardy–Littlewood 
maximal operator M is bounded on Lp(·)(Rn). This class has been a focus of intense 
study in recent years. We refer to the books [6] and [5], where several results on maximal, 
potential and singular integral operators in variable Lebesgue spaces are presented.

We say that a function p : Rn → (0, ∞) is locally log-Hölder continuous on Rn if there 
exists c1 > 0 such that

|p(x) − p(y)| ≤ c1
1

log(e + 1/|x− y|)

for all x, y ∈ R
n, |x − y| ≤ 1/2. We say that p(·) satisfies the log-Hölder decay condition 

if there exist p∞ ∈ (0, ∞) and a constant c2 > 0 such that

|p(x) − p∞| ≤ c2
1

log(e + |x|)

for all x ∈ R
n. We say that p(·) is globally log-Hölder continuous in Rn (p(·) ∈ Plog) if 

it is locally log-Hölder continuous and satisfies the log-Hölder decay condition.
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If p : Rn → (1, ∞) is globally log-Hölder continuous function in Rn and p− > 1, then 
the classical boundedness theorem for the Hardy–Littlewood maximal operator can be 
extended to Lp(·) (see in [5,6]).

Throughout the paper, we denote by c, C, c1, C1, c2, C2, etc. positive constant which 
is independent of the main parameters but which may vary from line to line.

Our main results are the following

Theorem 2.1. Let p(·) ∈ P(Rn). Let m(ξ) be the Fourier transform of a compactly sup-
ported Borel measure σ and the following conditions be fulfilled:

1) σ is locally β-dimensional, where 0 ≤ β ≤ n;

2)
{∫ 2

1 |m(tξ)|2dt
}1/2

≤ C(1 + |ξ|)−α;

3)
{∫ 2

1 |∇m(tξ)|2dt
}1/2

≤ C(1 + |ξ|)−α,

where α > 1/2. If 2θp(·)
2−(1−θ)p(·) ∈ B(Rn) for some 0 < θ < 2α−1

2α−1+2n−2β , then the maximal 
operator Mm maps Lp(·)(Rn) to itself.

Theorem 2.2. Let m(ξ) be the Fourier transform of a compactly supported Borel mea-
sure σ and the following conditions be fulfilled:

1) σ is locally β-dimensional, where 0 ≤ β ≤ n;

2)
{∫ 2

1 |m(tξ)|2dt
}1/2

≤ C(1 + |ξ|)−α;

3)
{∫ 2

1 |∇m(tξ)|2dt
}1/2

≤ C(1 + |ξ|)−α,

where α > 1/2. If p(·) ∈ Plog and

2n + 2α− 2β − 1
n + 2α− β − 1 < p− ≤ p+ <

2n + 2α− 2β − 1
n− β

,

then the maximal operator Mm maps Lp(·)(Rn) to itself.

Theorem 2.3. Let m(ξ) be the Fourier transform of a compactly supported Borel mea-
sure σ and the following conditions be fulfilled:

1) σ is locally β-dimensional, where 0 ≤ β ≤ n;

2)
{∫ 2

1 |m(tξ)|2dt
}1/2

≤ C(1 + |ξ|)−α;

3)
{∫ 2

1 |∇m(tξ)|2dt
}1/2

≤ C(1 + |ξ|)−α,

where α > 1/2. If p(·) ∈ Plog and
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2n + 2α− 2β − 1
n + 2α− β − 1 < p− ≤ p+ <

n + 2α− β − 1
n− β

p−,

then the maximal operator Mm maps Lp(·)(Rn) to itself.

If we take β = 0, then we will obtain analog of the Rubio de Francia Theorem for 
variable exponent Lebesgue spaces.

Corollary 2.4. Suppose m(ξ) is the Fourier transform of a compactly supported Borel 
measure and satisfies |m(ξ)| ≤ (1 + |ξ|)−a for some a > 1/2 and all ξ ∈ R

n. If p(·) ∈ Plog
and

2n + 2α− 1
n + 2α− 1 < p− ≤ p+ <

n + 2α− 1
n

p−.

then the maximal operator Mm maps Lp(·)(Rn) to itself.

Let μ denote a Hausdorff measure on E ⊂ [0, 1] and νr denote the rotationally invari-
ant probability measure on the sphere of radius r. Let

σ =
1∫

0

νrdμ(r) (2)

denote the corresponding rotationally invariant measure on the set En = {x ∈ R
n :

|x| ∈ E}.
If the measure μ is locally α-dimensional (0 ≤ α ≤ 1), then the measure σ is locally 

uniformly n − 1 + α-dimensional and

⎛
⎝ 2∫

1

|σ̂(tξ)|2dt

⎞
⎠

1/2

≤ C(1 + |ξ|)−n−1+α
2 ,

moreover, the same estimates hold if σ̂(tξ) is replaced by ∇σ̂(tξ) (see [14]).
Let E denote the Cantor-like subset of [0, 1] consisting of real numbers whose base m, 

m > 2, expansions have only 0’s and 1’s. Let μ denote the probability measure on E. 
Note that μ̂(ξ) does not tend to 0 as ξ → ∞ (see e.g. [18]) and for the corresponding
measure σ Fourier transform σ̂(ξ) decays only of order −n−1

2 at infinity, but square 
function

⎛
⎝ 2∫

1

|σ̂(tξ)|2dt

⎞
⎠

1/2

decays of order −n−1+α , where α = log 2 is dimension of E (see [14]).
2 log m
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Corollary 2.5. Let μ denote a Hausdorff measure on E ⊂ [0, 1]. Suppose μ is locally 
α-dimensional 0 ≤ α < 1. Let Mσ be maximal operator corresponding to the measure 
defined by (2). If p(·) ∈ Plog and

n− α

n− 1 < p− ≤ p+ <
n− 1
1 − α

p−,

then the maximal operator Mσ maps Lp(·)(Rn) to itself.

3. Proof of main results

Proof of Theorem 2.1. We set m(ξ) = d̂σ(ξ). Obviously m(ξ) is a C∞ function. To study 
the maximal multiplier operator Mmf(x) we decompose the multiplier m(ξ) into radial 
pieces as follows: we fix a radial C∞ function ϕ0 in Rn such that ϕ0(ξ) = 1 when |ξ| ≤ 1
and ϕ0(ξ) = 0 when |ξ| ≤ 2. For j ≥ 1 we let

ϕj(ξ) = ϕ0(2−jξ) − ϕ0(21−jξ)

and we observe that ϕj is localized near |ξ| ≈ 2j . Then we have

∞∑
j=0

ϕj = 1.

Set mj = ϕjm for all j ≥ 0. Then mj are C∞
0 functions that satisfy

m =
∞∑
j=0

mj .

Also, the following estimate is valid:

Mmf ≤
∞∑
j=0

Mjf

where

Mjf(x) = sup
t>0

|F−1
(
f̂(ξ)mj(tξ)

)
(x)|.

Note that for any j ≥ 0 we have (see the proof of Theorem 15 in [13]) the estimate

‖Mjf‖L2 ≤ C2(1/2−a)j‖f‖L2 (3)

for all f ∈ L2(Rn).
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Note also that since p̃(·) := 2θp(·)
2−(1−θ)p(·) ∈ B(Rn) we have the estimate

‖Mjf‖p̃(·) ≤ C2j(n−β)‖f‖p̃(·) (4)

for any j ≥ 0. The proof of estimate (4) is based on the estimate

Mjf(x) ≤ C2j(n−β)Mf (x), (5)

where M is the Hardy–Littlewood maximal operator.
The proof of (5) for specific measure defined by (2) was done in [14]. The proof is 

based only on the geometric assumption of the measure (assumption 1)). We will prove 
it for general case for completeness.

To establish (5), it is sufficient to show that for any M > n there is a constant 
CM < ∞ such that

∣∣(F−1(ϕj) ∗ dσ
)
(x)

∣∣ ≤ C2j(n−β)

(1 + |x|)M . (6)

Using the fact that ϕ is a Schwartz function, we have for every N > 0,

∣∣(F−1(ϕj) ∗ dσ
)
(x)

∣∣ ≤ CN2nj
∫
Rn

dσ(y)
(1 + 2j |x− y|)N . (7)

Let N > M . We split the last integral into the regions

S−1(x) = {y ∈ R
n : 2j |x− y| ≤ 1}

and for k > 0,

Sk(x) = {y ∈ R
n : 2k < 2j |x− y| ≤ 2k+1}.

We obtain the following estimate for the expression 
∣∣(F−1(ϕj) ∗ dσ

)
(x)

∣∣
j∑

k=−1

∫
Sk(x)

CN2njdσ(y)
(1 + 2j |x− y|)N +

∞∑
k=j+1

∫
Sk(x)

CN2njdσ(y)
(1 + 2j |x− y|)N

≤ C ′
N2nj

j∑
k=−1

σ(Sk(x))χB(0,3)(x)
2kN + CN2nj

∞∑
k=j+1

σ(Sk(x))χB(0,2k+1−j+1)(x)
2kN

=: I + II . (8)
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Using the fact that σ is locally uniformly β-dimensional, together with the fact that for 
y ∈ Sk(x) we have |x| ≤ 2k+1−j + 1, we obtain the following estimate

I ≤ C ′
N2nj

j∑
k=−1

Cβ2(k+1−j)βχB(0,3)(x)
2kN ≤ CN,β2(n−β)jχB(0,3)(x). (9)

On the other hand

II ≤ C ′
N2nj

∞∑
k=j+1

C2−kNχB(0,2k+1−j+1)(x)

≤ C ′
N

∞∑
k=j+1

2nj2−kN (1 + 2k−j+2)M

(1 + |x|)M

≤ C ′
M

∞∑
k=j+1

2(k−j)(M−N)

2k(N+1−n)

≤ C ′′
M2j

(1 + |x|)M , (10)

where we used that N > M > n. From (7)–(10) we obtain (6) and consequently (5).
Note that

1
p(·) = 1 − θ

2 + θ

p̃(·) ,

and, therefore,

Lp(·)(Rn) = [L2(Rn), Lp̃(·)(Rn)]θ = (L2(Rn))1−θ(Lp̃(·)(Rn))θ

(where [X0, X1]θ is a complex interpolation space, see [1] and X1−θ
0 Xθ

1 is a Calderón 
construction see [3]). Now from (3)–(4) we obtain

‖Mj‖Lp(·)→Lp(·) ≤ C‖Mj‖1−θ
L2→L2‖Mj‖Lp̃(·)→Lp̃(·) ≤ C ′2(1/2−α)(1−θ)j2j(n−β)θ. (11)

Using the last estimate we obtain that if 0 < θ < 2α−1
2α−1+2n−2β , then

‖Mm‖p(·) ≤ C ′
∞∑
j=0

2(1/2−a)(1−θ)j2j(n−β)θ‖f‖p(·) ≤ C ′′‖f‖p(·). �

To prove Theorem 2.2 we need the following lemma.

Lemma 3.1. Suppose α > 1/2, 0 ≤ β ≤ n and for exponent p : Rn → (1, +∞) we have

2n + 2α− 2β − 1
< p− ≤ p+ <

2n + 2α− 2β − 1
.

n + 2α− β − 1 n− β
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Then there exists exponent p̃ : Rn → (1, +∞) such that 1 < p̃− ≤ p̃+ < ∞ and 1
p(x) =

1−θ
2 + θ

p̃(x) ; x ∈ R
n for some θ with property 0 < θ < 2α−1

2n+2α−2β−1 .

Proof. Note that if β < n then

1 <
2n + 2α− 2β − 1
n + 2α− β − 1 < 2 <

2n + 2α− 2β − 1
n− β

,

and if β = n, then

2n + 2α− 2β − 1
n + 2α− β − 1 = 0 and 2n + 2α− 2β − 1

n− β
= ∞.

We have

n− β

2n + 2α− 2β − 1 < inf
x∈Rn

1
p(x) ≤ sup

x∈Rn

1
p(x) <

n + 2α− β − 1
2n + 2α− 2β − 1 .

Let 1
p(x) = 1

2 + r(x). By assumption we have

n− β

2n + 2α− 2β − 1 − 1
2 < inf

x∈Rn
r(x) ≤ sup

x∈Rn

r(x) < n + 2α− β − 1
2n + 2α− 2β − 1 − 1

2 . (12)

It is easy to see that the equation

1
p(x) = 1 − θ

2 + θ

p̃(x) (13)

is equivalent to

1
2 + r(x)

θ
= 1

p̃(x) . (14)

Using (11) we may take small δ > 0 such that

n− β

2n + 2α− 2β − 1 − 1
2 + δ < inf

x∈Rn
r(x) ≤ sup

x∈Rn

r(x) < n + 2α− β − 1
2n + 2α− 2β − 1 − 1

2 − δ.

Then for θ, 0 < θ < 2α−1
2α−1+2β , where θ = θ < 2α−1

2α−1+2β − θ0, θ0 > 0 we have

n−β
2n+2α−2β−1 − 1

2 + δ
2α−1

2n+2α−2β+1 − θ0
< inf

x∈Rn

r(x)
θ

≤ sup
x∈Rn

r(x)
θ

<

n+2α−β−1
2n+2α−2β−1 − 1

2 − δ
2α−1

2n+2α−2β+1 − θ0
,

−1
2

2a−1
2n+2a−2β−1 − 2δ

2a−1
2n+2a−2β−1 − θ0

< inf
x∈Rn

r(x)
θ

≤ sup
x∈Rn

r(x)
θ

<
1
2

2a−1
2n+2a−2β−1 − 2δ

2a−1
2n+2a−2β−1 − θ0

.

If we take θ0 < 2δ we obtain
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−1
2 < inf

x∈Rn

r(x)
θ

≤ sup
x∈Rn

r(x)
θ

<
1
2 . (15)

From (13) and (14) we get

0 < inf
x∈Rn

1
p̃(x) ≤ sup

x∈Rn

1
p̃(x) < 1.

Consequently we have 1 < p̃− ≤ p̃+ < ∞. �
Proof of Theorem 2.2. Using the fact that if p(·) ∈ Plog then p̃(·) := 2θp(·)

2−(1−θ)p(·) ∈ Plog
and by Lemma 3.1 we have 1 < p̃− ≤ p̃+ < ∞, it follows from [6, Theorem 4.3.8], that 
p̃(·) ∈ B(Rn). Now the proof of Theorem 2.2 follows from Theorem 2.1. �
Proof of Theorem 2.3. As by the assumption

2n + 2α− 2β − 1
(n + 2α− β − 1)p−

<
2n + 2α− 2β − 1

(n− β)p+
,

we can find θ such that

2n + 2α− 2β − 1
(n + 2α− β − 1)p−

< θ < min
(

1, 2n + 2α− 2β − 1
(n− β)p+

)
.

It is clear, that

2n + 2α− 2β − 1
(n + 2α− β − 1) < θp− < θp+ <

2n + 2α− 2β − 1
(n− β) .

It is clear that if p(·) ∈ Plog then θp(·) ∈ Plog and by Theorem 2.2 we get that the operator 
Mm is bounded in Lθp(·)(Rn). Using the fact that [L∞(Rn), Lp(·)θ(Rn)]θ = Lp(·)(Rn)
(0 < θ < 1) and the operator Mm is bounded in L∞(Rn) and Lθp(·)(Rn) we obtain that 
operator Mm is bounded in Lp(·)(Rn). �
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