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A Note on Boundedness of the
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Abstract. In this paper we prove that the Hardy–Littlewood maximal
operator is bounded on Morrey spaces M1,λ(Rn), 0 ≤ λ < n for radial,
non-increasing functions on R

n.
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1. Introduction

Morrey spaces Mp,λ ≡ Mp,λ(Rn), were introduced by Morrey in [8] in order
to study regularity questions which appear in the Calculus of Variations, and
defined as follows: for 0 ≤ λ ≤ n and 1 ≤ p < ∞,

Mp,λ :=
{

f ∈ Lloc
p (Rn) : ‖f‖Mp,λ

:= sup
x∈Rn, r>0

r
λ−n

p ‖f‖Lp(B(x,r)) < ∞
}

,

where B(x, r) is the open ball centered at x of radius r.
Note that Mp,0(Rn) = L∞(Rn) and Mp,n(Rn) = Lp(Rn), when 1 ≤

p < ∞.
These spaces describe local regularity more precisely than Lebesgue

spaces and appeared to be quite useful in the study of the local behavior
of solutions to partial differential equations, a priori estimates and other top-
ics in PDE (cf. [4]).
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Given a locally integrable function f on R
n and 0 ≤ α < n, the fractional

maximal function Mαf of f is defined by

Mαf(x) := sup
Q�x

|Q|α−n
n

∫
Q

|f(y)|dy, (x ∈ R
n),

where the supremum is taken over all cubes Q containing x. The operator
Mα : f → Mαf is called the fractional maximal operator. M := M0 is the
classical Hardy–Littlewood maximal operator.

The study of maximal operators is one of the most important topics
in harmonic analysis. These significant non-linear operators, whose behav-
ior is very informative in particular in differentiation theory, provided the
understanding and the inspiration for the development of the general class of
singular and potential operators (see, for instance, [3,5–7,9–11]).

The boundedness of the Hardy–Littlewood maximal operator M in Mor-
rey spaces Mp,λ was proved by Chiarenza and Frasca in [2]: It was shown
that Mf is a.e. finite if f ∈ Mp,λ and an estimate

‖Mf‖Mp,λ
≤ c‖f‖Mp,λ

(1.1)

holds if 1 < p < ∞ and 0 < λ < n, and a weak type estimate replaces (1.1)
for p = 1, that is, the inequality

t|{Mf > t} ∩ B(x, r)| ≤ crn−λ‖f‖M1,λ
(1.2)

holds with constant c independent of x, r, t and f .
In this paper we show that (1.1) is not true for p = 1. According to

our example the right result is (1.2). If restricted to the cone of radial, non-
increasing functions on R

n, inequality (1.1) holds true for p = 1.
The paper is organized as follows. We start with notations and prelimi-

nary results in Sect. 2. In Sect. 3, we prove that the Hardy–Littlewood max-
imal operator M is bounded on M1,λ, 0 < λ < n, for radial, non-increasing
functions, and we give an example which shows that M is not bounded on
M1,λ, 0 < λ < n.

2. Notations and Preliminaries

Now we make some conventions. Throughout the paper, we always denote by
c a positive constant, which is independent of main parameters, but it may
vary from line to line. By a � b we mean that a ≤ cb with some positive
constant c independent of appropriate quantities. If a � b and b � a, we
write a ≈ b and say that a and b are equivalent. Throughout this paper
cubes will be assumed to have their sides parallel to the coordinate axes. For
a measurable set E, χE denotes the characteristic function of E.

Let Ω be any measurable subset of Rn, n ≥ 1. Let M(Ω) denote the set of
all measurable functions on Ω and M0(Ω) the class of functions in M(Ω) that
are finite a.e., while M↓(0,∞) (M+,↓(0,∞)) is used to denote the subset of
those functions which are non-increasing (non-increasing and non-negative)
on (0,∞). Denote by Mrad,↓ = Mrad,↓(Rn) the set of all measurable, radial,
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non-increasing functions on R
n, that is,

Mrad,↓ := {f ∈ M(Rn) : f(x) = ϕ(|x|), x ∈ R
n with ϕ ∈ M↓(0,∞)}.

Recall that Mf ≈ Hf , f ∈ Mrad,↓, where

Hf(x) :=
1

|B(0, |x|)|
∫

B(0,|x|)
|f(y)|dy

is n-dimensional Hardy operator. Obviously, Hf ∈ Mrad,↓, when f ∈ Mrad,↓.
For p ∈ (0,∞], we define the functional ‖ · ‖p,Ω on M(Ω) by

‖f‖p,Ω :=

{
(
∫
Ω

|f(x)|p dx)1/p if p < ∞,

ess supΩ |f(x)| if p = ∞.

The Lebesgue space Lp(Ω) is given by

Lp(Ω) := {f ∈ M(Ω) : ‖f‖p,Ω < ∞}
and it is equipped with the quasi-norm ‖ · ‖p,Ω.

The non-increasing rearrangement (see, e.g., [1, p. 39]) of a function
f ∈ M0(Rn) is defined by

f∗(t) := inf {λ > 0 : |{x ∈ R
n : |f(x)| > λ}| ≤ t} (0 < t < ∞).

3. Boundedness of M on M1,λ for Radial, Non-Increasing
Functions

Recall that

Mαf(x) ≈ sup
B�x

|B|α−n
n

∫
B

|f(y)|dy

≈ sup
r>0

|B(x, r)|α−n
n

∫
B(x,r)

|f(y)|dy, (x ∈ R
n),

where the supremum is taken over all balls B containing x.
In order to prove our main result we need the following auxiliary lemmas.

Lemma 3.1. Assume that 0 < λ < n. Let f ∈ Mrad,↓(Rn) with f(x) = ϕ(|x|).
The equivalency

‖f‖M1,λ
≈ sup

x>0
xλ−n

∫ x

0

|ϕ(ρ)|ρn−1 dρ

holds with positive constants independent of f .

Proof. Recall that

‖f‖M1,λ
≈ sup

B
|B|λ−n

n

∫
B

|f | = ‖Mλf‖∞, f ∈ M(Rn).

Switching to polar coordinates, we have that

Mλ(f)(y) � |B(0, |y|)|λ−n
n

∫
B(0,|y|)

|f(z)|dz

≈ |y|λ−n

∫ |y|

0

|ϕ(ρ)|ρn−1 dρ.
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Consequently,

‖f‖M1,λ
� ess sup

y∈Rn

|y|λ−n

∫ |y|

0

|ϕ(ρ)|ρn−1 dρ

= sup
x>0

xλ−n

∫ x

0

|ϕ(ρ)|ρn−1 dρ,

where f(·) = ϕ(| · |).
On the other hand,

‖f‖M1,λ
� sup

B
|B|λ−n

n

∫ |B|

0

f∗(t) dt

= sup
B

|B|λ−n
n

∫ |B|

0

|ϕ(t
1
n )|dt

≈ sup
B

|B|λ−n
n

∫ |B| 1
n

0

|ϕ(ρ)|ρn−1 dρ

= sup
x>0

xλ−n

∫ x

0

|ϕ(ρ)|ρn−1 dρ,

where f(·) = ϕ(| · |). �
Corollary 3.2. Assume that 0 < λ < n. Let f ∈ Mrad,↓(Rn) with f(x) =
ϕ(|x|). The equivalency

‖Mf‖M1,λ
≈ sup

x>0
xλ−n

∫ x

0

ϕ(ρ)ρn−1 ln
(

x

ρ

)
dρ

holds with positive constants independent of f .

Proof. Let f ∈ Mrad,↓ with f(x) = ϕ(|x|). Since Mf ≈ Hf and Hf ∈ Mrad,↓,
by Lemma 3.1, switching to polar coordinates, using Fubini’s Theorem, we
have that

‖Mf‖M1,λ
≈ sup

x>0
xλ−n

∫ x

0

(
1

|B(0, t)|
∫

B(0,t)

|f(y)| dy

)
tn−1 dt

≈ sup
x>0

xλ−n

∫ x

0

1
t

∫ t

0

ϕ(ρ)ρn−1 dρ dt

= sup
x>0

xλ−n

∫ x

0

ϕ(ρ)ρn−1 ln
(

x

ρ

)
dρ.

�
Lemma 3.3. Assume that 0 < λ < n. Let f ∈ Mrad,↓ with f(x) = ϕ(|x|). The
inequality

‖Mf‖M1,λ
� ‖f‖M1,λ

, f ∈ Mrad,↓

holds if and only if the inequality

sup
x>0

xλ−n

∫ x

0

ϕ(ρ)ρn−1 ln
(

x

ρ

)
dρ � sup

x>0
xλ−n

∫ x

0

ϕ(ρ)ρn−1 dρ

holds for all ϕ ∈ M+,↓(0,∞).
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Proof. The statement immediately follows from Lemma 3.1 and Corollary
3.2. �
Lemma 3.4. Let 0 < λ < n. Then the inequality

sup
x>0

xλ−n

∫ x

0

ϕ(ρ)ρn−1 ln
(

x

ρ

)
dρ � sup

x>0
xλ−n

∫ x

0

ϕ(ρ)ρn−1 dρ (3.1)

holds for all ϕ ∈ M+,↓(0,∞).

Proof. Indeed:

sup
x>0

xλ−n

∫ x

0

ϕ(ρ)ρn−1 ln
(

x

ρ

)
dρ

= sup
x>0

xλ−n

∫ x

0

1
t

∫ t

0

ϕ(ρ)ρn−1 dρdt

= sup
x>0

xλ−n

∫ x

0

tn−λ−1tλ−n

∫ t

0

ϕ(ρ)ρn−1 dρdt

≤ sup
t>0

tλ−n

∫ t

0

ϕ(ρ)ρn−1 dρ ·
(

sup
x>0

xλ−n

∫ x

0

tn−λ−1 dt

)

≈ sup
t>0

tλ−n

∫ t

0

ϕ(ρ)ρn−1 dρ.

�
Now we are in position to prove our main result.

Theorem 3.5. Assume that 0 < λ < n. The inequality

‖Mf‖M1,λ
� ‖f‖M1,λ

(3.2)

holds for all f ∈ Mrad,↓ with a constant independent of f .

Proof. The statement follows by Lemmas 3.3 and 3.4. �
Remark 3.6. Note that inequality (3.2) holds true when λ = 0, for
M1,0(Rn) = L∞(Rn) and M is bounded on L∞(Rn).

Remark 3.7. It is obvious that the statement of Theorem 3.5 does not hold
when λ = n, for in this case M1,n(Rn) = L1(Rn) and the inequality

‖Mf‖L1(Rn) � ‖f‖L1(Rn)

is true only for f = 0 a.e., which follows from the fact that Mf(x) ≈ |x|−n

for |x| large when f ∈ Lloc
1 (Rn).

Example. We show that M is not bounded on M1,λ(Rn), 0 < λ < n. For
simplicity let n = 1 and λ = 1/2. Consider the function

f(x) =
∞∑

k=0

χ[k2,k2+1](x), (x ∈ R).

Then

‖f‖M1,1/2(R) = sup
I

|I|−1/2

∫
I

f ≤ sup
I: |I|≤1

|I|−1/2

∫
I

f + sup
I: |I|>1

|I|−1/2

∫
I

f,
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where the supremum is taken over all open intervals I ⊂ R. It is easy to see
that

sup
I: |I|≤1

|I|−1/2

∫
I

f ≤ sup
I: |I|≤1

|I|1/2 ≤ 1.

Note that

sup
I: |I|>1

|I|−1/2

∫
I

f = sup
m∈N

sup
I: m<|I|≤m+1

|I|−1/2

∫
I

f

= sup
m∈N

sup
I: m<|I|≤m+1

|I|−1/2

∫
I

( ∞∑
k=0

χ[k2,k2+1](x)

)
dx

= sup
m∈N

sup
I: m<|I|≤m+1

|I|−1/2

∣∣∣∣∣I ∩
∞⋃

k=0

[k2, k2 + 1]

∣∣∣∣∣ .

Since ∣∣∣∣∣I ∩
∞⋃

k=0

[k2, k2 + 1]

∣∣∣∣∣ ≤
∣∣∣∣∣[0,m + 1] ∩

∞⋃
k=0

[k2, k2 + 1]

∣∣∣∣∣
for any interval I such that m < |I| ≤ m + 1, we obtain that

sup
I: |I|>1

|I|−1/2

∫
I

f � sup
m∈N

m−1/2

∣∣∣∣∣[0,m + 1] ∩
∞⋃

k=0

[k2, k2 + 1]

∣∣∣∣∣
� sup

m∈N

m−1/2m1/2 = 1.

Consequently, we arrive at

‖f‖M1,1/2(R) � 2.

On the other hand, since

Mf ≥
∞∑

k=0

(
χ[k2,k2+1] +

χ[k2+1,k2+k+1]

x − k2
+

χ[k2+k+1,(k+1)2]

(k + 1)2 + 1 − x

)
,

we have that

‖Mf‖M1,1/2(R) ≥ sup
k∈N

k−1

∫ k2

0

Mf ≥ sup
k∈N

k−1
k−1∑
i=1

∫ (i+1)2

i2
Mf

≥ sup
k∈N

k−1
k−1∑
j=1

ln j � sup
k∈N

ln k = ∞.
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