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Numerical solutions of partial differential equations are widely used in engineering
and science as computational models of various phenomena. However, there is a
general agreement that the numerical solution as a single output of the computations
is not sufficient. An information about the approximation error is required in order
to asses the reliability of the computations. Such an information is provided by a
posteriori error estimates.

It is advantageous to use the a posteriori error estimates in conjunction with the
adaptive algorithm. This enables to prescribe the desired error tolerance and the al-
gorithm is then automatically capable to deliver an approximate solution within the
specified error tolerance. In the context of the finite element method the standard
adaptive algorithm follows these general steps:

1. Initialize: Construct the initial mesh Th.
2. Solve: Find the approximate solution uh on Th.
3. Indicators : Compute error indicators ηK for all elements K ∈ Th.
4. Estimator : Compute the error estimator η.
5. Stop: If η ≤ TOL then STOP.
6. Mark : If ηK ≥ Θ max{ηK : K ∈ Th} then mark K.
7. Refine: Refine the marked elements and build the new mesh Th.
8. Go to 2.

If a function u defined in a domain Ω is the exact solution of the underlined partial
differential problem and if uh is its approximation then e = u− uh is the error and
the error indicators ηK (see Step 3) estimate a suitable norm of the error restricted
to the element K, i.e., ηK ≈ ‖e‖K . Similarly, the error estimator η (see Step 4)
estimates the norm of the entire domain Ω, i.e, η ≈ ‖e‖. In Step 5 we assume that
TOL is the user prescribed absolute tolerance on the error and we test wheather
the error estimator η is below it. In Step 6 we mark the elements where large error
is indicated. The parammeter Θ is used to control the amount of elements to be
refined within each adaptive step. The value Θ = 1/2 is often chosen in practice. In
Step 7 the marked elements are refined and the new finite element mesh is produced.
The new mesh enters the next adaptive cycle in Step 2.

Let us point out two roles of a posteriori error estimators in this adaptive al-
gorithm. The global estimator η is used in the stopping criterion. The optimal
property of η is to provide a guaranteed upper bound on error, i.e. ‖e‖ ≤ η. If this
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is the case then the stopping criterion in Step 5 guarantees the approximation error
to be below the tolerance, i.e. ‖e‖ ≤ η ≤ TOL.

On the other hand, the local error indicators ηK serve for the location of places
where the error is higher than elsewhere and where it is suitable to refine the mesh.
They do not need to estimate the actual size of the error in the element K. It
suffices if they are equivalent to the local error in the sense of inequalities C1ηK ≤
‖e‖K ≤ C2ηK , where the actual values of constants C1 and C2 can be unknown.
These inequalities are often referred as efficiency and reliability, respectively.

There are several known methos for computation of efficient and reliable local
error indicators ηK [1, 3, 6]. There are explicit and implicit residual indicators,
hierarchical estimates and estimates based on gradient recovery. These methods are
theoretically quite well understood, they can be implemented in a fast way, and
their numerical behavior in the adaptive algorithms is satisfactory.

On the other hand, as far as the author is aware, the only technique leading to the
guaranteed upper bounds of the energy norm of the error is based on the complemen-
tarity [4, 5]. The idea is to construct a complementary problem whose approximate
solution is used for evaluation of the guaranteed error estimate η. This approach
is often expensive in terms of the computational time but for simple problems (like
Poisson problem) fast implementations of this technique exist [2].
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