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Introduction

Generalized Newtonian fluids can be subdivided accordingstmsity behavior. For New-
tonian fluids viscosity is constant and is independent oafidied shear stress (eg. water, kero-
sene etc.). Shear thinning fluids are characterized by dgioig viscosity with increasing shear
rate (eg. ketchup, honey, blood etc). Shear thickeningslard characterized by increasing vis-
cosity with increasing shear rate (eg. wet sand etc.). lIicése that for blood an elastic effect
is assumed then blood is considered as the viscoelastiq ferteralized Oldroyd-B fluids).

Mathematical Model

The governing system of equations is the system of balanee dd mass and momentum
for incompressible fluids [1], [3]:
divu =0 (2)
ou
ot
whereP is pressurey is constant densityy is velocity vector. The symbdI represents stress
tensor with different definition.
a) Viscous fluids

+p(uVu=—-VP+dvT )

The simple viscous model Newtonian model:
T=2uD 3)

wherey is dynamic viscosity and tens@r is symmetric part of velocity gradient.
b) Viscoelastic fluids

Maxwell model is the simplest model for viscoelastic fluid. In this casedtress tensor is

computed from:
oT
T+ AN— =2uD (4)
ot
where\; has dimension of time and denotetaxation time. The symbol% represents upper
convected derivative (see eq. (8)).
The behavior of the mixture of viscous and viscoelastic #uidn be described §)droyd-

B model and it has the form

oT oD
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The parameters;, \, arerelaxation andretardation time.
The stress tensdF is decomposed to Newtonian pdt and viscoelastic pa. (T =
T,+T.) and

T
T.=2uD, T+ XC=ouD, (6)
where
)\2 s
3 5 = s+ HUe- 7
N et po=fis + pt (7)

The upper convected derivative % is defined (for general tensor) by the relation (see [3])

55—“;':%—“:Jr(u.V)M—(WM—MW)—(DMJrMD) (8)
whereD is the symmetric part of the velocity gradiebDt = %(Vu + Vul) andW is the
antisymmetric part of the velocity gradieW = 3(Vu — Vu™).

The governing system (1), (2) of equations is completed byetfuation for the viscoelastic
part of the stress tensor

T 1
oT. D-—T.+(WT.—-T.W)+ (DT, +T.D). (9)
ot A A1

Both models could be generalized. In this case the viscpsisyno more constant, but is
defined by viscosity function according to the cross model

241
+ (V)T =2

N Ho — Moo
() = Hoo + m (10)

/1
¥ =25 D’ (11)

po=16-10"'Pa-s jo =3.6-103Pa-s
a=1.23,0=0.64 A =8.2s.

where

Numerical Solution
Numerical solution of the described models is based onoegitered finite volume method
using explicit Runge—Kutta time integration. The unsteagstesm of equations with steady
boundary conditions is solved by finite volume method. Stestdte solution is achieved for
t — oo. In this case the artificial compressibility method can bplied. It means that the
continuity equation is completed by the time derivative lté pressure in the form (for more
details see e.qg. [2]):
1 dp
(2 ot
The system of equations (including the modified continugyation) could be rewritten in
the vector form for 2D case. For 3D case it's similar but mamplicated.
1

@,1,1,1,1,1). (13)

tdive=0, BecR*. (12)

ReW, + FE+ G =F!+ G+ S, Ry =diag



Colloguium FLUID DYNAMICS 2010
Institute of Thermomechanics ASCR, v.v.i., Prague, October 20 - 22, 2010 p.

wherelV is the vector of unknowng; <, G¢ are inviscid fluxesf™, G are viscous fluxes defined
as

D U v
U u? + p uv
v uv v? + P
W= , Fe= , G°= : 14
11 utyy vty (14)
t12 Ut12 Ut12
too Uuton vtgg
0 0
2p1() e () (uy + vz)
Fv — H’(’y) (uy + Ua:) , Gv — 21“(7)’0.7; (15)
0 0
0 0
0 0

and the source terifi is defined as wherg; are components of the symmetric ten3or

0
t11z + T12y
t12g + a2y
280w, — 51 4 2(ugtny + uyti)
l;—:(uy + Ux) t12 + (Uxtlg + uthQ + ’Uxtn + Uytu)
25 “y 2+ 2(vatiz + vytan)

(16)

The following testcases are considered for numerical cdatioun:

Newtonian w() = pus = const. T.=0
Generalized Newtonian (%) T.=0
Oldroyd-B p(y) = ps = const. T,
Generalized Oldroyd-B w() T,

The eq. (13) is discretized in space by the cell-centeretéfimlume method (see [5]) and
the arising system of ODEs is integrated in time by the ekpfialtistage Runge—Kutta scheme
(see [4], [6]):

we = wo
w® = W - o, ARW)ETY (17)
wrtt = i s=1,....M,

whereM = 3, ap = a; = 0.5, a5 = 1.0, the steady residud@ (W), is defined as

Z W) Ay — (G — Gy) Az + S, (18)

o;
v k=1

whereo; is the volume of cellg; = [ [, dz dy. The symbold™,, G} andF,, G), denote nume-
rical approximation of inviscid and viscous fluxes, for mdegails see [4], symbd represents
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numerical approximation of the source term with centralragination of derivatives.

Numerical results

Four testcases of generalized Newtonian and Oldroyd-Bsflilioadv are presented and com-
pared. In the figs. 1 and 2 the structure of tested domain isrsho
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Obrazek 1: Structure of computational domain.
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Obrazek 2: Structure of computational mesh.

The following model parameters are:

pe =4.0-107*Pa-s p,=3.6-10"3Pa-s
A1 = 0.06s A2 = 0.054s
Uy =0.0615m s Ly =2R = 0.0062m
po = ft = fis + pre  p=1050kg - m~?

In the Figs. 3 and 4 the comparison of the axial velocity rsediand the pressure distributi-
ons is presented.

Pressure and velocity distribution along the axis for ated fluids models is shown in the
Fig. 5. By simple observation one can conclude that the maecedf the Oldroyd-B fluids
behavior is visible mainly in the recirculation zone.
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Obrazek 3: Pressure distribution.
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Obrazek 4: Axial velocity distribution.

Conclusions

Newtonian and Oldroyd-B models with their generalized rficdiion have been conside-
red for numerical simulation of fluids flow in the idealizedispmmetric stenosis. The cell-
centered finite volume solver for incompressible laminacous and viscoelastic fluids flow
has been described. In the idealized stenosis we testee@tieeadized Newtonian and genera-
lized Oldroyd-B fluids models. Here the two definitions of 8teess tensor were used. Based
on the above numerical results we can conclude that therelifée between the viscous and
viscoelastic fluids is visible in the recirculation zone.
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Obrazek 5: Pressure and axial velocity distribution along #r@ml axis of the channel.
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