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Introduction

Generalized Newtonian fluids can be subdivided according toviscosity behavior. For New-
tonian fluids viscosity is constant and is independent of theapplied shear stress (eg. water, kero-
sene etc.). Shear thinning fluids are characterized by decreasing viscosity with increasing shear
rate (eg. ketchup, honey, blood etc). Shear thickening fluids are characterized by increasing vis-
cosity with increasing shear rate (eg. wet sand etc.). In thecase that for blood an elastic effect
is assumed then blood is considered as the viscoelastic fluid(generalized Oldroyd-B fluids).

Mathematical Model

The governing system of equations is the system of balance laws of mass and momentum
for incompressible fluids [1], [3]:

div u = 0 (1)

ρ
∂u

∂t
+ ρ(u.∇)u = −∇P + div T (2)

whereP is pressure,ρ is constant density,u is velocity vector. The symbolT represents stress
tensor with different definition.

a) Viscous fluids

The simple viscous model isNewtonian model:

T = 2µD (3)

whereµ is dynamic viscosity and tensorD is symmetric part of velocity gradient.
b) Viscoelastic fluids

Maxwell model is the simplest model for viscoelastic fluid. In this case thestress tensor is
computed from:

T + λ1
δT

δt
= 2µD (4)

whereλ1 has dimension of time and denotesrelaxation time. The symbol δ
δt

represents upper
convected derivative (see eq. (8)).

The behavior of the mixture of viscous and viscoelastic fluids can be described byOldroyd-
B model and it has the form

T + λ1
δT

δt
= 2µ

(

D + λ2
δD

δt

)

. (5)



p.
Colloquium FLUID DYNAMICS 2010

Institute of Thermomechanics AS CR, v.v.i., Prague, October 20 - 22, 2010

The parametersλ1, λ2 arerelaxation andretardation time.
The stress tensorT is decomposed to Newtonian partTs and viscoelastic partTe (T =

Ts + Te) and

Ts = 2µsD, Te + λ1
δTe

δt
= 2µeD, (6)

where

λ2

λ1

=
µs

µs + µe

, µ = µs + µe. (7)

Theupper convected derivative δ
δt

is defined (for general tensor) by the relation (see [3])

δM

δt
=

∂M

∂t
+ (u.∇)M − (WM − MW) − (DM + MD) (8)

whereD is the symmetric part of the velocity gradientD = 1
2
(∇u + ∇u

T ) andW is the
antisymmetric part of the velocity gradientW = 1

2
(∇u −∇u

T ).
The governing system (1), (2) of equations is completed by the equation for the viscoelastic

part of the stress tensor

∂Te

∂t
+ (u.∇)Te =

2µe

λ1

D −
1

λ1

Te + (WTe − TeW) + (DTe + TeD). (9)

Both models could be generalized. In this case the viscosityµ is no more constant, but is
defined by viscosity function according to the cross model

µ(γ̇) = µ∞ +
µ0 − µ∞

(1 + (λγ̇)b)a
(10)

where

γ̇ = 2

√

1

2
tr D

2 (11)

µ0 = 1.6 · 10−1Pa · s µ∞ = 3.6 · 10−3Pa · s

a = 1.23, b = 0.64 λ = 8.2s.

Numerical Solution
Numerical solution of the described models is based on cell-centered finite volume method

using explicit Runge–Kutta time integration. The unsteady system of equations with steady
boundary conditions is solved by finite volume method. Steady state solution is achieved for
t → ∞. In this case the artificial compressibility method can be applied. It means that the
continuity equation is completed by the time derivative of the pressure in the form (for more
details see e.g. [2]):

1

β2

∂p

∂t
+ div u = 0, β ∈ R

+. (12)

The system of equations (including the modified continuity equation) could be rewritten in
the vector form for 2D case. For 3D case it’s similar but more complicated.

R̃βWt + F c
x + Gc

y = F v
x + Gv

y + S, R̃β = diag(
1

β2
, 1, 1, 1, 1, 1). (13)
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whereW is the vector of unknowns,F c, Gc are inviscid fluxes,F v, Gv are viscous fluxes defined
as

W =


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
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
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p
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






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
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


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, (14)

F v =


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


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





0
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(15)

and the source termS is defined as wheretij are components of the symmetric tensorTe

S =

















0
t11x + t12y

t12x + t22y

2µe

λ1

ux −
t11
λ1

+ 2(uxt11 + uyt12)
µe

λ1

(uy + vx) −
t12
λ1

+ (uxt12 + uyt22 + vxt11 + vyt12)

2µe

λ1

vy −
t22
λ1

+ 2(vxt12 + vyt22)

















(16)

The following testcases are considered for numerical computation:

Newtonian µ(γ̇) = µs = const. Te ≡ 0
Generalized Newtonian µ(γ̇) Te ≡ 0
Oldroyd-B µ(γ̇) = µs = const. Te

Generalized Oldroyd-B µ(γ̇) Te

The eq. (13) is discretized in space by the cell-centered finite volume method (see [5]) and
the arising system of ODEs is integrated in time by the explicit multistage Runge–Kutta scheme
(see [4], [6]):

W n
i = W

(0)
i

W
(s)
i = W

(0)
i − αs−1∆tR(W )

(s−1)
i (17)

W n+1
i = W

(M)
i s = 1, . . . ,M,

whereM = 3, α0 = α1 = 0.5, α2 = 1.0, the steady residualR(W )i is defined as

R(W )i =
1

σi

4
∑

k=1

[(

F
c

k − F
v

k

)

∆yk −
(

G
c

k − G
v

k

)

∆xk

]

+ S, (18)

whereσi is the volume of cell,σi =
∫ ∫

Ci

dx dy. The symbolsF
c

k, G
c

k andF
v

k, G
v

k denote nume-

rical approximation of inviscid and viscous fluxes, for moredetails see [4], symbolS represents
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numerical approximation of the source term with central approximation of derivatives.

Numerical results

Four testcases of generalized Newtonian and Oldroyd-B fluids flow are presented and com-
pared. In the figs. 1 and 2 the structure of tested domain is shown.

2R

2R R 2R 5R

10R

R

Obŕazek 1: Structure of computational domain.

Obŕazek 2: Structure of computational mesh.

The following model parameters are:

µe = 4.0 · 10−4Pa · s µs = 3.6 · 10−3Pa · s

λ1 = 0.06s λ2 = 0.054s
U0 = 0.0615m · s−1 L0 = 2R = 0.0062m
µ0 = µ = µs + µe ρ = 1050kg · m−3

In the Figs. 3 and 4 the comparison of the axial velocity isolines and the pressure distributi-
ons is presented.

Pressure and velocity distribution along the axis for all tested fluids models is shown in the
Fig. 5. By simple observation one can conclude that the main effect of the Oldroyd-B fluids
behavior is visible mainly in the recirculation zone.
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Obŕazek 3: Pressure distribution.
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Obŕazek 4: Axial velocity distribution.

Conclusions
Newtonian and Oldroyd-B models with their generalized modification have been conside-

red for numerical simulation of fluids flow in the idealized axisymmetric stenosis. The cell-
centered finite volume solver for incompressible laminar viscous and viscoelastic fluids flow
has been described. In the idealized stenosis we tested the generalized Newtonian and genera-
lized Oldroyd-B fluids models. Here the two definitions of thestress tensor were used. Based
on the above numerical results we can conclude that the difference between the viscous and
viscoelastic fluids is visible in the recirculation zone.
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Obŕazek 5: Pressure and axial velocity distribution along the central axis of the channel.
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