
INSTITUTE OF MATHEMATICS
TH

E
CZ
EC
H
AC

AD
EM

Y
O
F
SC
IE
NC

ES Isolated singularities of solutions
to double-phase elliptic equations

Yuliya Namlyeyeva

Preprint No. 52-2016

PRAHA 2016





Isolated singularities of solutions to double-phase

elliptic equations

In memory of I.V. Skrypnik

Yuliya V. Namlyeyeva∗

Institute of Mathematics of the Czech Academy of Sciences
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of double-phase elliptic equations are established.
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1 Statement of the problem

In this paper we study solutions of elliptic equations with non-standard growth
conditions

−divA (x,∇u) = 0, ∀x ∈ Ω \ {x0}, (1.1)

where Ω is a bounded domain in Rn, n > 2, x0 ∈ Ω and A : Ω× Rn → Rn.
We are assuming that the function A(·, ξ) is Lebesgue measurable for all ξ ∈ Rn
and A(x, ·) is continuous for almost all x ∈ Ω. The structural inequalities for A
will represent two possible different elliptic behaviours of the operator. Namely,
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we assume that with some positive constants ν1, ν2 the following conditions are
satisfied:

A (x, ξ) ξ > ν1 g (a(x), |ξ|) |ξ| , ξ ∈ Rn,

|A(x, ξ)| 6 ν2 g(a(x), |ξ|), (1.2)

where

g(a(x), t) = tp−1 + a(x)tq−1, t > 0, (1.3)

with a nonegative function a(x) such that a ∈ C0,α(Ω) for some α ∈ (0, 1].

According to the coefficient a(x), the operator in (1.1) represents two differ-
ent growth with respect to the gradient. On the set where a(x) = 0 the equation
(1.1) is of p-Laplacian type, while in case of a(x) > 0 the growth of the coefficients
by gradient is at rate q. So that, we will distinguish two cases of degenerate be-
haviour: a(x0) = 0 (so-called ”p-phase”) and a(x0) > 0 (so called ”(p, q)-phase”).
We suppose that the exponents p, q satisfy

1 < p 6 q 6 min

(
p+ α,

np

n− p

)
, p 6 n, if a(x0) = 0, (1.4)

1 < p 6 q 6 n, if a(x0) > 0. (1.5)

Functionals with nonstandard growth conditions appeared from the investigation
of properties of composite materials in theory of homogenization and elasticity
theory. In the farther, the qualitative theory of such quasilinear equations was
extensively studied because of the various applications in mathematical physics and
reach mathematical structures (see e.g. [1] –[6], [8]–[15], [24], [25]).

Starting from the seminal papers of J. Serrin ([19], [20]), the qualitative be-
haviour of solutions to quasilinear equations with the standard growth (p = q) was
investigated by many authors in case of a point singularity. We refer to [23], [18]
for an account of these results.

The questions of removability of isolated singularities or singularities on some
manifolds for solutions of elliptic equation with (p, q)–growth conditions were stud-
ied recently in [13], [16]. Namely, there were considered equations of type

div

(
g(|∇u|) ∇u

|∇u|

)
= 0,

where g(t) satisfies the following conditions(
t

τ

)p−1

6
g(t)

g(τ)
6

(
t

τ

)q−1

, t > τ > 0.

We are interested here in getting sharp pointwise conditions for solutions of
equation (1.1), which guarantee that a point singularity at {x0} is removable. That
is, the solution can be extended to the whole domain Ω.
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2 Formulation of the main results

To start with, we give a definition of a basic functional space appropriate for a weak
formulation of problem (1.1). Namely, by W 1,G(Ω) we denote the class of functions
having weak derivatives in Ω and such that∫

Ω

G(a(x), |∇u|) dx <∞,

where G(a(x), t) = t g(a(x), t), t > 0. Functions g and a were defined in (1.2), (1.3).
We can define now a weak solutions with singularity at a single point and for-

mulate how we understand removability of this singularity of a weak solution.

Definition 2.1. A function u(x) is said to be a weak solution of equation (1.1)
in Ω \ {x0}, if for an arbitrary function ψ ∈ C1(Ω) vanishing in a neighborhood of
{x0}, there is an inclusion uψ ∈W 1,G(Ω) and the integral identity∫

Ω

A (x,∇u)∇(ψϕ) dx = 0 (2.1)

holds for any ϕ ∈W 1,G
0 (Ω).

Definition 2.2. We say that a weak solution u of (1.1) has a removable singularity
at some point {x0} if u(x) can be extended to {x0} so that its extension ũ belongs
to W 1,G(Ω) and satisfies the equation (1.1).

To formulate our main results, we need to set up a characteristic describing a
local behaviour of the weak solution u(x) in some neighborhood of the singular
point {x0}. That is, for R, 0 < R < min{1, dist (x0, ∂ Ω)}, and any r, 0 < r < R
we define a number M(r) such that

M(r) := ess sup {|u(x)| : x ∈ K(r,R)}, (2.2)

where
K(r,R) := BR(x0) \Br(x0), Br(x0) := {x : |x− x0| < r}.

The regularity result of [5], [8] yields that M(r) <∞ for any r > 0.
Our first main theorem is about the removability result in case of p–phase.

Theorem 2.1. Let u be a weak solution to the equation (1.1) in Ω \ {x0}. Let the
conditions (1.2), (1.4) be fulfilled and a(x0) = 0. Assume also that:

lim
r→ 0

M(r) r
n−p
p−1 = 0, if p 6 q 6 p+ α

p− 1

n− 1
, p < n, (2.3)

lim
r→ 0

M(r) r
n−q+α
q−1 = 0, if p+ α

p− 1

n− 1
6 q < p+ α, p < n, (2.4)

lim
r→ 0

M(r) ln−1 1

r
= 0, if p = n, q = n+ α. (2.5)

Then the singularity of u at {x0} is removable.
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The next theorem gives sharp removability condition in the case of (p, q)–phase.

Theorem 2.2. Let u be a weak solution to (1.1) in Ω \ {x0}. Let the conditions
(1.2), (1.5) be fulfilled and a(x0) > 0. Assume also that

lim
r→ 0

M(r) r
n−q
q−1 = 0, if p 6 q < n, (2.6)

lim
r→ 0

M(r) ln−1 1

r
= 0, if q = n. (2.7)

Then the singularity of u(x) at {x0} is removable.

We point out that our approach continues the studies of [17], [21], [22] and is
based on the method of pointwise and integral estimates of nonlinear potentials.
The rest of the paper contains proofs of the above theorems.

3 Proof of Theorems 2.1, 2.2

3.1 Integral estimates for gradient of solutions in the case of
p-phase

In this Subsection we derive the auxiliary integral estimates of weak solutions to
equation (1.1). First, we recall some technical tools and build a sequence of appro-
priate cut-off functions.

In what follows we will frequently use the following Lemma ([7], Chapter II,
Lemma 4.7).

Lemma 3.1. Let {yj} be a sequence of nonnegative numbers such that for any
j = 0, 1, 2, . . . the inequality

yj+1 ≤ C bjy1+ε
j

holds with positive constants ε, C > 0, b > 1. Then the following estimate is true

yj ≤ C
(1+ε)j−1

ε b
(1+ε)j−1

ε2
− jε y

(1+ε)j

0 .

Particularly, if

y0 ≤ C−
1
ε b−

1
ε2

then

lim
j→∞

yj = 0.

For r > 0, p < n we set a nonnegative cut-off function ψr(x) ∈ C1(BR(x0)),
0 6 ψr(x) 6 1, satisfying the following conditions

ψr(x) ≡ 0 if |x− x0| 6 r, ψr(x) ≡ 1 if |x− x0| > 2r, |∇ψr(x)| 6 2 r−1.
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For every r > 0 and p = n we set ψ̃r(x) ∈ C1(BR(x0)), 0 6 ψ̃r(x) 6 1, such
that

ψ̃r(x) ≡ 0 if |x−x0| 6 r, ψ̃r(x) ≡ 1 if |x−x0| >
√
r, and |∇ψ̃r(x)| 6 2

|x− x0| ln 1
r

.

We will use the following notations

ur(x) := (u(x)−M(r))+, E(r) := {x ∈ BR(x0) : u(x) > M(r)}.

By the know parameters we understand the numbers ν1, ν2, n, p, q, R and [a]C0,α(Ω),
where

[a]C0,α(Ω) := sup
x,y∈Ω,x 6=y

|a(x)− a(y)|
|x− y|α

.

In what follows γ stands for a generic constant that depends on the known param-
eters only and may vary from line to line.

Lemma 3.2. Let u(x) be a weak solution of equation (1.1) and all conditions of
Theorem 2.1 are fulfilled. Then the following inequalities hold∫

E(R)

|∇u|p ψqr dx+

∫
E(R)

a(x)|∇u|q ψqr dx 6 γM(r)µ1(r), if p < n, (3.1)

and ∫
E(R)

|∇u|n ψ̃n+α
r dx+

∫
E(R)

a(x)|∇u|n+α ψ̃n+α
r dx 6 γM(r)µ2(r), (3.2)

if p = n and q = n+ α. Here

µ1(r) :=

 Mp−1(r)rn−p +
(
M(r)r

n−p
p−1

)q−1

, if p 6 q 6 p+ α
p− 1

n− 1
and p < n,(

M(r)r
n−q+α
q−1

)p−1

+Mq−1(r)rn−q+α, if p+ α
p− 1

n− 1
6 q < p+ α and p < n;

µ2(r) :=

(
M(r) ln−1 1

r

)n−1

+

(
M(r) ln−1 1

r

)n−1+α

.

Proof First, note that 0 6 a(x) 6 γ|x− x0|α for x ∈ BR(x0). Testing (2.1) by
ϕ = uRψ

q−1
r , ψ = ψr if p < n, using the condition (1.2) and the Young inequality

we have∫
E(R)

|∇u|p ψqr dx+

∫
E(R)

a(x)|∇u|q ψqr dx 6 γr−p
∫

K(r,2r)

upR dx+γrα−q
∫

K(r,2r)

uqR dx,

from this, applying the definition of M(r) we arrive at the required inequality (3.1).
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To show the second estimate in the Lemma, we test (2.1) by ϕ = uRψ̃
n+α−1
r , ψ =

ψ̃r if p = n and q = n+ α. Using the condition (1.2) and the Young inequality, we
have∫

E(R)

|∇u|n ψ̃n+α
r dx+

∫
E(R)

a(x)|∇u|n+α ψ̃n+α
r dx

6 γ ln−n
1

r

∫
K(r,

√
r)

unR|x− x0|−n dx+ γ ln−n−α
1

r

∫
K(r,

√
r)

un+α
R |x− x0|−n dx.

From this, using the definition of M(r), we arrive at the required (3.2).

For any t >M(R) we set

Et(R) := {x ∈ E(R) : u(x) < t}, u(t)(x) := min{uR(x), t−M(R)}.

Lemma 3.3. Let u(x) be a weak solution of equation (1.1) and all the conditions
of Theorem 2.1 are fulfilled. Then the following inequalities hold∫

Et(R)

|∇u|p ψqr dx 6 γ(t−M(R))µ3(r), if p < n, (3.3)

and ∫
Et(R)

|∇u|n ψ̃n+α
r dx 6 γ(t−M(R))µ4(r), if p = n and q = n+ α. (3.4)

Here

µ3(r) :=



(
M(r)r

n−p
p−1 µ1(r)

) p−1
p

+
(
M(r)r

n−p
p−1 µ1(r)

) q−1
q

,

if p 6 q 6 p+ α
p− 1

n− 1
and p < n,(

M(r)r
n−q+α
q−1 µ1(r)

) p−1
p

+
(
M(r)r

n−q+α
q−1 µ1(r)

) q−1
q

,

if p+ α
p− 1

n− 1
6 q < p+ α,

µ4(r) :=

(
M(r) ln−1 1

r
µ2(r)

)n−1
n

+

(
M(r) ln−1 1

r
µ2(r)

)n−1+α
n+α

.

Proof Testing (2.1) by ϕ = u(t)ψq−1
r , ψ = ψr if p < n, using the condition (1.2)

we have∫
Et(R)

|∇u|p ψqr dx 6 γr−1(t−M(R))

∫
K(r,2r)

|∇uR|p−1ψq−1
r dx

+ γr−1(t−M(R))

∫
K(r,2r)

a(x)|∇uR|q−1ψq−1
r dx. (3.5)
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By the Hölder inequality and Lemma 3.2, the terms in the right-hand side of (3.5)
are estimated as follows

γr−1

∫
K(r,2r)

|∇uR|p−1 ψq−1
r dx+ γr−1

∫
K(r,2r)

a(x)|∇uR|q−1 ψq−1
r dx

6 γr
n−p
p

 ∫
E(R)

|∇u|pψqr dx


p−1
p

+ γr
n−q+α

q

 ∫
E(R)

a(x)|∇u|qψqr dx


q−1
q

6 γr
n−p
p (M(r)µ1(r))

p−1
p + γr

n−q+α
q (M(r)µ1(r))

q−1
q ,

from this we arrived at the required (3.3).

Similarly, testing (2.1) by ϕ = u(t)ψ̃n+α−1
r , ψ = ψ̃r if p = n and q = n+α, using

the condition (1.2), Young’s and Hölder’s inequalities, and Lemma 3.2, we arrive at
(3.4). This proves Lemma 3.3.

3.2 Boundedness of solutions in the case of p-phase

In this section we introduce the proof of Theorem 2.1 applying the Moser’s iteration
technique.

We prove the boundedness of solution to equation (1.1) only in the case of
p < n. The proof of the boundedness of solutions in the case p = n and q = n+ α
is completely similar.

We fix ρ : 0 < ρ 6 R
2 and for any j = 1, 2, . . . , define the sequence of numbers

ρ
(1)
j =

ρ

2
(1+2−j), ρ

(2)
j =

ρ

2
(3−2−j), ρ

(1)
j =

1

2
(ρ

(1)
j +ρ

(1)
j+1), ρ

(2)
j =

1

2
(ρ

(2)
j +ρ

(2)
j+1).

Dj :=
{
x : ρ

(1)
j 6 |x− x0| 6 ρ

(2)
j

}
, Dj :=

{
x : ρ

(1)
j 6 |x− x0| 6 ρ

(2)
j

}
, kj = 2k− k

2j
,

here k is a positive number depending on the known parameters only, which will be
specified later.

Now we introduce the sequence of nonnegative cut-off functions ξj ∈ C∞0 (Dj)
such that ξj(x) ≡ 1 in Dj , |∇ ξj | 6 γ 2j ρ−1.

We test the integral identity (2.1) by the functions ϕ(x) = (uR − kj+1)+ ξ
q−1
j , ψ(x) =

ξj(x), After some easy computations, using structural conditions (1.2) and the
Young inequality, we deduce∫
Dj

|∇ (uR − kj+1)+|p |ξqj dx

6 γ 2γ jρ−p
∫
Dj

(uR − kj+1)p+ dx+ γ 2γ jρα−q
∫
Dj

(uR − kj+1)q+ dx.
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Using conditions (2.3), (2.4) and the definition (2.2) of M(ρ), from the last inequal-
ity we have ∫

Dj

|∇ (uR − kj+1)+|p ξqj dx 6 γ 2γ jH(ρ)

∫
Dj

(uR − kj+1)p+ dx, (3.6)

where

H(ρ) :=

 ρ−p, if p 6 q 6 p+ α
p− 1

n− 1
,

ρ−p+
α(p−1)−(n−1)(q−p)

q−1 , if p+ α
p− 1

n− 1
6 q < p+ α.

Using the Hölder inequality, Sobolev’s embedding theorem and the evident in-
equality ∣∣∣Dj

⋂
{uR > kj+1}

∣∣∣ 6 γ2γ jk−p
∫
Dj

(uR − kj)p+ dx

From (3.6) we get∫
Dj+1

(uR − kj+1)p+ dx 6
∫
Dj

(uR − kj+1)p+ξ
q
j dx

6 γ

∫
Dj

∣∣∣∇ ((uR − kj+1)+ξ
q
p

j

)∣∣∣p dx ∣∣∣Dj

⋂
{uR > kj+1}

∣∣∣ pn

6 γ 2γ jk−
p2

n H(ρ)

∫
Dj

(uR − kj)p+ dx


1+ p

n

.

Setting

yj :=

∫
Dj

(uR − kj)p+ dx

we obtain

yj+1 6 γ2jγk−
p2

n H(ρ)y
1+ p

n
j , j = 0, 1, 2, . . . .

Due to Lemma 3.1 this inequality implies that yj → 0 as j → ∞ if k satisfies the
following condition

y0 = γH−
n
p (ρ)kp,

from this we obtain

(M(ρ)−M(R))p 6 γH
n
p (ρ)

∫
D0

upR dx. (3.7)
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Using that D0 ⊂ K
(
ρ
2 , R

)
and uR(x) = u(M( ρ2 ))(x) for x ∈ K

(
ρ
2 , R

)
, applying

Poincaré inequality and Lemma 3.3, finally, from (3.7) we have

(M(ρ)−M(R))p+ 6 γ ρpH
n
p (ρ)

∫
E
M( ρ2 )(R)

|∇uR|p dx 6 γ ρpH
n
p (ρ)(M(ρ)−M(R))+µ3(r).

Iterating the last inequality, we obtain

(M(ρ)−M(R))+ 6 γ
(
ρpH

n
p (ρ)µ3(r)

) 1
p−1

. (3.8)

Passing to the limit as r → 0 and using conditions (2.3), (2.4), from (3.8) we get
that M(ρ) 6M(R) for every ρ 6 R

2 . The boundedness of solution is proved.

3.3 End of proof of Theorem 2.1

Let K be a compact set in Ω. We take a function ξ ∈ C∞0 (Ω) such that ξ = 1 for
x ∈ K. Testing (2.1) by ϕ = u ξ ψq−1

r , ψ = ψr, using (1.2), Young’s inequality,
boundedness of u and passing to the limit as r → 0, we get∫

K

G(a(x), |∇u|) dx 6 γ. (3.9)

The next step is to test integral identity (2.1) by ϕ = uψr, where ϕ is an arbitrary

function belonging to W 1,G
0 (Ω). Using boundedness of solution, after passing to

the limit as r → 0, we see that the integral identity (2.1) is valid with an arbitrary

ϕ ∈W 1,G
0 (Ω) and ψ ≡ 1. This proves Theorem 2.1 in case p 6 q < p+ α, p < n.

The proof of Theorem 2.1 in the case of p = n, q = n+ α is completely similar.

3.4 Proof of Theorem 2.2

We set R0 =
(

a(x0)
2[a]C0,α(Ω)

) 1
α

and let R1 < min{R0, R}. We note that

a(x0)

2
6 a(x) 6

3

2
a(x0),

for an arbitrary x ∈ BR1(x0). Therefore,

γ(a(x0)) g(t) 6 g(a(x), t) 6 γ(a(x0)) g(t), t > 0,

where g(t) = tp−1 + tq−1. Now Theorem 2.2 is an immediate consequence of Theo-
rem 1 from [13]. This completes the proof of Theorem 2.2.
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