INSTITUTE OF MATHEMATICS

Preprint No. 53-2016
PRAHA 2016

Relaxed disarrangements densities for structured deformations *

M. Šilhavý
Institute of Mathematics, CAS
Žitná 25
11567 Prague 1
Czech Republic
e-mail: silhavy@math.cas.cz

Abstract

This paper deals with the relaxation of energies of media with structured deformations introduced by Del Piero \& Owen [7-8]. Structured deformations provide a multiscale geometry that captures the contributions at the macrolevel of both smooth and non-smooth geometrical changes (disarrangements) at submacroscopic levels. The paper examines the special case of Choksi \& Fonseca's energetics of structured deformations [4] in which the unrelaxed energy does not contain the bulk contribution. Thus the energy is purely interfacial, but of the general form. Some new properties of the relaxed energy densities are derived: (i) the bulk relaxed energy is the subadditive envelope of the unrelaxed interfacial energy and (ii) a broad sufficient condition is given for the relaxed interfacial energy to coincide with the original one. The relaxations of the specific interfacial energies of Owen \& Paroni [14] and Barroso, Matias, Morandotti \& Owen [3] are simple consequences of our general results.

AMS 2010 classification 49 J 45 (74A60, 74G65, 15A99)
Keywords Structured deformations, relaxation, disarrangements, interfacial density, bulk density, functions of measures

Contents

1 Introduction . 1
2 Proofs of Theorems 1.2 and 1.3 . 5
3 Derivation of the examples . 11
4 Notation; functions of bounded variation . 12
5 References . 14

1 Introduction

This paper deals with the relaxation of nonclassical continua modeled as media with structured deformations introduced by Del Piero \& Owen [7-8]. ** In their original

[^0]setting, a structured deformation is a triplet (\mathscr{K}, g, G) of objects of the following nature. The set $\mathscr{K} \subset \mathbb{R}^{3}$, the crack site, is a subset of vanishing Lebesgue measure of the reference region Ω, the map $g: \Omega \sim \mathscr{K} \rightarrow \mathbb{R}^{3}$, the deformation map, is piecewise continuously differentiable and injective, and G is a piecewise continuous map from $\Omega \sim \mathscr{K}$ to the set of invertible second order tensors describing deformation without disarrangements.

Within this context, simple deformations are triples $(\mathscr{K}, g, \nabla g)$ where g is a piecewise smooth injective map with jump discontinuities describing partial or full separation of pieces of the body. In view of this, in the general case of a structured deformation (\mathscr{K}, g, G), the tensor

$$
M=\nabla g-G
$$

the deformation due to disarrangements, measures the departure of (\mathscr{K}, g, G) from the simple deformation ($\mathscr{K}, g, \nabla g$).

Choksi \& Fonseca [4] introduced into the theory of structured deformations energy considerations and the ideas of relaxation. For further studies in one and multidimensional settings see Del Piero [5-6]. It is well-known that the existing techniques of relaxation of the calculus of variations and continuum mechanics are unable to cope with the injectivity requirements. Accordingly, Choksi \& Fonseca neglect the injectivity requirement; in addition, they assume weaker regularity. In their interpretation, structured deformations are pairs (g, G) where $g: \Omega \rightarrow \mathbb{R}^{n}$ is a special \mathbb{R}^{n}-valued map of bounded variation from the space $\operatorname{SBV}(\Omega)$ and $G: \Omega \rightarrow$ Lin is an integrable Lin-valued map from the space $L^{1}(\Omega)$. ${ }^{\star}$ Thus

$$
S D(\Omega):=\operatorname{SBV}(\Omega) \times L^{1}(\Omega)
$$

is the set of all structured deformations. Structured deformations of the form $(g, \nabla g)$ with $g \in \operatorname{SBV}(\Omega)$ are called simple deformations in this paper.

The relaxation starts from the energy

$$
E(g)=\int_{\Omega} W(\nabla g) d \mathrm{~V}+\int_{J_{g}} \psi\left(\llbracket g \rrbracket, v_{g}\right) d \mathrm{~A}
$$

of a simple deformation $(g, \nabla g)$. Here V and A are the Lebesgue measure and the $n-1$-dimensional Hausdorff measure in $\mathbb{R}^{n}, \nabla g$ is the absolutely continuous part of the derivative (= gradient) $\mathrm{D} g$ of g, while the singular part

$$
\mathrm{D}^{\mathrm{s}} g:=\llbracket g \rrbracket \otimes v_{g} \mathrm{~A}\left\llcorner J_{g}\right.
$$

is a tensor-valued singular measure describing the discontinuities of g; that part is formed from the jump set $J_{g} \subset \Omega$ of g, the jump $\llbracket g \rrbracket$ of g on J_{g}, and the normal v_{g} to J_{g}. The reader is referred to (4.2), below, for a detailed description of these objects. The material is characterized by the bulk energy density $W: \operatorname{Lin} \rightarrow \mathbb{R}$ and by the jump energy $\psi: \mathbb{D}_{n} \rightarrow \mathbb{R}$, where we denote

$$
\mathbb{D}_{n}=\mathbb{R}^{n} \times \mathbb{S}^{n-1}
$$

[^1]The Approximation Theorem of Del Piero \& Owen [7; Theorem 5.8] says that every structured deformation is a well-defined limit of simple deformations. In the framework of Choksi \& Fonseca [4] (see also [16]) this means that corresponding to each structured deformation $(g, G) \in S D(\Omega)$ there exists a sequence $\left(g_{k}, \nabla g_{k}\right) \in$ $S D(\Omega)$ (i.e., with g_{k} in $\operatorname{SBV}(\Omega)$) such that

$$
\begin{align*}
& g_{k} \rightarrow g \quad \text { in } L^{1}(\Omega), \\
& \nabla g_{k} \stackrel{*}{\sim} G \quad \text { in } \mathscr{M}(\Omega, \mathrm{Lin}), \tag{1.1}\\
& \sup \left\{\left|\nabla g_{k}\right|_{L^{1}(\Omega)}: k \in \mathbb{N}\right\}<\infty .
\end{align*}
$$

The relaxed energy of a structured deformation $(g, G) \in S D(\Omega)$ is defined by

$$
\begin{equation*}
I(g, G)=\inf \left\{\liminf _{k \rightarrow \infty} E\left(g_{k}\right): g_{k} \in S B V(\Omega) \text { satisfies }(1.1)\right\} . \tag{1.2}
\end{equation*}
$$

Thus the sequence approaching the above infimum realizes the most economical way to build up the deformation (g, G) using the approximations in $S B V$. The relaxation theorem of Choksi \& Fonseca [4; Theorems $2.6 \& 2.17$] says that under some assumptions on W and ψ (a particular case of which is Assumption 1.1, below), the relaxed energy admits the integral representation

$$
\begin{equation*}
I(g, G)=\int_{\Omega} H(\nabla g, G) d \vee+\int_{J_{g}} h\left(\llbracket g \rrbracket, v_{g}\right) d \mathrm{~A} \tag{1.3}
\end{equation*}
$$

where H and h are some functions determined explicitly in the cited theorems (particular cases are (2.1) and (2.2), below).

This note deals with the relaxation of energy functions E for which the bulk contribution vanishes, i.e., with energy functions of the form

$$
\begin{equation*}
E(g)=\int_{J_{g}} \psi\left(\llbracket g \rrbracket, v_{g}\right) d \mathrm{~A} \tag{1.4}
\end{equation*}
$$

for each simple deformation $(g, \nabla g)$. Special cases of the energies of this type have been considered previously by Owen \& Paroni [14] and Barroso, Matias, Morandotti \& Owen [3], see Examples 1.4 and 1.5, below.

Throughout the paper, we assume that the energy E is given by (1.4), its relaxation I is defined by (1.2), and it will be proved I takes the form (1.3) where H and h will be determined by the function ψ alone. We make the following standing hypotheses about ψ.

Assumption 1.1

- The function $\psi: \mathbb{D}_{n} \rightarrow \mathbb{R}$ is continuous;
- we have $\psi(-a,-b)=\psi(a, b)$ and

$$
\begin{equation*}
c_{1}|a| \leq \psi(a, b) \leq C_{1}|a| \tag{1.5}
\end{equation*}
$$

for every $(a, b) \in \mathbb{D}_{n}$ and some $c_{1}>0, C_{1}>0 ;$

- the function $\psi(\cdot, v)$ is subadditive and positively homogeneous of degree 1 for each $v \in \mathbb{S}^{n-1}$.
The following two theorems are the main results of this note.

Theorem 1.2 The function H is given by

$$
H(A, B)=\Phi(A-B), \quad A, B \in \mathrm{Lin},
$$

where $\Phi: \operatorname{Lin} \rightarrow[0, \infty)$ is a subadditive and positively homogeneous function of degree 1; in fact Φ is the biggest subadditive function on Lin satisfying

$$
\begin{equation*}
\Theta(a \otimes b) \leq \psi(a, b) \text { for every }(a, b) \in \mathbb{D}_{n} \tag{1.6}
\end{equation*}
$$

i.e.,

$$
\begin{array}{r}
\Phi(M)=\sup \{\Theta(M): \Theta: \operatorname{Lin} \rightarrow[0, \infty) \text { is subadditive and } \tag{1.7}\\
\left.\Theta(a \otimes b) \leq \psi(a, b) \text { for every }(a, b) \in \mathbb{D}_{n}\right\} ;
\end{array}
$$

equivalently,

$$
\begin{equation*}
\Phi(M)=\inf \left\{\sum_{i=1}^{m} \psi\left(a_{i}, b_{i}\right): m \in \mathbb{N},\left(a_{i}, b_{i}\right) \in \mathbb{D}_{n}, \sum_{i=1}^{m} a_{i} \otimes b_{i}=M\right\} \tag{1.8}
\end{equation*}
$$

for every $M \in \operatorname{Lin}$.
To ease the statement of the next theorem, we extend the function $h: \mathbb{D}_{n} \rightarrow$ $[0, \infty)$ by homogeneity with respect to the second variable, i.e., we define \tilde{h} : $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow[0, \infty)$ by $\tilde{h}(a, b)=|b| h(a, \operatorname{sgn}(b))$ for every $a, b \in \mathbb{R}^{n}$, where

$$
\operatorname{sgn}(b)= \begin{cases}b /|b| & \text { if } \quad b \neq 0, \\ 0 & \text { else } .\end{cases}
$$

Theorem 1.3

(i) For every $a, b \in \mathbb{R}^{n}$, the functions $\tilde{h}(\cdot, b)$ and $\tilde{h}(a, \cdot)$ are subadditive and positively homogeneous of degree 1 .
(ii) If there exists a subadditive and positively homogeneous function Λ : Lin \rightarrow $[0, \infty)$ such that

$$
\begin{equation*}
\psi(a, b)=\Lambda(a \otimes b) \tag{1.9}
\end{equation*}
$$

for every $(a, b) \in \mathbb{D}_{n}$, then $h=\psi$.
Since the pointwise supremum of any family of subadditive functions is subadditive (e.g., [13; Theorem 7.2.2]), Equation (1.7) really defines a subadditive function. The proofs of Theorems 1.2 and 1.3 are given in Section 2, below. We now illustrate Theorems 1.2 and 1.3 on particular cases. These motivated the present study.

Example 1.4 ([14; Theorem 4, particular case $L=I]$) If

$$
\psi_{|\cdot|}(a, b)=|a \cdot b| \quad \text { and } \quad \psi_{ \pm}(a, b)=\{a \cdot b\}_{ \pm}
$$

for every $(a, b) \in \mathbb{D}_{n}$, where $\{\cdot\}_{+}$and $\{\cdot\}_{\text {_ }}$ denote the positive and negative parts of a real number, then

$$
\begin{array}{lll}
\Phi_{|\cdot|}(M)=|\operatorname{tr} M| & \text { and } & \Phi_{ \pm}(M)=\{\operatorname{tr} M\}_{ \pm} \\
h_{|\cdot|}(a, b)=|a \cdot b| & \text { and } & h_{ \pm}(a, b)=\{a \cdot b\}_{ \pm} \tag{1.11}
\end{array}
$$

respectively, for every $M \in \operatorname{Lin}$ and $(a, b) \in \mathbb{D}_{n}$.

As shown in [14], $\{\operatorname{tr} M\}_{+}$is a volume density of disarrangements due to submacroscopic separations, $\{\operatorname{tr} M\}$ _ is a volume density of disarrangements due to submacroscopic switches and interpenetrations, and $|\operatorname{tr} M|$ is a volume density of all three of these non-tangential disarrangements: separations, switches, and interpenetrations. The evaluation in [14] of H (equivalently, of Φ) for (1.10) is rather complicated; a recent paper by Barroso, Matias, Morandotti \& Owen [3] presents some simplification. Our version of the derivation is given in Section 3.

Example 1.5 ([3; Equation (5.3)]) If

$$
\psi(a, b)=|a \cdot p|
$$

for $(a, b) \in \mathbb{D}_{n}$, where $p \in \mathbb{R}^{n}$ is a fixed vector, then

$$
\begin{equation*}
\Phi(M)=\left|M^{\mathrm{T}} p\right| \text { and } h(a, b)=|a \cdot p| \tag{1.12}
\end{equation*}
$$

for any $M \in \operatorname{Lin}$ and $(a, b) \in \mathbb{D}_{n}$.

2 Proofs of Theorems 1.2 and 1.3

The following statement is a particular case $W=0$ of the relaxation theorem of Choksi \& Fonseca [4; Theorem 2.17].

Theorem 2.1 The effective energies H and h are given by

$$
\begin{align*}
& H(B, C)=\inf \{\Delta(u): u \in \mathscr{A}(B, C)\}, \tag{2.1}\\
& h(a, b)=\inf \left\{\Delta(u): u \in \mathscr{B}\left(a, b, Q_{b}\right)\right\} \tag{2.2}
\end{align*}
$$

for any $B, C \in \operatorname{Lin}$ and any $(a, b) \in \mathbb{D}_{n}$, where the objects occurring in these formulas are defined as follows:

- for any $u \in \operatorname{SBV}(\Omega)$ and any bounded open set $\Omega \subset \mathbb{R}^{n}$,

$$
\Delta(u):=\int_{J_{u} \cap \Omega} \psi\left(\llbracket u \rrbracket, v_{u}\right) d \mathrm{~A} ;
$$

- if $Q=(-1 / 2,1 / 2)^{n}$, then

$$
\mathscr{A}(B, C):=\left\{u \in S B V(Q): u(x)=B x \text { if } x \in \partial Q, \int_{Q} \nabla u d \vee=C\right\}
$$

- iffor every $(a, b) \in \mathbb{D}_{n}$ the map $u_{a, b}: Q_{b} \rightarrow \mathbb{R}^{n}$ is defined by

$$
u_{a, b}(x)=\frac{1}{2} a(\operatorname{sgn}(x \cdot b)+1), \quad x \in Q_{b},
$$

where Q_{b} is any cube of unit edge, of center at $0 \in \mathbb{R}^{n}$, and of two faces normal to b, then

$$
\mathscr{B}\left(a, b, Q_{b}\right):=\left\{u \in \operatorname{SBV}\left(Q_{b}\right), u=u_{a, b} \text { on } \partial Q_{b}, \nabla u=0 \text { on } Q_{b}\right\} .
$$

Theorem 2.1 will be employed in the proofs of Theorems 1.2 and 1.3, together with the constructions in the lemmas to be presented now.

Lemma 2.2 We have

$$
H(B, C)=\Psi(B-C)
$$

for any $B, C \in \operatorname{Lin}$, where $\Psi: \operatorname{Lin} \rightarrow[0, \infty)$ is given by

$$
\begin{equation*}
\Psi(M)=\inf \{\Delta(u): u \in \mathscr{A}(M, 0)\} \tag{2.3}
\end{equation*}
$$

for any $M \in \operatorname{Lin}$.
Proof It suffices to note that if $u \in \mathscr{A}(B, C)$ then v, given by $v(x)=u(x)-C x$, $x \in Q$, satisfies $v \in \mathscr{A}(B-C, 0)$ and $\Delta(u)=\Delta(v)$.

Remark 2.3 If the interfacial energy density ψ is of the special form (1.9) where $\Lambda: \operatorname{Lin} \rightarrow[0, \infty)$ is a subadditive and positively homogeneous function then $\Delta(u)$ is given by

$$
\Delta(u)=\Lambda\left(\mathrm{D}^{\mathrm{s}} u\right)
$$

where $\mathrm{D}^{\mathrm{s}} u:=\llbracket u \rrbracket \otimes v_{u} \mathrm{~A}\left\llcorner J_{u}\right.$ is the singular part of the derivative $\mathrm{D} u$ of u and

$$
\Lambda\left(\mathrm{D}^{\mathrm{s}} u\right):=\int_{J_{u}} \Lambda\left(\llbracket u \rrbracket \otimes v_{u}\right) d \mathrm{~A}
$$

is an instance of Reshetnyak's [15] functional $\mu \mapsto \Lambda(\mu)$ of a measure $\mu \in$ $\mathscr{M}(Q, \mathrm{Lin})$; see, e.g., [1; Equation (2.29)]. The subadditivity and positive homogeneity of degree 1 of Φ (asserted in Theorem 1.2) is then an instance of the general result [1; Proposition 2.37] asserting the same properties of the functional $\mu \mapsto \Lambda(\mu)$. Indeed, if $M_{i} \in \operatorname{Lin}$ and $u_{i} \in \mathscr{A}\left(M_{i}, 0\right), i=1,2$, then $u_{1}+u_{2} \in \mathscr{A}\left(M_{1}+M_{2}, 0\right)$ and therefore

$$
\Phi\left(M_{1}+M_{2}\right) \leq \Lambda\left(\mathrm{D}^{\mathrm{s}}\left(u_{1}+u_{2}\right)\right)=\Lambda\left(\mathrm{D}^{\mathrm{s}} u_{1}+\mathrm{D}^{\mathrm{s}} u_{2}\right) \leq \Lambda\left(\mathrm{D}^{\mathrm{s}} u_{1}\right)+\Lambda\left(\mathrm{D}^{\mathrm{s}} u_{2}\right) ;
$$

taking the infimum over all $u_{1} \in \mathscr{A}\left(M_{1}, 0\right), u_{2} \in \mathscr{A}\left(M_{2}, 0\right)$ gives

$$
\Phi\left(M_{1}+M_{2}\right) \leq \Phi\left(M_{1}\right)+\Phi\left(M_{2}\right) .
$$

The positive homogeneity of degree 1 follows similarly. We note that the interfacial energies in Examples 1.4 and 1.5 have the form (1.9), but this is not the case generally. To prove the subadditivity and positive hemegeneity of degree 1 in the general case, we shall proceed in a different way, proving the formulas (1.7) and (1.8) also.

Lemma 2.4 For any $(a, b) \in \mathbb{D}_{n}$ there exists a sequence $u_{k} \in \mathscr{A}(a \otimes b, 0)$, $k=1, \ldots$, such that

$$
\begin{equation*}
\Delta\left(u_{k}\right) \rightarrow \psi(a, b) \tag{2.4}
\end{equation*}
$$

as $k \rightarrow \infty$.
Proof We denote by $\langle r\rangle$ the integral part of $r \in \mathbb{R}$. In the proof we shall repeatedly use the elementary fact that

$$
\langle k t\rangle / k \rightarrow t \text { as } k \rightarrow \infty
$$

uniformly in $t \in \mathbb{R}$. For any $k \in \mathbb{N}$ we put

$$
Q_{k}=(1-1 / k) Q, \quad c_{k}=\mathrm{V}\left(Q \sim Q_{k}\right) / \mathrm{V}\left(Q_{k}\right),
$$

and define

$$
u_{k}(x)= \begin{cases}a(b \cdot x) & \text { if } x \in Q \sim Q_{k}, \\ a\left(\langle k(b \cdot x)\rangle / k-c_{k}(b \cdot x)\right) & \text { if } x \in Q_{k},\end{cases}
$$

$x \in Q$. One has

$$
\nabla u_{k}(x)= \begin{cases}a \otimes b & \text { if } \\ -x_{k} \in Q \sim Q_{k}, \\ -c_{k} a \otimes b & \text { if }\end{cases}
$$

hence $\int_{Q} \nabla u_{k} d \vee=0$ and as $u_{k}(x)=(a \otimes b) x$ if $x \in \partial Q$, we have $u_{k} \in$ $\mathscr{A}(a \otimes b, 0)$. Furthermore,

$$
J_{u_{k}}=\partial Q_{k} \cup L_{k} \text { where } L_{k}=\left\{x \in Q_{k}: k(x \cdot b) \in \mathbb{Z}\right\}
$$

and

$$
\llbracket u_{k} \rrbracket \otimes v_{u_{k}}=\left\{\begin{array}{lll}
a \otimes v_{Q_{k}} \varphi_{k}(x) & \text { if } & x \in \partial Q_{k}, \\
a \otimes b / k & \text { if } & x \in L_{k}
\end{array}\right.
$$

where $v_{Q_{k}}$ is the outer normal to ∂Q_{k} and

$$
\varphi_{k}(x)=\left(1+c_{k}\right)(b \cdot x)-\langle k(b \cdot x)\rangle / k .
$$

Hence

$$
\begin{equation*}
\Delta\left(u_{k}\right)=\int_{\partial Q_{k}} \psi\left(a \varphi_{k}(x), v_{Q_{k}}\right) d \mathrm{~A}+\psi(a, b) \mathrm{A}\left(L_{k}\right) / k . \tag{2.5}
\end{equation*}
$$

We now consider the limit $k \rightarrow \infty$. $\operatorname{By}(1.5)_{2}, 0 \leq \psi\left(\varphi_{k}(x), v_{Q_{k}}\right) \leq C_{1}|a|\left|\varphi_{k}(x)\right|$ and since $(b \cdot x)-\langle k(b \cdot x)\rangle / k \rightarrow 0$ uniformly in x and $c_{k} \rightarrow 0$, we have $\left|\varphi_{k}(x)\right| \rightarrow 0$ uniformly and thus

$$
\begin{equation*}
\int_{\partial Q_{k}} \psi\left(a \varphi_{k}(x), v_{Q_{k}}\right) d \mathrm{~A} \rightarrow 0 . \tag{2.6}
\end{equation*}
$$

Next observe that

$$
\begin{equation*}
\mathrm{A}\left(L_{k}\right) / k \rightarrow 1 . \tag{2.7}
\end{equation*}
$$

To see that, we introduce a sequence of scalar piecewise constant functions ω_{k} : $Q_{k} \rightarrow \mathbb{R}$ by putting $\omega_{k}(x)=\langle k(b \cdot x)\rangle / k, x \in Q_{k}$. Using $J_{\omega_{k}}=L_{k}$ and $\llbracket \omega_{k} \rrbracket \otimes$ $v_{\omega_{k}}=b / k$ on $J_{\omega_{k}}$, we see that the (scalar version of the) Gauss-Green theorem (4.1) for ω_{k} reads

$$
\int_{Q_{k}} d \mathrm{D} \omega_{k} \equiv \int_{J_{u_{k}}} \llbracket \omega_{k} \rrbracket \otimes v_{\omega_{k}} d \mathrm{~A} \equiv b \mathrm{~A}\left(L_{k}\right) / k=\int_{\partial Q_{k}} \omega_{k} v_{Q_{k}} d \mathrm{~A} .
$$

Transforming the last integral onto a common domain ∂Q and using $\omega_{k}(x) \rightarrow b \cdot x$ one obtains

$$
b \mathbf{A}\left(L_{k}\right) / k \rightarrow \int_{\partial Q}(b \cdot x) v_{Q} d \mathbf{A}(x)=b,
$$

and (2.5) follows. But (2.5), (2.6) and (2.7) give (2.4).

Lemma 2.5 If $M \in \operatorname{Lin}$ and $\left(a_{i}, b_{i}\right) \in \mathbb{D}_{n}, i=1, \ldots, m$, satisfy

$$
M=\sum_{i=1}^{m} a_{i} \otimes b_{i}
$$

and iffor any pair of distinct indices $i, j \in\{1, \ldots, m\}$ the pair $\left\{b_{i}, b_{j}\right\}$ is linearly independent (i.e., $b_{i} \neq b_{j}$ and $b_{i} \neq-b_{j}$), then there exists a sequence $u_{k} \in \mathscr{A}(M, 0)$, $k=1, \ldots$, such that

$$
\begin{equation*}
\Delta\left(u_{k}\right) \rightarrow \sum_{i=1}^{m} \psi\left(a_{i}, b_{i}\right) \tag{2.8}
\end{equation*}
$$

as $k \rightarrow \infty$.
Proof By Lemma 2.4, for each $i \in\{1, \ldots, m\}$ there exists a sequence $u_{k}^{i} \in$ $\mathscr{A}\left(a_{i} \otimes b_{i}, 0\right), k=1, \ldots$, such that

$$
\begin{equation*}
\Delta\left(u_{k}^{i}\right) \rightarrow \psi\left(a_{i}, b_{i}\right) \tag{2.9}
\end{equation*}
$$

as $k \rightarrow \infty$. Define $u_{k}:=\sum_{i=1}^{m} u_{k}^{i}$ for every k. By the linear independence of pairs of different normals $\left\{b_{i}, b_{j}\right\}$, the jump sets of the maps u_{k}^{i} and u_{k}^{j} with $i \neq j$ intersect at the set of A-measure 0 for every k. Consequently, $\Delta\left(u_{k}\right)=\sum_{i=1}^{m} \Delta\left(u_{k}^{i}\right)$ and by (2.9) the sequence u_{k} has the required properties.

Proof of Theorem 1.2 Let Ψ and $\Phi: \operatorname{Lin} \rightarrow[0, \infty)$ be given by (2.3) and (1.7), respectively. We first note that the two definitions of Φ in (1.7) and (1.8) are easily seen to be equivalent (omitted).

The main part of the proof of Theorem 1.2 is to establish $\Psi(M)=\Phi(M)$ for any $M \in \operatorname{Lin}$.

To prove $\Psi(M) \leq \Phi(M)$, we take any sequence $\left(a_{i}, b_{i}\right) \in \mathbb{D}_{n}, i=1, \ldots, m$, $m \in \mathbb{N}$, such that $\sum_{i=1}^{m} a_{i} \otimes b_{i}=M$ and consider the infimum as in (1.8). It is easy to see that the same infimum is obtained if one considers only the sequences $\left(a_{i}, b_{i}\right) \in \mathbb{D}_{n}$ such that that for any part of distinct indices $i, j \in\{1, \ldots, m\}$ the pair $\left\{b_{i}, b_{j}\right\}$ is linearly independent. Otherwise one joins the members with the same or opposite value of b_{i} into a single term and to use the subadditivity of ψ with respect to the first variable to obtain possibly a smaller value of the sum in (1.8). Hence, for the given sequence $\left(a_{i}, b_{i}\right) \in \mathbb{D}_{n}$ satisfying the linear independency condition, we construct a sequence of maps $u_{k} \in \mathscr{A}(M, 0), k=1, \ldots$, as in Lemma 2.5. Then

$$
\Psi(M) \leq \Delta\left(u_{k}\right)
$$

by the definition of Ψ. Letting $k \rightarrow \infty$ and using (2.8), we obtain

$$
\Psi(M) \leq \sum_{i=1}^{m} \psi\left(a_{i}, b_{i}\right) .
$$

Taking the infimum over all sequences a_{i}, b_{i}, one obtains from the definition of Φ the inequality $\Psi(M) \leq \Phi(M)$.

To prove $\Phi(M) \leq \Psi(M)$, we let $u \in \mathscr{A}(M, 0)$ and observe preliminarily that

$$
\begin{equation*}
\int_{J_{u}} \llbracket u \rrbracket \otimes v_{u} d \mathbf{A}=\int_{\partial Q} u_{\partial \Omega} \otimes v_{Q} d \mathbf{A}=\int_{\partial Q} M x \otimes v_{Q} d \mathbf{A}(x)=M \tag{2.10}
\end{equation*}
$$

by the Gauss-Green theorem (4.1) with $\mathrm{D} u=\llbracket u \rrbracket \otimes v_{u} \mathrm{~A}\left\llcorner J_{u}\right.$, and $\Omega=Q$. The idea of the proof is to replace the integrals in

$$
\Delta(u)=\int_{J_{u}} \psi\left(\llbracket u \rrbracket, v_{u}\right) d \mathrm{~A} \text { and } M=\int_{J_{u}} \llbracket u \rrbracket \otimes v_{u} d \mathrm{~A}
$$

by finite (Lebesgue) sums to obtain the sums occurring in the definition (1.8) of Φ. The details can be as follows. Applying, e.g., [12; Corollary 1.77] to each component of the pair of maps $\left(\llbracket u \rrbracket, v_{u}\right): J_{u} \rightarrow \mathbb{D}_{m}$, one obtains a sequence of simple maps $\left(s_{k}, b_{k}\right): J_{u} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ such that, by applying the pointwise majorized convergence asserted in [12; Corollary 1.77], one has

$$
\begin{equation*}
\int_{J_{u}} \psi\left(s_{k}, b_{k}\right) d \mathrm{~A} \rightarrow \int_{J_{u}} \psi\left(\llbracket u \rrbracket, v_{u}\right) d \mathrm{~A} \text { and } \int_{J_{u}} s_{k} \otimes b_{k} d \mathrm{~A} \rightarrow \int_{J_{u}} \llbracket u \rrbracket \otimes v_{u} d \mathrm{~A} . \tag{2.11}
\end{equation*}
$$

In view of the second relation, it is possible to modify the functions s_{k}, b_{k} slightly to obtain simple functions, denoted again by s_{k}, b_{k}, such that (2.11) $)_{1}$ remains valid while $(2.11)_{2}$ is replaced by

$$
\int_{J_{u}} s_{k} \otimes b_{k} d \mathrm{~A}=\int_{J_{u}} \llbracket u \rrbracket \otimes v_{u} d \mathrm{~A}=M \quad \text { and } \quad\left|b_{k}\right|=1 \quad \text { for all } k .
$$

The pair (s_{k}, b_{k}) has the form

$$
\left(s_{k}, b_{k}\right)=\sum_{i=1}^{m_{k}}\left(s_{k}^{i}, b_{k}^{i}\right) 1_{S_{k}^{i}}
$$

where the system $\left\{S_{k}^{i}: i=1, \ldots m_{k}\right\}$ is a partition of J_{u} and generally 1_{S} is the characteristic function of the set $S \subset \mathbb{R}^{n}$. Putting $a_{k}^{i}=\mathrm{A}\left(S_{k}^{i}\right) s_{k}^{i}$, for each k, we have a sequence $\left(a_{k}^{i}, b_{k}^{i}\right), i=1, \ldots, m_{k}$, such that

$$
\sum_{i=1}^{m_{k}} a_{k}^{i} \otimes b_{k}^{i}=\int_{J_{u}} s_{k} \otimes b_{k} d \mathrm{~A}=M
$$

and

$$
\sum_{i=1}^{m_{k}} \psi\left(a_{k}^{i}, b_{k}^{i}\right)=\int_{J_{u}} \psi\left(s_{k}, b_{k}\right) d \mathrm{~A} \rightarrow \Delta(u) \quad \text { as } \quad k \rightarrow \infty .
$$

As $u \in \mathscr{A}(M, 0)$ is arbitrary, we have $\Psi(M) \geq \Phi(M)$.
Proof of Theorem 1.3, Part (i) The definition (2.2) gives

$$
\begin{equation*}
\int_{J_{u}} \psi\left(\llbracket u \rrbracket, v_{u}\right) d \mathrm{~A} \geq h(a, b) \tag{2.12}
\end{equation*}
$$

for every $a \in \mathbb{R}^{n}, b \in \mathbb{S}^{n-1}$ and $u \in \mathscr{B}\left(a, b, Q_{b}\right)$. Througout the proof, let Q_{b} be a fixed cube and $u_{a, b}$ the map as in Theorem 2.1.

To prove that h is subadditive and positively homogeneous of degree 1 in the first variable, let $a_{1}, a_{2} \in \mathbb{R}^{n}, b \in \mathbb{S}^{n-1}$ and put $a:=a_{1}+a_{2}$. Let H be the plane of normal b containing the origin and let $P: \mathbb{R}^{n} \rightarrow H$ be the orthogonal projection onto H. The intersection $Q_{b} \cap H$ is a square in H of unit edge and of center at 0 . Let $S \subset H$ be a circle in H with origin 0 and of any radius $r>0$ such that $S \subset Q_{b}$. The number r remains fixed throughout the proof. For any positive $\varepsilon<1 / 2$ let C_{ε} be the (truncated) cylinder $C_{\varepsilon}=\left\{x \in \mathbb{R}^{n}: P x \in S, 0<x \cdot b<\varepsilon\right\}$ and let $u_{\varepsilon}: Q_{b} \rightarrow \mathbb{R}^{n}$ be defined by

$$
u_{\varepsilon}= \begin{cases}a_{1} & \text { on } C_{\varepsilon}, \\ u_{a, b} & \text { on } \quad Q_{b} \sim C_{\varepsilon} .\end{cases}
$$

Then

$$
J_{u_{\varepsilon}}=\left(\left(Q_{b} \cap H\right) \sim S\right) \cup S \cup(S+\varepsilon b) \cup S_{\varepsilon}
$$

where $S_{\varepsilon}=\left\{x \in \mathbb{R}^{n}: P x \in \partial S, 0<x \cdot b<\varepsilon\right\}$ is the mantle of the cylinder C_{ε}. Evaluating $\llbracket u_{\varepsilon} \rrbracket$ on each of the indicated parts of $J_{u_{\varepsilon}}$ we obtain

$$
\begin{aligned}
\int_{J_{u_{\varepsilon}}} \psi\left(\llbracket u_{\varepsilon} \rrbracket, v_{u_{\varepsilon}}\right) d \mathrm{~A} & =(1-\mathrm{A}(S)) \psi(a, b)+\mathrm{A}(S) \psi\left(a_{1}, b\right) \\
& +\mathrm{A}(S) \psi\left(-a_{2},-b\right)+\int_{S_{\varepsilon}} \psi\left(-a_{2}, v_{S_{\varepsilon}}\right) d \mathrm{~A} .
\end{aligned}
$$

Inequality (2.12) reads

$$
\mathrm{A}(S)\left(\psi\left(a_{1}, b\right)+\psi\left(-a_{2},-b\right)\right)+\int_{S_{\varepsilon}} \psi\left(-a_{2}, v_{S_{\varepsilon}}\right) d \mathbf{A} \geq \mathbf{A}(S) h(a, b) .
$$

Letting $\varepsilon \rightarrow 0$ and using $\int_{S_{\varepsilon}} \psi\left(-a_{2}, v_{S_{\varepsilon}}\right) d \mathrm{~A} \rightarrow 0$ and $\psi\left(-a_{2},-b\right)=\psi\left(a_{2}, b\right)$, we obtain

$$
h\left(a_{1}+a_{2}, b\right) \leq h\left(a_{1}, b\right)+h\left(a_{2}, b\right),
$$

i.e., the subadditivity in the first variable. The proof of the positive homogeneity of degree 1 in the first variable of ψ uses a similar but simpler construction. The details are omitted.

To prove that \tilde{h} is subadditive and positively homogeneous of degree 1 in the second variable, let $a, b_{1}, b_{2} \in \mathbb{R}^{n}$. The case of b_{1} and b_{2} linearly dependent being trivial, we assume that b_{1} and b_{2} are linearly independent and in addition that $b:=b_{1}+b_{2}$ is a unit vector. Let P be the infinite prism of triangular cross section with faces formed by planar strips of outer normals and widths, respectively, $-\operatorname{sgn}\left(b_{1}\right)$ and $\left|b_{1}\right|,-\operatorname{sgn}\left(b_{2}\right)$ and $\left|b_{2}\right|,-b$ and 1 , such that the origin $0 \in \mathbb{R}^{n}$ is in the center of the face of normal $-b$. Let $R=\frac{1}{2} Q_{b}$ and for each $\varepsilon>0$, let $P_{\varepsilon}=R \cap(\varepsilon P)$. If ε is sufficiently small, then $P_{\varepsilon} \subset\left\{x \in Q_{b}: 0<x \cdot b<1 / 2\right\}$. Let $u_{\varepsilon}: Q_{b} \rightarrow \mathbb{R}^{n}$ be defined by

$$
u_{\varepsilon}=\left\{\begin{array}{c}
-a \\
\text { on } \quad\left\{x \in Q_{b}: 0<x \cdot b<1 / 2\right\} \sim P_{\varepsilon}, \\
0
\end{array} \quad \text { on } \quad\left\{x \in Q_{b}:-1 / 2<x \cdot b<0\right\} \cup P_{\varepsilon} .\right.
$$

The inequality $\int_{J_{u_{\varepsilon}}} \psi\left(\llbracket u \rrbracket, v_{u_{\varepsilon}}\right) d \mathrm{~A} \geq h(a, b)$ is easily found to take the form

$$
\begin{equation*}
\varepsilon\left(\tilde{h}\left(-a,-b_{1}\right)+\tilde{h}\left(-a,-b_{2}\right)\right)+V_{\varepsilon} \geq \varepsilon \tilde{h}(a, b) \tag{2.13}
\end{equation*}
$$

where

$$
V_{\varepsilon}=\int_{\varepsilon P \cap R} \psi(-a, v) d \mathrm{~A} .
$$

We divide Inequality (2.13) by ε and use $V_{\varepsilon}=\mathrm{O}\left(\varepsilon^{2}\right)$ to obtain

$$
\tilde{h}\left(a, b_{1}+b_{2}\right) \leq \tilde{h}\left(a, b_{1}\right)+\tilde{h}\left(a, b_{2}\right) .
$$

The proof of the positive homogeneity of degree 1 is similar.

Proof of Theorem 1.3, Part (ii) Throughout the proof, let $(a, b) \in \mathbb{D}_{n}$ be arbitrary and let Q_{b} be a fixed cube and $u_{a, b}$ the map as in Theorem 2.1. If $u \in \mathscr{B}\left(a, b, Q_{b}\right)$, we apply the Gauss-Green theorem in the same way as in the proof of (2.10) to obtain

$$
\begin{equation*}
\int_{J_{u}} \llbracket u \rrbracket \otimes v_{u} d \mathbf{A}=a \otimes b . \tag{2.14}
\end{equation*}
$$

Equations (1.9) and (2.14) and Jensen's inequality [12; Theorem 4.80] then give

$$
\begin{aligned}
\Delta(u) & :=\int_{J_{u}} \psi\left(\llbracket u \rrbracket, v_{u}\right) d \mathrm{~A} \\
& =\int_{J_{u}} \Lambda\left(\llbracket u \rrbracket \otimes v_{u}\right) d \mathrm{~A} \\
& \geq \Lambda\left(\int_{J_{u}} \llbracket u \rrbracket \otimes v_{u} d \mathrm{~A}\right) \\
& =\Lambda(a \otimes b)=\psi(a, b) .
\end{aligned}
$$

Thus the definition (2.2) gives $h=\psi$.

3 Derivation of the examples

Example 1.4 Equation (1.10): We consider $\psi_{|\cdot|}(a, b)=|a \cdot b|$ first, and prove $(1.10)_{1}$. Clearly, the function $\Theta(M)=|\operatorname{tr} M|$ is a subadditive function satisfying (1.6) with $\psi=\psi_{|\cdot|}$ and hence (1.8) gives $\Phi_{|\cdot|}(M) \geq|\operatorname{tr} M|$ for any $M \in \operatorname{Lin}$. To prove the opposite inequality, we note that the definition (1.7) of $\Phi_{|\cdot|}$ gives

$$
\psi_{|\cdot|}(a, b)=\Theta(a \otimes b) \leq \Phi_{|\cdot|}(a \otimes b) \leq \psi_{|\cdot|}(a, b)
$$

for every $(a, b) \in \mathbb{D}_{n}$ and hence

$$
\begin{equation*}
\Phi_{|\cdot|}(a \otimes b)=|a \cdot b| \quad \text { and in particular } \quad \Phi_{|\cdot|}(a \otimes b)=0 \quad \text { if } a \cdot b=0 \tag{3.1}
\end{equation*}
$$

which determines $\Phi_{|\cdot|}$ on tensor products $a \otimes b$. To determine $\Phi_{|\cdot|}$ on a general $M \in$ Lin, we write $C=A+W$ where A and W are the symmetric and skew parts of C. Let e_{1}, \ldots, e_{n} be an orthonormal basis of eigenvectors of A with the eigenvalues λ_{i}; then the equation $A=\sum_{i=1}^{n} \lambda_{i} e_{i} \otimes e_{i}$ can be rearranged as

$$
\begin{equation*}
A=(\operatorname{tr} M) e_{1} \otimes e_{1}+\sum_{i=2}^{n} \lambda_{i}\left(e_{i} \otimes e_{1}-e_{1} \otimes e_{i}-\left(e_{1}+e_{i}\right) \otimes\left(e_{1}-e_{i}\right)\right) \tag{3.2}
\end{equation*}
$$

a combination with

$$
\begin{equation*}
W=\sum_{1 \leq i \neq j \leq n} W_{i j} e_{i} \otimes e_{j}, \quad W_{i j}=-W_{j i} \tag{3.3}
\end{equation*}
$$

yields

$$
C=(\operatorname{tr} M) e_{1} \otimes e_{1}+\sum_{\alpha=1}^{(n-1)(n+3)} a_{\alpha} \otimes b_{\alpha}
$$

where the collection of the dyads $a_{\alpha} \otimes b_{\alpha}, \alpha=1, \ldots,(n-1)(n+3)$, is formed by the individual dyads in the sum in (3.2), which is altogether $3(n-1)$ dyads, and
the dyads occurring in (3.3), i.e., $n(n-1)$ dyads. The only fact needed below is that these dyads satisfy $a_{\alpha} \cdot b_{\alpha}=0$. The subadditivity of $\Phi_{|\cdot|}$ gives

$$
\begin{equation*}
\Phi_{|\cdot|}(C) \leq \Phi_{|\cdot|}\left((\operatorname{tr} M) e_{1} \otimes e_{1}\right)+\sum_{\alpha=1}^{(n-1)(n+3)} \Phi_{|\cdot|}\left(a_{\alpha} \otimes b_{\alpha}\right) \tag{3.4}
\end{equation*}
$$

We now employ $(3.1)_{1}$ to find that $\Phi_{|\cdot|}\left((\operatorname{tr} M) e_{1} \otimes e_{1}\right)=|\operatorname{tr} M|$, while all remaining terms on the right-hand side of (3.4) vanish by (3.1) 2_{2}. Hence $\Phi_{|\cdot|}(M) \leq|\operatorname{tr} M|$. This completes the proof of $(1.10)_{1}$.

To prove the two equations in $(1.10)_{2}$ we employ (1.10) $)_{1}$ as follows. One has $\psi_{ \pm}(a, b)=\frac{1}{2}(|a \cdot b| \pm a \cdot b)$ and hence if $\left(a_{i}, b_{i}\right) \in \mathbb{D}_{n}$ and $M \in$ Lin satisfy $\sum_{i=1}^{\bar{m}} a_{i} \otimes b_{i}=M$ then

$$
\sum_{i=1}^{m} \psi_{ \pm}\left(a_{i}, b_{i}\right)=\frac{1}{2}\left(\sum_{i=1}^{m} \psi_{|\cdot|}\left(a_{i}, b_{i}\right) \pm \operatorname{tr} M\right)
$$

Taking the infimum as in (1.8) and using the above evaluation of $\Phi_{|\cdot|}$ gives

$$
\Phi_{ \pm}(M)=\frac{1}{2}\left(\Phi_{|\cdot|}(M) \pm \operatorname{tr} M\right)=\frac{1}{2}(|\operatorname{tr} M| \pm \operatorname{tr} M)=\{\operatorname{tr} M\}_{ \pm}
$$

which is $(1.10)_{2}$.
Equation (1.11): We observe that $\psi_{|\cdot|}(a, b)=\Lambda_{|\cdot|}(a \otimes b)$ and $\psi_{ \pm}(a, b)=$ $\Lambda_{ \pm}(a \otimes b)$ for every $(a, b) \in \mathbb{D}_{n}$ where $\Lambda_{|\cdot|}(M)=|\operatorname{tr} M|$ and $\Lambda_{ \pm}(M)=$ $\{\operatorname{tr} M\}_{ \pm}$for every $M \in \operatorname{Lin}$ and apply Theorem 1.3(ii).

Example 1.5 Equation (1.12) $)_{1}$: The function $\Theta(M)=\left|M^{\mathrm{T}} p\right|$ is a subadditive function satisfying (1.6) and we obtain in the same way as in the proof of Example 1.4 that $\Phi(M) \geq\left|M^{\mathrm{T}} p\right|$ for any $M \in \operatorname{Lin}$ and

$$
\begin{equation*}
\Phi(a \otimes b)=|a \cdot p|, \quad \text { and in particular } \quad \Phi(a \otimes b)=0 \quad \text { if } a \cdot p=0 \tag{3.5}
\end{equation*}
$$

To prove $\Phi(M) \leq\left|M^{\mathrm{T}} p\right|$, we assume without loss in generality that $|p|=1$ and let $\left\{p, e_{2}, \ldots e_{n}\right\}$ be any orthonormal basis. In view of $\mathrm{I}=p \otimes p+\sum_{i=2}^{n} e_{i} \otimes e_{i}$ we have

$$
M=\mathrm{I} M=p \otimes M^{\mathrm{T}} p+\sum_{i=2}^{n} e_{i} \otimes M^{\mathrm{T}} e_{i}
$$

normalizing the second members of the dyads, we obtain

$$
M=\left|M^{\mathrm{T}} p\right| p \otimes \operatorname{sgn}\left(M^{\mathrm{T}} p\right)+\sum_{i=2}^{n}\left|M^{\mathrm{T}} e_{i}\right| e_{i} \otimes \operatorname{sgn}\left(M^{\mathrm{T}} e_{i}\right)
$$

The subadditivity of Φ provides

$$
\Phi(M) \leq \Phi\left(\left|M^{\mathrm{T}} p\right| p \otimes \operatorname{sgn}\left(M^{\mathrm{T}} p\right)\right)+\sum_{i=2}^{n}\left|\Phi\left(M^{\mathrm{T}} e_{i} \mid e_{i} \otimes \operatorname{sgn}\left(M^{\mathrm{T}} e_{i}\right)\right)=\left|M^{\mathrm{T}} p\right|\right.
$$

by (3.5). Thus $\Phi(M) \leq\left|M^{\mathrm{T}} p\right|$ and the proof of (1.12) $)_{1}$ is complete.
Equation (1.12) ${ }_{2}$: We apply Theorem 1.3(ii) in an obvious way.

4 Notation; functions of bounded variation

We denote by \mathbb{Z} the set of integers, by \mathbb{N} the set of positive integers, by \mathbb{S}^{n-1} the unit sphere in \mathbb{R}^{n}, by Lin the set of all linear transformations from \mathbb{R}^{n} into itself, often identified with the set of $n \times n$ matrices with real elements. We use the symbols ' \cdot ’ and ' $|\cdot|$ ' to denote the scalar product and the euclidean norm on \mathbb{R}^{n} and on Lin. The latter are defined by $B \cdot C:=\operatorname{tr}\left(B C^{\mathrm{T}}\right)$ and $|B|=\sqrt{B \cdot B}$ where $B^{\mathrm{T}} \in \operatorname{Lin}$ is the transpose of B and tr denotes the trace.

A real-valued function f defined on a vectorspace X is said to be subadditive if $f(x+y) \leq f(x)+f(y)$ for every $x, y \in \mathrm{X}$ and positively homogeneous of degree 1 if $f(t x)=t f(x)$ for every $t \geq 0$ and $x \in \mathrm{X}$.

If Ω is an open subset of \mathbb{R}^{n}, we denote by $L^{1}(\Omega)$ the space of Lin valued integrable maps on Ω. We denote by $\mathscr{M}(\Omega, \mathrm{Lin})$ the set of all (finite) Lin valued measures on Ω. If $\mu \in \mathscr{M}(\Omega$, Lin), we denote by $\mu L B$ the restriction of μ to a Borel set $B \subset \Omega$. If $G, G_{k} \in L^{1}(\Omega), k=1,2, \ldots$, we say that G_{k} converges to G in the sense of measures, and write

$$
G_{k} \stackrel{*}{\rightharpoonup} G \text { in } \mathscr{M}(\Omega, \mathrm{Lin})
$$

if $\int_{\Omega} G_{k} \cdot H d \vee \rightarrow \int_{\Omega} G \cdot H d \vee$ for every continuous map $H: \mathbb{R}^{n} \rightarrow$ Lin which vanishes outside Ω.

We state some basic definitions and properties of the spaces of maps of bounded variation and of special maps of bounded variation. For more details, see [1, 10, 17], and [11].

We define the set $B V\left(\Omega, \mathbb{R}^{n}\right)$ of maps of bounded variation as the set of all $u \in L^{1}(\Omega)$ such that there exists a measure $\mathrm{D} u \in \mathscr{M}(\Omega$, Lin $)$ satisfying

$$
\int_{\Omega} u \cdot \operatorname{div} T d V=-\int_{\Omega} T \cdot d \mathrm{D} u
$$

for each class ∞ map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$ which vanishes outside some compact subset of Ω. Here $\operatorname{div} T$ is an \mathbb{R}^{n} valued map on Ω given by $(\operatorname{div} T)_{i}=\sum_{j=1}^{n} T_{i j, j}$ where the comma followed by an index j denotes the partial derivative with respect to j th variable. The measure $\mathrm{D} u$ is uniquely determined and called the weak (or generalized) derivative of u. We shall need the following form of the Gauss-Green theorem for $B V$: if Ω is a domain with lipschitzian boundary and $u \in B V\left(\Omega, \mathbb{R}^{n}\right)$ then there exist an A integrable map $u_{\partial \Omega}: \partial \Omega \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{equation*}
\int_{\Omega} d \mathrm{D} u=\int_{\partial(\Omega)} u_{\partial \Omega} \otimes v_{\Omega} d \mathrm{~A} \tag{4.1}
\end{equation*}
$$

where v_{Ω} is the outer normal to $\partial \Omega$. The map $u_{\partial \Omega}$ is determined to within a change on a set of A measure 0 and is called the trace of u.

We define the set $\operatorname{SBV}(\Omega)$ of special maps of bounded variation as the set of all $u \in B V\left(\Omega, \mathbb{R}^{n}\right)$ for which $\mathrm{D} u$ has the form

$$
\begin{equation*}
\mathrm{D} u=\nabla u \vee\left\llcorner\Omega+\llbracket u \rrbracket \otimes v_{u} \mathrm{~A}\left\llcorner J_{u}\right.\right. \tag{4.2}
\end{equation*}
$$

where ∇u, the absolutely continuous part of $\mathrm{D} u$, is a map in $L^{1}(\Omega)$ and the term

$$
\mathrm{D}^{\mathrm{s}} u:=\llbracket u \rrbracket \otimes v_{u} \mathrm{~A}\left\llcorner J_{u}\right.
$$

on the right-hand side of (4.2) is called the jump (or singular) part of $\mathrm{D} u$. The objects $J_{u} \subset \Omega, \llbracket u \rrbracket: J_{u} \rightarrow \mathbb{R}^{n}$ and $v_{u}: J_{u} \rightarrow \mathbb{S}^{n-1}$ are called the jump set of u, the jump of u and the normal to J_{u}, respectively. Here J_{u} is the set of all $x \in \Omega$ for which there exist $v_{u}(x) \in \mathbb{S}^{n-1}$ and $u^{ \pm}(x) \in \mathbb{R}^{n}$ such that we have the approximate limits

$$
u^{ \pm}(x)=\operatorname{ap}_{\substack{y \rightarrow x \\ y \in \mathbf{H}^{ \pm}\left(x, v_{u}(x)\right)}} u(x)
$$

where $\mathbf{H}^{ \pm}\left(x, v_{u}(x)\right)=\left\{y \in \mathbb{R}^{n}: \pm(y-x) \cdot v_{u}(x)>0\right\}$. For a given $x \in \Omega$, either the triplet $\left(v_{u}(x), u^{+}(x), u^{-}(x)\right)$ does not exist or it is uniquely determined to within the change $\left(v_{u}(x), u^{+}(x), u^{-}(x)\right) \mapsto\left(-v_{u}(x), u^{-}(x), u^{+}(x)\right)$. With one of these choices, one puts $\llbracket u \rrbracket(x)=u^{+}(x)-u^{-}(x)$ and notes that $\llbracket u \rrbracket(x) \otimes v_{u}(x)$ is unique.

5 References

1 Ambrosio, L.; Fusco, N.; Pallara, D.: Functions of bounded variation and free discontinuity problems Clarendon Press, Oxford 2000
2 Baía, M.; Matias, J.; Santos, P. M.: A survey on structured deformations São Paulo Journal of Mathematical Sciences 5 (2011) 185-201
3 Barroso, A. C.; Matias, J.; Morandotti, M.; Owen, D. R.: Explicit formulas for relaxed disarrangement densities arising from structured deformations (2016) Preprint.
4 Choksi, R.; Fonseca, I.: Bulk and Interfacial Energy Densities for Structured Deformations of Continua Arch. Rational Mech. Anal. 138 (1997) 37-103
5 Del Piero, G.: The energy of a one-dimensional structured deformation Math. Mech. Solids 6 (2001) 387-408
6 Del Piero, G.: Foundations of the theory of structured deformations In Multiscale modeling in continuum mechanics and structured deformations G. Del Piero \& David R. Owen (ed.), pp. 125-176, Springer, New York 2004
7 Del Piero, G.; Owen, D. R.: Structured deformations of continua Arch. Rational Mech. Anal. 124 (1993) 99-155
8 Del Piero, G.; Owen, D. R.: Integral-gradient formulae for structured deformations Arch. Rational Mech. Anal. 131 (1995) 121-138
9 Del Piero, G., and Owen, D. R.: Multiscale modeling in continuum mechanics and structured deformations Springer, New York 2004
10 Evans, L. C.; Gariepy, R. F.: Measure theory and fine properties of functions CRC Press, Inc., Boca Raton 1992
11 Federer, H.: Geometric measure theory Springer, New York 1969
12 Fonseca, I.; Leoni, G.: Modern Methods in the Calculus of Variations: L ${ }^{p}$ Spaces Springer, New York 2007
13 Hille, E.; Phillips, R. S.: Functional analysis and semi-groups American Mathematical Society, Providence, R. I. 1957

14 Owen, D. R.; Paroni, R.: Optimal flux densities for linear mappings and the multiscale geometry of structured deformations Arch. Rational Mech. Anal. 218 (2015) 1633-1652

15 Reshetnyak, Yu. G.: Weak convergence of completely additive vector functions on a set Siberian Math. J. 9 (1968) 1039-1045
16 Šilhavý, M.: On the Approximation Theorem for structured deformations from $B V(\boldsymbol{\Omega})$ Mathematics and Mechanics of Complex Systems 3 (2015) 83-101
17 Ziemer, W. P.: Weakly differentiable functions Springer, New York 1989

[^0]: * Acknowledgement The support of the institutional research plan RVO 67985840 is gratefully acknowledged.
 $\star \star$ The reader is referred to the proceedings [9] and to the recent survey [2] for additional references and for further developments.

[^1]: ${ }^{\star}$ For brevity of notation, we omit the target spaces and write $\operatorname{SBV}(\Omega) \equiv S B V\left(\Omega, \mathbb{R}^{n}\right)$ and $L^{1}(\Omega) \equiv L^{1}(\Omega$, Lin $)$. See Section 4 for more notation and detailed definitions.

