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Compressible Navier-Stokes system

Field equations

Oro + divy(ou) =0
Ot(ou) + divy(ou @ u) + V,p(p) = div,S(Vu)

Isentropic EOS, Newton’s rheological law

2
S(Vxu) = (qu + Viu-— 3divXuH> + ndiv,ul, >0, n >0

No-slip boundary conditions
ulpn =0




Numerical method [T. Karper]

FV framework

regular tetrahedral mesh, Q, = {v | v = piece-wise constant}

FE framework - Crouzeix - Raviart

Vy, = {v v = piece-wise affine, ¥ continuous on face F}

Upwind discretization of convective terms

(hu; Vo) e ~ zrj /r Uplh, ul[[¢]] dS,




Dissipative upwind operator

Upwind operator

Ublrh,an] = {r} s ) = max{h | (g ) [} 1]

convective part dissipative part

=l el (50

standard upwind

Auxilliary function

0 for z < —1,
z+1if —1<z<0
1-zif0<z<1
Oforz>1




Numerical scheme

Discrete time derivative - implicit scheme

Continuity method
/ Dyofipdx —
Qp

Momentum method

/ Uplok, uf] [[6]] dSy = 0

Feling

/Q D (of (uf) - gbx

/ Uplak (u)  uf] - [(#)]] S,

Ielint

- / p(op)divapdx
Qy

+ 1 thh Vpdpdx + (H + 77) / divhuﬁdivthdx =0
Qh 3 Qh



Convergence results for Karper’'s scheme

Convergence to weak solutions

Karper [2013]: Convergence to a weak solution if

Error estimates
Gallouet, Herbin, Maltese, Novotny [2015]

Convergence to smooth solutions + error estimates if |y > 3/2|, Q a

polyhedral domain




Convergence for general adiabatic coefficient

EF, M. Lukatova/Medvidova [2016]
Let Q € R3 be a smooth bounded domain. Let

1<y<2, Atmh, 0<a<?2(y-—1).

Suppose that the initial data are smooth and that the compressible
Navier-Stokes system admits a smooth solution in [0, T] in the class

0, Vxo0, u,Veu e C([0, T] x Q)

o € 20, T; C(A R®), 0>0, ulgpg =0.

on — o (strongly) in LY((0, T) x K)
up — u (strongly) in L2((0, T) x K; R®)
for any compact K C Q.




General strategy

Basic properties of numerical scheme

Show stability, consistency, discrete energy inequality

Measure valued solutions

Show convergence of the scheme to a
dissipative measure — valued solution

Weak-strong uniqueness

Use the weak-strong uniqueness principle in the class of
measure-valued solutions. Strong and measure valued solutions
emanating from the same initial data coincide as long as the latter
exists




Hierarchy of solutions

Classical solutions

Solutions are (sufficiently) smooth satisfying the equations
point-wise, determined uniquely by the data. Requires strong a priori
bounds usually not available

Weak solutions

Equations satisfied in the sense of distributions. Requires a priori
bounds to ensure equi-integrability of nonlinearities + compactness

Measure-valued solutions

Equations satisfied in the sense of distributions, nonlinearities
replaced by Young measures (weak limits) f(u)(t,x) = (vt x; f(v)).
Requires a priori bounds to ensure equi-integrability of nonlinearities.

Measure-valued solutions with concentration measure

Measure-valued solutions + concentration defects. Requires a priori
bounds to ensure integrability of nonlinearities.




Dissipative solutions

Energy (entropy) inequality

4
dt Jq

1 2 .
(2Qu| —|—P(g)> dx—i—/QS(VXu).VXu dx <o

o= [ 7 o

Z2

Known results

m Local strong solution for any data and global weak
solutions for small data. Matsumura and Nishida [1983], Valli
and Zajaczkowski [1986], among others

m Global-in-time weak solutions. p(g) = ¢”, v >9/5,N =3,
v >3/2,N=2P.L. Lions [1998], v > 3/2, N =3, v > 1,
N = 2 EF, Novotny, Petzeltovd [2000], v = 1, N = 2 Plotnikov
and Vaigant [2014]

m Measure-valued solutions. Neustupa [1993], related results

Malek, Nelas, Rokyta, Rdzi¢ka, Necasova - Novotny

«O» AFr <=



Bounded sequences of integrable functions

Boundedness
v, — v weakly in Ll(Q; RM)
IF(va)lli@) < C = F(vy) — F(v) # F(v) weakly-(*) in M(Q)

Biting limit - parameterized Young measure

(Ve x; Fi(v)) = Fe(v)(t, x), Fx € BC(RM)

(Vexi F()) = lim Fe(v)(t,x), Fi /' F, [|F(va)lline) < €

k— o0

Concentration part - defect measure

FO)(t%) = (v FW)) + [FO(E ) = (e F(V))|

integrable

concentration defect




Measure-valued solutions

Parameterized (Young) measure
Vex € L22.,((0, T) x Q; P([0, 00) x RN), [s,v] € [0, 00) x RV
o(t,x) = (Wrx;8), u= {ve;v) € 20, T; Wol’z(Q; RM))
Field equations revisited

T
/ / (Ve.x: S) Orp + (Ve xi SV) - Vi dx dt = (Ry; V)
o Ja

.
/ / (Ve x: SV) - Orp + (Ve 5 SV Q V) - Vo + (Ve i p(S)) divep dx dt
0o Ja

.
= / / S(Vxu) : Vo dx dt + (Ra; Vi)
o Ja




Dissipativity

Energy inequality

L<VT7X ( slv[* + P(s) >> dx+/ / Vyu) XudxdtJr
g/ﬂ<y0; (;sv2+P(s)>> dx

Compatibility
|R1[0,7'] X §| + ’Rz[O,T] X §| <&(7)D(7), £ € Ll(O7 T)

/ / (Ve v —ul?) dx dt < cpD(7)
0 Ja




Truly measure-valued solutions

Truly measure-valued solutions for the Euler system (with
E.Chiodaroli, O.Kreml, E. Wiedemann)

There is a measure-valued solution to the compressible Euler system
(without viscosity) that is not a limit of bounded LP weak solutions
to the Euler system.




Do we need measure valued solutions?

Limits of problems with higher order viscosities

Multipolar fluids with complex rheologies (Netas - gilhavy)

T(u, Veu, Viu,...)

Vxu +5Z —1Y ;N (Viu + Viu) + N A div,eu I)

+ non-linear terms

Limit for § — 0

Limits of numerical solutions

Numerical solutions resulting from Karlsen-Karper and other schemes

Sub-critical parameters

p(o) = a0”, ¥ < Yeritical




Weak (mv) - strong uniqueness

Theorem - EF, P.Gwiazda, A.Swierczewska-Gwiazda, E.
Wiedemann [2015]

A measure valued and a strong solution emanating from the same
initial data coincide as long as the latter exists




Relative energy (entropy)

Relative energy functional

& (g,u r, U) (1)
- /Q <VT,X; Sslv = UP 4 P(s) — P/(r)(s 1) - P(r)> dx

1
:/ Vrxi =S|V|> 4 P(s) dxf/<1/TX;sv>~de
o\ 2 Q

1
+/ = (Urx: S) |U|2 dx
Q2

—/Q<Vr,x;s> P'(r) dx—l—/P(r) dx

Q




Relative energy (entropy) inequality

Relative energy inequality

£ (Q,u r, U) +/ S(Vxu) : (Vxu — V,U) dx dt + D(r)
0

< /Q <VO,X; %s\v — Uol2 + P(s) — P'(r0)(5 — ro) — P(r0)> dx

+/OTR<Q,U ‘r,U) dt




Remainder

R(g,u ‘r,U)
:_/T/ (Ve x,sv) - 0:U dx dt
0 Ja

[ eisv @v) s VLU (i pls) div U] de
0 Q

//[1/ is)U - 90U+ (v s sv) - U- VU] dx dt

/ / [ 1 o = (Vexisv) - plﬁr)vxr} dx dt

+/0 <R1 ; < (JUP = P(r ))> df—/OT<R2;VXU>dt




Regularity

Theorem - EF, P.Gwiazda, A. Swierczewska-Gwiazda, E.
Wiedemann

Suppose that the initial data are smooth and satisfy the relevant
compatibility conditions. Let v; . be a measure-valued solution to
the compressible Navier-Stokes system with a dissipation defect D
such that

supp vix C {(s,v) ‘ 0<s<p ve RN}

for a.a. (t,x) € (0, T) x Q.
Then D =0 and

Vix = 5Q(t,x),u(t,x)

where g, u is a smooth solution.




Sketch of the proof

The Navier-Stokes system admits a local-in-time smooth
solution

The measure-valued solution coincides with the smooth solution
on its life-span

The smooth solution density component remains bounded by @
as long as the solution exists

m Y. Sun, C. Wang, and Z. Zhang [2011]: The strong solution can
be extended as long as the density component remains bounded




Corollary

Convergence of numerical solutions

Bounded numerical solutions emanating from smooth data that

converge to a measure-valued solution converge, in fact,
unconditionally to the unique strong solution




