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What are the Primitive equations?’

Average deepness of oceans ~3.8 km

Troposphere (people, airplanes, weather)

Figure: Vilhelm
Bjerknes

Figure: Scales in global oceanography /weather (1862-1951)
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What are the Primitive equations?

We will investigate a geometrically simplified Cauchy problem?:
to find u = (u,v,w), p, 0: [0,T) x U — R (U with a smooth boundary)

satistying

divua =20

Ut + Uy + VUy + WUy +pp =0

VUt + UVg + VUy + WU, + Py

Pz
01 + ub, + v, + wo,

0
—0

in (0,7) x U,
in (0,7) x U,
in (0,7) x U,
in (0,7) x U,
in (0,7) xU

with initial conditions u(0) = ug, v(0) = vg and 6(0) = 6.
When p1 = puo = 0 we call the problem the inviscid Primitive equations.
A special feature: non-deterministic role of w.

3The mathematical formulation was done by J.L. Lions, R. Temam and
S. H. Wang: New formulations of the primitive equations of atmosphere
and applications. In Nonlinearity (1992).



The definition of the weak solution

Definition
We call the quintet of functions (u,v,w,p,0) a weak solution of the
inviscid Primative equations if

> u=(u,0,w) € L*(Q;R?), u, v € C([0,T}; L2,(V)), p € L1 (Q),
d.p € LY (Q) and equations and the equalities

/OT/Uu(?tqﬁldde/T/ un - Vg dx dt
—/ 0(+)¢ dx+/ /pamldxdt_o

/ / V0P dx dt + / / vu - Vg dx dt
/U vo(+)¢2(0 dx+/ /p8y¢2dxdt—o

hold for any ¢1, ¢2 € D([0,T) x U),



The definition of the weak solution

> uyo solves
divuxg =0

in the sense of distributions on R? (this includes the boundary
conditions),

» @ is a strong solution of
01 + uby + v0, +wl, = A1 (0gy + 0yy) + X200,

in @ and 6(0,-) = 6y(+) in the sense of time traces,
» the equation
p, = —0

holds for the weak derivative of p almost everywhere in ().



Why are they interesting? (for mathematicians)

The viscid case, three spatial dimensions:

» Existence of global weak solutions (Navier-Stokes-like theory) -
J.L. Lions, R. Temam and S. H. Wang: On the equations of the
large-scale ocean. In Nonlinearity (1992).

» Local in time existence of smooth solutions (the same paper),

» Global in time regularity of solutions for smooth initial conditions -
C.Cao, E.S. Titi: Global well-posedness of the 3D viscous
primitive equations of large scale ocean and atmosphere
dynamics. In Ann. Math (2007).



Why are they interesting? (for mathematicians)

The inviscid case:
» The term primitive becomes a bit misleading.

» If we erase the diffusion in the heat equation, the system is not
hyperbolic - J. Oliger and A. Sundstrom: Theoretical and
practical aspects of some initial boundary value problems
in fluid dynamics. In SIAM J. Appl. Math., (1978).

» In 3D, there are (to the best knowledge of the author) no a priori
estimates for velocities and temperature. In 2D and 6 = 0, there
exist local in time smooth solutions - Y. Brenier: Homogeneous
hydrostatic Hows with convex velocity profiles. In

Nonlinearity, (1999).

» Finite time blow-up for some smooth initial data - C. Cao,
S. Ibrahim, K. Nakanishi and E.S. Titi: Finite-time blowup for
the inviscid primitive equations of oceanic and
atmospheric dynamics. In Comm. Math. Phys., (2015).



Global existence of weak solutions for the inviscid case®

Theorem
Assume that T > 0 (arbitrary). Let ug, vo € C(U), 6y € C*(U) and

suppose that there exists wg € C(U) such that

div((ug, vo, wo)xy) = 0 in the sense of distributions on R3.

Then there are infinitely many weak solutions of the inviscid Primative
equations emanating from the initial conditions ug, vo, 0.

» Canonically, there will be a jump of the kinetic energy at time
t = 0. If we denote

1
B(t) = [ slult.a) + o) +w(t,2) do
U
then
liminf E(¢t) > E(0).

t—0t

1E. Chiodaroli, M. M.- Existence and non—uniqueness of global weak
solutions to inviscid primitive and Boussinesq equations. Preprint on arxiv,

(2016)



Infinitely many dissipative solutions

Definition
We call solutions dissipative if F(t) < E(s) whenever 0 < s < t.

Theorem

Assume that T > 0 and 0y € C*(U). Then there exist ug, vg € L=(U)
for which we can find infinitely many weak dissipative solutions of the
inviscid Primitive equations emanating from the initial data ug, vo, 0.

» What is the main technique which can be used to proof
the theorems?

» Convex integration.



What is the convex integration?

A technique, how to find a solution of a system of linear differential
equations together with nonlinear constitutive relations.

Lu(z)) =0, wu(x)e K(z) forx e .

» The technique has its origin in differential geometry (Nash,
Gromov).

» It was used to construct surprising results about regularity of weak
solutions of Euler-Lagrange equations corresponding to
quasiconvex functionals - Miiller, Sverak: Convex integration
for Lipschitz mappings and counterexamples to regularity.

in Ann. Math. (2003).

» Recently, C. De Lellis and L. Székelyhidi adapted the technique to
construct paradoxical solutions of the Euler system: On
admissibility criteria for weak solutions of the Euler

equations. In Arch. Ration. Mech. Anal., (2010).



The curious case of De Lellis and Székelyhidi

Theorem (De Lellis and Székelyhidi, 2011)
Lete € C((0,T) x T3) N C([0,T]; L*(T?)) is positive in (0,T) x T°.
Then there exist infinitely many weak solutions u of the FEuler equations

divu =0 n the sense of distributions,

ou+diviu®u)+ Vp =0 in the sense of distributions,

with pressure p = —x|ul? such that u € C([0,T]; L2 _,,.(T?)), u(0,z) = 0
fort=0,T a.e. z € T,

1
5‘“(757%)\2 =e(t,x) foreveryte (0,T) a.e. x € T3,



A generalization for an abstract Euler system

Observation (E. Feireisl, 2015)
Let H: C([0,T]; L2, (T3)) — C([0,T] x T3;R3*3 ),

weak 0,sym

I1eC([0,T]; L%, . (T%) = C(]0,T] x T?)

weak

be bounded and continuous operators satistfying some additional
technical assumptions and assume that II[u] is bounded independently
on u. Then there exist infinitely many weak solutions u ot the following
abstract version of the Euler system

divua =0 1in the sense of distributions,
oru + div(u ® u + H[u]) + VIIju]| = 0 in the sense of distributions,

such that u € C([0,T); L2 . (T?)), u(0,z) =0for t =0,T a.e. x € T°.

weak



The Primitive equations as a differential inclusion

» We would like to apply the machinery of convex integration. The
first step is to recast the Primitive equations into the form

divu = 0,
oru + div (u ® u + H{u]) + VII[u] = 0.

» The main problem - the equation for the third component of the
velocity is degenerated.



Inviscid primitive equations

Let us take the Primitive equations

Up + Uy +w, =0
Ut + Uy + VUy + WUy + pr = 0,
Ut + UVz + VU + WU, +py = 0,
p. =0

01 + uby + 00, + wl, = A1 (0gz + 0yy) + X200,



Extended inviscid primitive equations

...and supplement it by an extra equation

Up + Uy +w, =0
U + Uy + VUy + WU, + pr = 0,
U + UV + 0y + W, + py = 0,
W + UWy + VWy + Ww; + p, = 0,
p. =10

Or + uby + v0y + wh, = A1 (035 + Oyyy) + A20..



Extended inviscid primitive equations

Let # = O[u] be the solving operator for the convection diffusion
equaiton, then:

divua =0
w +diviu®u)+Vp=20
pz:@[u]

Olu); +u-VO[u] = A\ (O[u]z,; + Olulyy) + X20[u]..



Extended inviscid primitive equations

Then we can find a solving operator for the equation for p, by taking

Hul(t, x,y, 2) /@ (t,x,y,s)ds.

Hence,

diva =0
w; +diviu®u) + VII|jul =0
p. = O[ul.



An example using the idea of convex integration

divu =0 in T, (1)

lul| =1 almost everywhere in T* (2)

» we define a set of subsolutions

Xo = {u € C®(T? R?): (1) holds and |u|<1},

» we define a functional on Xo by I(u) = [1s |u|* — 1dz. Observe
that I(u) < 0 in Xp.

Lemma (Effective oscillations)

Let u € Xg. Then there exists {w,} C C®°(T?;R?) such that

> u+w, € Xp,
> w, — 0 weakly-+ in L
>

liminf I (u + w,) > I(u) + ¢ (I(U))2

n—oo

where ¢ > 0 does not depend on u.



A Baire cathegory argument

» Let us take X = X,(L™weak—*) Which is a completely metrizable
topological space.

» With respect to the oscillatory lemma, the only possible points of
continuity are such that I(u) = 0.

» As I(u) = lim._o I.(u) = lime_,9 I (1 * u), I has to have residual
set in X (very large) of points of continuity.

» Points of continuity are precisely all those points u € X which
satisfy I(u) = 0.



