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Abstract

We study a hydrodynamical model describing the motion of internal stellar layers based on com-
pressible Navier-Stokes-Fourier-Poisson system. We suppose that the medium is electrically charged,
we include energy exchanges through radiative transfer and we assume that the system is rotating.

We analyze the singular limit of this system when the Mach number, the Alfvén number, the
Péclet number and the Froude number go to zero in a certain way and prove convergence to a 3D
incompressible MHD system with a stationary linear transport equation for transport of radiation
intensity. Finally, we show that the energy equation reduces to a steady equation for the temperature
corrector.
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1 Introduction
Our motivation in this work is the rigorous analysis of the equations describing parts of stars called

radiative zones which are one of the most basic structures constituting stars among cores, convection
zones, photospheres and atmospheres. Our model can be also applied to tachoclines which are transition



layers between convection and radiative zones of stars. In this context it is conjectured that magnetic
field of stars arises when poloidal orientation of magnetic fields changes to toroidal and that a dynamo
effect is present in tachoclines [37]. Tachoclines are not homogeneous and stable structures and they
move steadily. In their upper parts the Péclet numbers are high (of the order 600), but in the vicinity
of the radiative part they drop below 1. Their distinctive feature concerns rotation, naively speaking the
convective zone behaves in this respect as a fluid and rotates differentially, whereas the radiative zone
more like a solid and rotates as a rigid body. The origin of these rotational changes has preocuppied
astrophysicists and astronomes, particularly in connection with helioseismological observations [3]

Gravitational forces in these regions are high, however the fluid is no longer strongly stratified as show
non-dimensional numbers associated to the solar tachocline. Namely the Froude number Fr measuring
the strength of gravitational interactions (see Section 3 below for precise definitions) is Fr = 3.11x 103U,
where U is the referential speed of flow in SI units. The Mach number Ma measuring the compressibility
is Ma = 1.49 x 1077U, i. e. the fluid is almost incompressible for sufficiently slow motions and one
has F'r? ~ Ma (Mach number is due to high temperatures when radiation dominates). Finally Péclet
number Pe need not to be sufficiently small in the solar tachocline (we assume Ma? = Pe), but thermal
diffusivity in giant stars can be seven orders of magnitude larger than that of the Sun (see [17], page
22).

Notice in conclusion that our low stratification model can be applied to other compact stellar objects,
as the fraction of F'r and Ma depends on the ratio of temperature, density and is inversely proportional
to the square of characteristic length. Therefore white dwarfs are too cold to be described by low
stratification models, but neutron stars, especially newly born are not. Validity of classical MHD may
be restricted to their (outer) crusts though; in their superfluid cores a quantum description is inevitable.

Let us complete this physical introduction by drawing the reader’s attention to the fact that models
in stellar physics are computationally time consuming. Rieutord [33] has estimated for example that
modelling a single supergranule on the Sun would require having more than power of the Sun at our
disposal!l That is why Lignieres [26] has initiated studies of models at small Péclet number as through
the Boussinesq-Oberbeck approximation density variations with temperature enter through the buoyancy
force only and moreover temperature can be expressed by the velocity field.

In our previous work [5] we analyzed a thick disk model for the Mach number of order ¢, ¢ — 0
whereas the Peclet number was of order 1. Instead as in [31], in the present one we consider a model
where the Peclet number is of order €2 and the domain is general.

The mathematical model we consider is the compressible heat conducting MHD system [7] describing
the motion of a viscous plasma confined in €2, a 3D domain, moreover as we suppose a global rotation
of the system, some new terms appear due to the change of frame and we also suppose that the fluid
exchanges energy with radiation through radiative cooling/heating (see [7], [10]), but neglect radiative
accelerations.

More precisely, the non-dimensional system of equations giving the evolution of the mass density o =
o(t, ), the velocity field @ = @(t, ), the (divergence-free) magnetic field B = B(z,t), and the radiative
intensity I = I(x,t,d,v) as functions of the time ¢ € (0,7'), the spatial coordinate x = (21,22, 23) € Q C
R?, and (for I) the angular and frequency variables (&, ) € S? x R, reads as follows

0o+ divy (o) =0 in (0,T) x Q, (1.1)
O¢(ot0) + div, (ot @ U) + Vap + 20X X U

1 .4
:divxS+gV\I/+§sz|)fo|2+j x B in(0,T) %, (1.2)



Ot (0e) + div, (0ew) + div, =S : V,u —pdivxﬁ—i—f- E—-Sp in (0,T) x Q, (1.3)

1
~O I +3&-V, =5 i (0,T) x Q x (0,00) x S2. (1.4)
0, B + curly (B x @) + curly (A curl, B) = 0 in (0,7) x €. (1.5)
—AV =47G(fo+g) in (0,T) x Q. (1.6)

In the electromagnetic source terms, electric current ; and electric field E are interrelated by Ohm’s law
j=o(E+ixB),

and Ampeére’s law .
(j =curl, B,

where ¢ > 0 is the (constant) magnetic permeability and o is the coefficient of electric conductivity. This
is a simplified version of Ohm’s law for plasmas as both the Hall effect and the ambipolar diffusion from
density gradients and the electron inertia are neglected. Moreover in (1.5) A = A(¢) > 0 is the magnetic
diffusivity of the fluid.

In (1.6) ¥ is the gravitational potential and the corresponding source term in (1.2) is the Newton
force pVW. G is the Newton constant and g is a given function, modelling an external gravitational effect.
Supposing that g is extended by 0 outside 2 and solving (1.6), we have

U(t,x) = G /Q K(x — y)(ie(t, y) + 9(y) dy,

where K(z) = |i—|, and the parameter 7 may take the values 0 or 1: for 77 = 1 selfgravitation is present
and for 77 = 0 gravitation only acts as an external field.

We also assume that the system is globally rotating at uniform velocity x around the vertical direction
€3 and we note ¥ = yé3. Then Coriolis acceleration term 2pY X @ appears in the system, together with
the centrifugal force term oV, |X x Z|? (see [4]).

We consider here the simplified model studied in [11] where radiation does not appear in the momen-
tum equation (see also [38]): only the source term Sg is present, in the energy equation

SE(t,:E):// S(t,z,d,v) dJ dv.
s2Jo

The symbol p = p(p,?) denotes the thermodynamic pressure and e = e(p,?) is the specific internal
energy, interrelated through Maxwell’s relation

de 1 Op
o= (s -035). (17)

Furthermore, S is the Newtonian viscous stress tensor determined by

2
S=u (de'—i— Vi — gdivxﬁﬂ) + n div,d I, (1.8)



where the shear viscosity coefficient g = p(9) > 0 and the bulk viscosity coefficient n = n(J) > 0 are
effective functions of the temperature. Similarly, ¢’ is the heat flux given by Fourier’s law

7= —rVyU, (1.9)
with the heat conductivity coeflicient x = £(¢) > 0. Finally,
S =S4+ Ss, (1.10)

where
Sue = 04 (B(z/, 9) — 1), S, = o, (i - 1) . (1.11)
-1

In this formula I := = Js2 I(-,@) d& and B(v,9) = 2h3c? (e% - 1) is the radiative equilibrium
function where h and k are the Planck and Boltzmann constants, o, = o,(v,¥) > 0 is the absorption
coefficient and o4 = o4(v,9) > 0 is the scattering coefficient. More restrictions on these structural
properties of constitutive quantities will be imposed in Section 2 below.

System (1.1) — (1.6) is supplemented with the ”no-slip, thermal insulation, perfect conductor, no
reflection, no radiative entropy flux” boundary conditions:

dlog =0, ¢-floa =0, B -filag =0, E x ii|pg = 0, (1.12)

I(t,z,v,d) =0on T Jt - fi(x) = 0 for z € 09, (1.13)

where 77 denotes the outer normal vector to 9, I'_ = {(z,J) € 90 x §? : & -ii, < 0} and the radiative
entropy flux (jR will be defined in the next Section. Similarly we define I'y := 9Q x S\ T'_.

Let us mention that previous works have been achieved in the previous framework but, to our knowl-
edge, not in the case of rotating fluid with radiation (with an exception for [5]). Among them: Kukucka
[23] studied the case when Mach and Alfvén number go to zero in the case of a bounded domain and
Novotny and collaborators [31] investigated the problem in the case of strong stratification. Let us also
mention the works of Trivisa et al. [25] and Wang et al.[19], and related articles of Jiang et al. [21, 22, 20].

Our work differs from theirs in that we take a larger Froude number and add radiation and non-inertial
effects.

This paper is organized as follows.

In Section 2, we list the principal hypotheses imposed on constitutive relations, introduce the concept
of weak solution to problem (1.1) — (1.13), and state the existence result for our model. In Section 3 we
compute the formal asymptotics of the problem. Uniform bounds imposed on weak solutions by the data
are derived in Section 4. The convergence theorem is proved in Section 5. Existence of a solution for the
target system is briefly given in the Appendix.

2 Hypotheses and stability result

As in [8] we consider a pressure law in the form

o a
p(o,9) = 95/2P (W) + 30 a>0, (2.1)



where P : [0,00) — [0,00) is a given function with the following properties:
PeC%([0,00)), P(0)=0, P'(Z) >0 forall Z>0,

). 3P(2) - P(2)Z

< cforall Z >0,

Z
m P2
2o PO

According to Maxwell’s equation (1.7), the specific internal energy e is

3 93/2 0 94
and the associated specific entropy reads
B 0 da 93
S(Qaﬂ)*M(ﬂ3/2) ??7

* 2 () I()
32P(Z)—-Pl(2)Z
7‘{/27 3

(2) 2 A

< 0.

(2.5)

To ensure positivity of the total entropy production rate, as in [5], in this paper we explicitly introduce

the entropy for the photon gas in the sequel.

The transport coefficients p, 1, £ and A are continuously differentiable and Lipschitz functions of the

absolute temperature with the properties,
e (14 9) < pu(9), 1(9) < e2, 0< () < es(1+9),
a(l+9") <k(¥) <eca(1+9)
cs(1+ 1) < A(W0) < ea(1+97)

17 _
for any ¥ > 0, for a 1 <p < % and r = 3.

Moreover we assume that o,, 05, B are continuous functions of v, ¢ such that

0< Ua(Vv 19) <c,0< O—S(Vaﬂ)a |ai90'a(1/a19)|7 |8190'5(Va19)| <,

0< O'a(l/,ﬂ)B(l/, 19)7 |819{0a(yv ﬁ)B(Vaﬂ)H < ¢,
Ua(Vv 19)705(1/7 ﬁ)vaa(yv ﬁ)B(Vaﬂ) < h(l/), h € Ll(oa OO)

for all v > 0, ¥ > 0, where c1,2,3,4,5 are positive constants.

Let us recall some definitions introduced in [8].

e In the weak formulation of the Navier-Stokes-Fourier system the equation of continuity (1.1) is

replaced by its (weak) renormalized version [6] represented by the family of integral identities

/OT/Q [(g + b(@))ﬁt@ + (Q + b(@))ﬁ~ Ve + (b(g) - b’(g)g) div, i 50:|d1' dt



= —/ (Qo + b(@o))@(O, )da (2.13)
Q
satisfied for any ¢ € C2°([0,T) x Q), and any b € C* ([0,00)), b’ € C=° ([0, 0)), where (2.13) implicitly

includes the initial condition (0, -) = go.
e Similarly, the momentum equation (1.2) is replaced by

T
/ / ((gﬁ) G+ (0d ® 1) : V@ + p dived + 20X x i - @) de dt (2.14)
0 Q

T
- - S | S a9 S W S
=/ /(S:szo—gvx‘l/-so—J><B-<p—§QVxIX><x|2-<P)dwdt—/(w)o-w(ow)dx
0 Q Q

for any @ € C°([0,T) x ;R?). As usual, for (2.14) to make sense, the field @ must belong to a certain
Sobolev space with respect to the spatial variable and we require that

iecL? (O,T; w2 (Q;R3)) , (2.15)

where (2.15) already includes the no-slip boundary condition (1.12).

e The magnetic equation (1.5) is replaced by

T
/ / (é -8y — (B x @+ Aeurl, B) - curlwo) da dt —|—/ By - ¢(0,) dz =0, (2.16)
0o Ja Q

to be satisfied for any vector field ¢ € D([0,T) x ;R?).
Here, according to the boundary conditions, one has to take

By € L*(Q), div,By =0 in D'(Q), By - iilaq = 0. (2.17)

Following Theorem 1.4 in [39], By belongs to the closure of all solenoidal functions from D(Q) with
respect to the L2—norm.
Anticipating (see (2.29) below) we see that

B e L>(0,T; L*(Q;R®)), curl, B € L*(0,T; L*(Q; R?))
and we deduce from (2.16) that
div, B(t) = 0 in D'(Q), B(t) - ii|aq = 0 for a.a. t € (0,T).
In particular, using Theorem 6.1 in [14], we conclude that
B e L*0,T;Wh2(;R?)), div,B(t) =0, B -fi|gq = 0 for a.a. t € (0,T). (2.18)

e From (1.2) and (1.3) we find the energy conservation law

1 1 - 1 L
at(§g|a'|2 +oe+ 2—C|B|2) n divx((§g|ﬁ|2 Yoetp)i+ExB—Si+ cf)

1
:gvx‘ll-ﬁ+§gvx|)2xf|2-6—SE. (2.19)



As the gravitational potential ¥ is determined by equation (1.6) considered on the whole space R,
the density o being extended to be zero outside {2 we observe that

a1
VUi de = ——= [ oW du,
/QQ uar dtz/QQ *

1 d1
a/glgvx|>2'><f|2-6dac dt2/g|xxx|2 dz.

Denoting now by E* the radiative energy given by

1 oo
= —/ / I(t,z,d,v) dJ dv, (2.20)
¢Js2Jo

and integrating the radiative transfer equation (1.4), we get

a/ER dx+// / I(t,z,&,v)3- i dv dd dS, :/SE dz.
INxS2, B-7>0 Q

so, by using boundary conditions, we can integrate (2.19), as follows,

in the same stroke

d [ 1 | L
4 (—g|a|2+ge+—|3|) / Lol@l? + oe+p) i+ ExB-Si+q)-nds

1
:/ <9Vx\11-ﬁ+§gvz|)2xf|2-ﬁSE) dz.
Q

d
G | (Gel? + e+ 5ol BF = 500 = Solt x af + B") do

dt
// / G,v)d - dry d dS; =0 (2.21)
Iy
by (1.12) and (1.13).

e Finally, dividing (1.3) by ¢ and using Maxwell’s relation (1.7), we obtain the entropy equation

Ot (08) + div, (ost) + div, (%) =g, (2.22)

where ) 2.9 A g
= <§ Vi — L S+ Z|cur1x§|2> - WE, (2.23)
where the first term ¢, = (S Vi — 79 )‘|cur1 B ) is the (positive) electromagnetic matter

entropy production.

In order to identify the second term in (2.23), let us recall form [1] the formula for the entropy of a
photon gas

o
sft = -3 /O /52 v? [nlogn — (n + 1)log(n + 1)] dddv, (2.24)



where n = n(I) = ;;—VIL, is the occupation number. Defining the radiative entropy flux

2k [
gt = 7_2/ / V% [nlogn — (n + 1)log(n + 1)| & d@dv, (2.25)
C 0 S2

and using the radiative transfer equation, we get the equation

A5t + div,q" = f—/ / 1og S dddy =: % (2.26)
S22V
With the identity log n?g)?_l = f% with B = B(9, v) denoting Planck’s function, and using the definition
of S, the right-hand side of (2.26) rewrites
- n(1) n(B) —
— = — 1 —log ——— B —1) dad
/ /321/[0g +1 n(B)+1 7l ) desdv

os(I — 1) dddy,

,_/ /Swl ll 1ogn(7}§j:)rl

where we used the hypothesis that the transport coefficients o, s do not depend on &. So we obtain
finally

9 (0s + s™) + div, (gsﬁJr JR) + div, (%) =¢ 4 (2.27)

and equation (2.22) is replaced in the weak formulation by the inequality
g q
/ / ((gs + 50,0 + 051l - Vi + (5 + q‘R) : Vw) de dt (2.28)
o Ja

< - /(Qs+s d:cf/ / <S Vi Zmﬁ+%|curlx§|2)gpdx dt
LY AT Y PN By

V| n(I) n(I) - .
+/O /S2 » [1ogn(1)+1 _logn(f)Jrl} os(I —1) dwdu} o dx dt

for any ¢ € C([0,T) x Q), ¢ > 0, where the sign of all the terms in the right hand side may be
controlled.

e Since replacing equation (1.3) by inequality (2.28) would result in a formally under-determined
problem, system (2.13), (2.14), (2.28) must be supplemented with the total energy balance

1 1 = 1 1
/ Lol + oe(o.9) + =B — 20w — Loy x @ + EF) (r,-) do (2.29)
o \2 2C 2 2

T (o]
—|—/ // / I(t,z,d,v)d -7 dv d& dS,, dt
0 ry Jo



1 ) 1 1 1
= — (ol —|Bo|? — 00%o — =0o|¥ x T+ ELl) d
[ (g (0o + (ee)o + g Bol? = oo — Gol x &+ EF )
where EJ' is given by

1 (oo}
Elf(x) = - 100, 2,4, v) d& dw.
0 ¢ Jsz2Jo

The transport equation (1.4), can be extended to the whole physical space R3 provided we set o, (z,v,9) =
Igo.(v,9) and os(z,v,9) = Igos(v,9), where 14 is the characteristic function of a set A and take the
initial distribution Iy(x,d, v) to be zero for € R*\ Q. Accordingly, for any fixed & € S2, equation (1.4)
can be viewed as a linear transport equation defined in (0,7") x R?, with a right-hand side S. With the
above mentioned convention, extending u to be zero outside €2, we may therefore assume that both ¢ and
I are defined on the whole physical space R®.

Definition 2.1 We say that o, @, 9, B, I is a weak solution of problem (1.1) = (1.6) iff
0>0, 9>0 for a.a. (t,z) xQ, I>0 a.a in (0,T)x Q2 xS* x (0,00),

0 € L®(0,T; L73(Q)), ¥ € L™(0,T; L*(Q)),
i€ L*(0,T; Wy 2 R?)),
9 € L0, T; Wh*(9Q)),

Be L*0,T; WY ((:R%), B-i o ="

IeL®((0,T) x Q2x 8?* x(0,00)), I€L>®0,T;L*(Q x S? x (0,0)),

and if 0, @, ¥, B, I satisfy the integral identities (2.13), (2.14), (2.28), (2.16), (2.29), together with the
transport equation (1.4).
The stability result of [10] reads now

Theorem 2.1 Let Q C R® be a bounded C** with o« > 0 domain. Assume that the thermodynamic
Junctions p, e, s satisfy hypotheses (2.1) — (2.6), and that the transport coefficients p, N\, Kk, 04, and o
comply with (2.7) — (2.12).

Let {ge,ﬁa,ﬂa,ge,la}a>o be a family of weak solutions to problem (1.1) — (1.13) in the sense of
Definition 2.1 such that

Qe (0, ) = 0,0 — Q0 mn LS/B(Q); (230)
1 = |2 1 = 2 1 1 - =2 R
_Qe|ue| + 956(967195) + _|Be| — -0V — _QE|X X :L'| + Ee (Oa ) dz (231)
o \2 2¢ 2 2

1 1 - 11
= / 5 [(0@)0,c|* + (0€)0,c + E&. + ==|Boc|? — z0c.0/X X Z|> — 20,0V, ) dz < Ey,
a \ 200, 20 2 2

/[955(95,195) + SR(IE)](O, ) dr = / (0s + 53)075 dx > Sop,
Q Q

and
0<1.(0,") = Ip.(-) < I, [loe(-,v)| < h(v) for a certain h € L*(0,00).

Then )
0: — 0 in Cyear ([0, T); L*/3(2)),



. — i weakly in L*(0,T; Wy *(Q; R?)),
. — 9 weakly in L*(0,T; WH2(Q)),
B. — B weakly in L2(0,T; WH2(Q; R?)), B-ii _— 0

and
I. — T weakly-(*) in L°°((0,T) x Q x 82 x (0,00)),

at least for suitable subsequences, where {p,1u, ¥, B, I} is a weak solution of problem (1.1) — (1.13).

3 Formal scaling analysis

In order to identify the appropriate limit regime we perform a general scaling, denoting by Lyct, Tref, Uref,

Prefs Uref, Drefs €refs Hrefs Arefs Kref, the reference hydrodynamical quantities (length, time, ve-
locity, density, temperature, pressure, energy, viscosity, conductivity), by Iref, Vref, Taref, Tsref, the
reference radiative quantities (radiative intensity, frequency, absorption and scattering coefficients), by
Xres the reference rotation velocity, and by (e, Bres the reference electrodynamic quantities (perme-
ability and magnetic induction).

- i ke 2hv3
We also assume the compatibility conditions prey = preferef, Veef = —F L, Ly = Cgef ,
\ Are Lye Ure UrefprefLre
A = =% — and we denote by Sr = 7—H—, Ma = ——L— Re := ZrefPrefZvel - Pe =
refUref refYref 1/p,',ef/p,,,ef Href
UrefprefLrey L Urey - 4 i
efPreforef = Py = < C := +, the Strouhal, Mach, Reynolds, Péclet, Froude and “infrarela-
Opefhiref [Go L2 .’ U, ) ) ) )
refRre Pref ref ref
C . . . . Ue
tivistic” dimensionless numbers corresponding to hydrodynamics, by Ro := —=¢L— the Rossby number
’ Xref Lref ’
Urerprl3CH3 s 2k .
— refSref — . Os,ref — ref
by Al := # the Alfven number and by £ := Lycf0q ref, Ls 1= ﬁ7 P = W, various

dimensionless numbers corresponding to radiation.
Using these scalings and using carets to symbolize renormalized variables we get

Ire T
5=l g
Lref

where

S = Lé, (B(ﬁ, D) — f) + LLG, (ﬁ /S I¢,@) do — f) .

Omitting the carets in the following, we get first the scaled equation for I, in the region (0,7) x Q x
(0,0) x 82

1
ﬂat1+c3.vxlzs:caa(B—I)JrLLsas(—/ Id&)—I), (3.1)
C 47 S2

3

ev —1°
~R
Denoting also by E® = [, [ I dv dd, the (renormalized) radiative energy, by F' = [q, [ I&dv da,
the renormalized radiative momentum, by sg = |, 52 fooo s dv dd, the renormalized radiative energy

where we used the same notation B for the dimensionless Planck function B(v, ) =

source, by 5% = — IS [z v [nlogn — (n + 1)log(n + 1)] dddv, the renormalized radiative entropy with

10



n=n(l) = %, by &t = — 57 Js2 v [nlogn — (n+ 1) log(n + 1)]w dddy, the renormalized radiative
entropy flux, and taking the first moment of (3.1) with respect to &, we get first an equation for Ef

S ,
?r HER 4V, FR = sp. (3:2)

The continuity equation is now
Sr dro + div (o) = 0, (3.3)

and the momentum equation reads

1 2
Sr O(ot0) 4 div, (0t ® @) + Va2 V.p(o,9) + ng X U
1 5 -
50V X X Z|° + ——57 x B. (3.4)

1
——lexSJr 2QV\I/+2R

Re
The balance of internal energy rewrites

2 a2

=

1 SR 1 M
Sr O <Qe+ EER> + divy (QeﬁJrF ) + Pe div,q = o

and we get the balance of matter (fluid) entropy

R 7
Sroy (0s) + div, (osu) + Py div, (19) =g, (3.5)

with

1 Ma2 N ].(7V;[l9 M 2 SE
§5<R68.qup—e 9 +A12 |curlB|>7,

and the balance of radiative entropy

S
20 Ops™ —|—d1v1q ¢k,

c (3.6)

with

PL/OOO /S% {log n(T;SI—i)—l — log n(%(il} ool — B) ddv

e, [~ /[ D g D

The scaled equation for the electromagnetic field is

Sro,B + curl, (é x @) + curl, (A curlxé) =0. (3.7)

The scaled equation for total energy gives finally the total energy balance

d Ma? 1
Sr — (Ta olit|* + oe + = ER +
Q

Ma? 1|—»| lMa2 1M 2
dt c 2412 ¢ 2 2 T

5 oz oI x &

11



o0
+/ / 157 dUydv = 0.
o Jry

In the sequel we analyze the asymptotic regime defined by
Ma=¢, Al=¢, Fr=¢'% C=¢

1 Pe=¢?
where € > 0 is small and we put St =1, Re=1, Ro=1, P =1, L = L; = 1 in the previous system
(3.9)

Plugging this scaling into the previous system gives
1
el +& -Vl =0,(B—1)+o0s <—/ IdﬁI),
47 S2
Opo + divg (o) =0, (3.10)
1 1+ =
Vop(0,9) 4+ 20X x @ = div,S + EQV\I/ + 59v ¥ x & + E—Qj x B, (3.11)
j-E, (3.12)

Ot (ot0) + div, (0t ® @) +
R R ..
0, (ge—l—st )—i—dlvx (Qeu—i—F )—i-?dlvxq:zs S:V,u—pdivyi+j-FE
(3.13)

1
9y (0s +es™) + div, (gsﬁJr §R> + E—dex (19) >,

9 Vg9 A =
g55< S:V,u 2y +Z|cur1xB|>
(B) .
—log ——— n(B)+1 oo(I — B) dddv

[ L N
[ Lt i

with

3

os(I — 1) dadv,
(3.14)

)
A curl, B) = 0,

lo —lo =
&) +1 +1 S +

8, B + curl, (E X 4) + curly (

_ 1 1
B~ Jeov — Lo T
(3.15)

and finally
d 1
— / (—529|ﬁ|2 + oe 4+ eEER
o\ 2
+/ / @-nl dl' 1 dv = 0.
o Jrg

dt
To compute the limit system, we consider now the formal expansions

(Io, 6o, 100, Vo, Po, Bo) + (1, 01, @1, 91, p1, Br) + O( (3.16)

2).

(I, 0,%,9,p, B) =
We first observe from (3.11) that gy = const :==73 and ¥y = const := 1), moreover
Vap1 =0V, ¥(0). (3.17)
(3.18)

L]
Let us fix the constants in the Neumann problem for perturbations of the temperature

/ﬁid:c:() for any i > 1
Q

12



From (3.10) we derive the incompressibility condition
divgtiy = 0, (3.19)

and
001 + div, (@ﬁl + Ql”lfo) =0. (320)

e From (3.9) we get now two stationary linear transport equations for the two moments fg and I
@ - foo = 04,0 (BO — fo) + 05,0 (fo — fo) , (321)

&Vl = Ta,0 (81930191 — Il) + 8190'a,0 (BO — fo) v + 8190'510 (fo — f0> 9+ 05,0 (il — Il) , (3.22)

where I := = Js2 1 dB, 04,0 =0a(v, Jo), 05,0 =05V, Jo) and By = B(v,dy).
e The limit momentum equation reads

]. — — —
0 (Opuip + divg (o ® ) + VI + 20X x 1o = div,S(up) + Ecurlg:Bl X By + F, (3.23)

where pg = ,u(19vo) is used in  S(uyp), F= 01V, (9) and II is an effective pressure for which it holds

VoIl = 30V, |¥ x &2 + 0V1L(01) + Pe,o(0,7)01V101. Here we set 3 = 0 which is consistent with the

O(e~1)—order of the internal energy equation (3.12) and the additional zero mean of ¥ — Jo requirement.
e The limit magnetic field By solves

8, By + curl, (By x 1ip) + curl,(X curl, By) =0, (3.24)

for X = A(d).
e At the lowest order (O(£°)) the energy equation (3.12) gives

EAQ92 = SEo (325)

where —sgo = fooo Js2 0a0 (fo — By) dddv and & = k(0).
e At the order (O(e)) we simplify the energy equation (3.12). Observing that from (3.17) we have
8gp(§7 E)Dgl + oo - vx‘ll(ﬁ) =0, (3'26)
where D := 0, + up - V, and from (3.20)

odiv, iy = — Doy,

oS
SEI = */ / O'a70]1 du_jdl/,
0 S2

and simplifying by (1.7) we end up with

and after (3.22)

atgl + lex(Qluu()) = -« (E A'l?3 + / / O'a70[1 do dl/>
0 S2
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where @ := %091)(@, ).
Putting

—

and

U:d(b ) :1937 ézéla EZ UO; 5:1907 ﬁ:N(190); O0aq = 0qa,0, 0Os = 05,0,

we observe that the solution of the equation (3.21) is up to the boundary condition (1.12), fo = By
which in turn entails that the equation for 2 turns in Q into the Laplace homogeneous equation (G = 0)

and therefore 5 = 0 and we obtain the limit system in (0,7 x €

—

div,U =0,

. L. . 1 L,
00U +div, (U@ U)) + V. II =div,(2r D(U)) + Zcurle X B+ F
OB + curlz(é X (7) + curl, (A curlzé) =0,

div, B = 0,
1~ . 1 [® B 3
—A® =—U V75— — Oa Ildde+h(t)
(672 K Jo S2
o - Vxll == 7O'a11 + o4 (jl — Il) ,

together with the Boussinesq relation (3.17)
oV.Y(0)

8gp(§a E) ’

x

where 7 := g; — g and h is an undetermined function which allows satisfaction of (3.37)2.

We finally consider the boundary conditions
ﬁ|ag =0, VO - 1ilpg = 0, B iloo =0, curlzé X Tiloo = 0

for (3.27)-(3.31) and
Li(z,v,d)=0forz €0, &-71<0

for (3.32), and the initial conditions
Uli=o = Uo, Bli=o = Bo.

Moreover, we endow the system (3.27) — (3.33) with the additional conditions

div, By = 0, / © dz =0.
Q

For this system we have the following existence result (see the Appendix for a short proof)

14
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Theorem 3.1 Let Q C R® be a bounded Lipschitz domain.
For any T > 0 the initial-bounday value problem (3.27) - (3.37) has at least a weak solution

(U,0,B, 1) such that

' U e L0, T;H(Q)) N L0, T;U(Q)),
B e L=(0,T; V() N L0, T; W(Q)),
with H(Q) = {U € L2(Q:R?), div,U = 0 in Q, ﬁ‘m = 0}, UQ) = H(Q) N WEQRY)),
V(Q) = {6 2(RY), div,b=0, b7 = o} and W(Q) = V(Q) N WE2 (0 RY),
2.
© € Lo((0,T; W22(Q)) 0 L2((0,T: WI2(Q))  for any q < g
3.

I € L®((0,T) x Q x S x Ry),

with
G-Vl € LP((0,T) x 2 x S x R,),

for any p>1 and any & € S>.

The remaining part of the paper is devoted to the proof of the convergence of the primitive system
(1.1)—(1.13) to the target system (3.27)—(3.37).

4 Global existence for the primitive system and uniform esti-
mates

For the system (1.1)—(1.13) we prepare the initial data as follows

0(0,-) =00 =2+ 6981)
ﬁ( ) )_ ’LLO )
(0,) = Vo = 19+531906, (4.1)

(Oaaa' _IO _I+EI(,15)5
B(0,-) = Bo.. :sBéz,

~N

where 3 > 0, 9 > 0, I > 0 are spacetime constants and fQ g da: =0= fQ 19812 dzx for any € > 0.
As in [15], for any locally compact Hausdorff metric space X we denote by M(X) the set of signed

Borel measures on X and by M™(X) the cone of non-negative elements of M(X).
From Theorem 2.1 we get immediately (by combining the approximating schemes introduced in [8]

and [7]) the existence of a weak solution (., @, 9., I, B.) to the radiative MHD system (1.1) — (1.13).
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Theorem 4.1 Let Q C R® be a bounded C** with o > 0 domain. Assume that the thermodynamic
functions p, e, s satisfy hypotheses (2.1) — (2.6), and that the transport coefficients u, A\, k, 04, 05 and
the equilibrium fzmctz'on B comply with (2.7) — (2.12). Let the initial data (00.e, Uo.e,Vo,e, Lo,es Bo,e) be

given by (4.1), where (QO 2,19( g, éle), 66)) are uniformly bounded measurable functions.

Then for any € > 0 small enough (in order to maintain positwity of oo and Vo), there exists

a weak solution (ge,ﬁa,ﬁe,la,éa) to the radiative Navier-Stokes system (1.1) — (1.11) for (t,z,&,v) €
(0,T)x Q2 x S8* xR, supplemented with the boundary conditions (1.12) — (1.18) and the initial conditions

(4.1)

More precisely we have

T
/ / st(Qs) (atd) + 1, - Vzd)) dx dt
0 Q

T
:/o /Qﬂ(ge)dwmue ¢ dx dt — /Q 00,:b(00,c) ¢(0,-) dz, (4.2)

for any B such that 3 € (L= N C) ([0,00)), b(o) =b(1) + [ ﬁz(z) dz and any ¢ € C([0,T) x Q),

/ / (geﬁg 0B+ 0elle @ e Vo + ’E’—; dive@ — 208 X e - @) dz dt
1
/ / § AV —ggv v, (35 xB.)- G- 55295VI|>Z><5|2~<;3) dz dt
—/ﬁwmfﬂa»m, (4.3)
Q
for any g€ C([0,T) x Q: R3) with p. = p(0e,Ve), Se = S(Ue, V.), and jE = curl BE,

g2 1 1 L
/ (? Q5|u5|2 + oc€c + EER |B |2 595\1/5 — §Q€E2|X X x|2) dx dt
Q

// / I.(t,x,d,v) dly dv dt
Iy

g2 . 1 - 1 1 L,
= / (5 QO,6|U0,6|2 + 00,c€0,c + EE(I)DLE + 2_|BO,5|2 - _EQO,E‘IIO,E - _5290,8|X X $|2) dz, (44)
Q ’ ¢ 2 2

for a.a. t € (0,T) with e = e(0:,9:), Ve = W¥(0e), Yo = ¥(00,c) and
El(t,x) = [ [s I(t,2,&,v) d& dv

T
/ / (BS’6 AR (BZ X Uz + )\Ecurlmgg) ~cur1m<,5) do dt +/ 3'075 -4(0,-) dz =0, (4.5)
o Ja Q

for any vector field @ € D([0,T) x R® R?), with \. = A(¥.).
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T
//((gess+€s )3tso+(gss€us+q ) Ve d:vdtJr// 0 Vo do dt
0 Q

Jr<§;nJrng550>[/\/1;c]([0,T)xﬁ) - 7/9 (((0s)o. +55§,a)‘/’(0")) dr, (4.6)

- 2>
o 1 1. B,

gf > / / - [log n(l) — log n(Be) ] Oae(Be — 1) dddv
0 S22V n 1

Usa(je - Ie) d"‘_jdl}a

where ) o \
> <E2gezvx@u+?€

and

for any ¢ € C([0,T) x Q) with gm € MT([0,T) x Q) and <& € MT([0,T) x Q), and with
Oae = 04(1,0:), 05 = 05(1/ ¥.), B: = B(v,9.), ¢. = k(0:)VaVe, sc = s(0:,9.), s = sB(1.),
tfRE*Q(IE)andI. = Joo I(t, 2,0, v) A&,

T [e%e]
/ / / / (0 + & - Vo) L. di dv da dt
82
/ // / Gae (Be — I.) + 0y, (IE—IE)} ¥ d& dv dz dt,
32
T %)
= —/ / / ely (0,2,d,v) did dv dx —|—/ / / 1.0 - Tigy) dUy dv dt, (4.7)
aJo Js2 o JryJo

for any ¢ € C2([0,T) x 2 x S? x Ry).

4.1 Uniform estimates

We recall from [15] the necessary definitions in the formalism of essential and residual sets (see [11]).

Given three numbers g € Ry, ¥ € R, and E € R we define O, the set of hydrodynamical essential

values _
_ 7 _
Ogé::{(g,ﬁ)eRQ : §<g<2§, §<q9<219}, (4.8)
and O the set of radiative essential values
R R E R _ o
O, =qF eR:§<E <2E 5, (4.9)
with Oess = O x OF | and their residual counterparts
Off—:s = ( ) \Oessﬂ Oﬁes = ]RJF\Oessv Ores := (RJF)B\OGSS' (410)
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Let {ge, Uz, Vs, B87 I } be a family of solutions of the scaled radiative Navier-Stokes system given in
Theorem 4.1. We call /\/l6 C (0,T) x £ the set

ess

Mg = {(t,l‘) € (OaT) xQ (Qs(tvx)aﬁs(taZ)aEf(taz)) € Oess}a

ess

and M:, . = (0,T) x Q\M:,, the corresponding residual set.

To any measurable function h we associate its decomposition into essential and residual parts
h = [h]ess + [h]r657

where [h]ess = h-Ipe, and [A]pes = b - Tage

res

Denoting by Hy the Helmholtz function for matter
Hz(0,19) = oe — Jos,
and for radiation B
HE5(I) = B —9s™,
and using (4.6) we rewrite (4.4) as

1
_EKQEWE -

g? . 1 5
/ (3 Q5|U5|2 + HE(QE,’lSQE) + EHRg(I ) + —|B€|2 — 5
Q

1
§€2Q5|)Z X f|2) dx

T o)
+/ / / & gl (t,2,&,v) dl dv dt +9 (7" + <) [[0,T] x Q]
o Jo r;

2

e . 1 = 1 1 L.

= / <5 00.¢t0.c” + 0oc€0.c + €EG. + 2 |Bo.e|* — 5€00.¥0,c — 58700, |X X 93|2> dz.
Q ’ ¢ 2 2

Observing that the total mass is a constant of motion M = fQ 0e dx = |9 and using Hardy-Littlewood-
Sobolev inequality, we get 5 [, 0- V. dx < GECM2/3H95H42/43/3(Q By virtue of (2.1) and (2.5) we have
5/3

also gee(0z,9:) > ad? + 3p°° 02’7, so we have the lower bound

1
/ |:H19(95719€) - _EQE\IIE:| dx > C/ H@(Qg,ﬁg) dx,
Q 2 Q

for € small and a ¢(¢) < 1 and we deduce finally the dissipation energy-entropy inequality

1, = e L.
% B> — —o. X x 7> + EHRE(IE)) dx

2
3 . _ _ = _ =
(5 el + Fien 00 - (ox - DO H5(2.7) — e, D) + :

T 00
+/ / / I.(t,x,d,v) & -7, dl dv dt + 5(§;”+gf) [[O,T]xﬁ}
o Jo Jry
e _ 1,4
§ C/Q (? QO,€|UO,E|2 + HE(QO,saﬁo,e) - (QO,E - @)agHE(Ea 19) - HE(@’ 19) + 2_C|BO’E|2 -+ EHRﬂ(one)) dx.
(4.11)

Now, according to Lemma 4.1 in [11] (see [15]) we have the following properties for material and radiative
Helmholtz functions
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Lemma 4.1 Let 5> 0 and 9 > 0 two given constants and let
Hy(o0,1) = oe — Jos,

and B
HE5(I) = B} —9s™,

Let Ocss and Oyes be the sets of essential and residual values introduced in (4.8) — (4.10). o
There exist positive constants C; = C;(0,V) for j =1,---,4 and positive constants C; = C;(E, V) for
j=25,---,8 such that

1.

Ci (le =2 + 9 —0°) < Hy(o,9) — (¢ — 0)0,Hy(0.9) — Hy(a, V)
<Cy(le—af +v-9%), (4.12)
for all (0,9) € OX

ess’?

H5(97 19) - (Q - @)691{5(@, 5) - HE(E; 19)

> inf {Hy(5,0) ~ (6 - 0)9,H;(2.9) ~ Hy(3.9)} = Cs, (4.13)
0,9€OH
for all (p,9) € OF .
3. B B
Hz(0,9) — (0 — 0)9,Hy(0,9) — Hy(2, V) > Cy (0e(e, V) + ols(e,V))) (4.14)
for all (p,9) € OH _,
4- _ _
Cs|E" — E|? < H5(I) < Co|ER — B, (4.15)
for all E € OF _,
5. i
HEA(I) > inf HPH(I) = Cr, (4.16)
IcOLk
for all E € OF |
6.
HE(I) > Cs (ER(I) + [s™(T))]) (4.17)

for all E € OF

res*

Using (4.11) and Lemma 4.1, we get the following energy estimates
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Lemma 4.2 Suppose that the initial data satisfy
I[eo.c = PesslF2) < Ce, W0, — Tlesslliz(ay < Ce?, I EgY. — E|72q) < Ce, ||B0,€||%2(Q;]R3) < Ce?,

and
V2o, ﬁO,s”L?(Q;RS) <C.
Then the following estimates hold

ess sup |ME, (1) < Ce?, (4.18)
te(0,T)
ess sup ||[oc — @]ess(t)H%Q(Q) < Ce?, (4.19)
te(0,T)
ess sup ||[9. — 5]655(15)”%2(9) < O€?, (4.20)
te(0,T)
ess sup ||[EF — E]ess(t)H%Q(Q) < Ce, (4.21)
te(0,T)
ess sup ||[oce(0e, Ve)]res ()] L1 (0) < Ce?, (4.22)
te(0,T)
ess sup ||[0c5(0c, Ve)]res ()] L1 (0) < Ce?, (4.23)
te(0,T)
ess sup ||[ER(IE)]TeS(t)||L1(Q) < Ck, (4.24)
te(0,T)
ess sup ||[SR(IE)]TeS(t)||L1(Q) < Ce. (4.25)
te(0,T)
(7" + ) [[0,T] x Q] < €<, (4.26)
B.(t
ess sup Be(t) <C, (4.27)
tE(O,T) L2(Q;R3)
ess sup ||y/oe U ()| L2(mr3) < C. (4.28)
te(0,T)
ess sup / ([ge]ées + [196];165) (t) do < Ce?, (4.29)
te(0,7) JQ
e 20, ;w12 (;r3y) < C, (4.30)
‘ de ;19 <C, (4.31)
Mz mwr2 @)
1 — log (¥
ox(0.)  og(?) e )
< L2(0,T;W12())
B.
== <c. (4.33)
L2(0, ;W12 (Q;R3))

20



Proof: Estimate (4.18) follows from (4.13). Bounds (4.19), (4.20) and (4.21) follow from (4.12) and
(4.15). Estimates (4.22) and (4.23) follow from (4.14). Bounds (4.24) and (4.25) follow from (4.17).
Estimates (4.26), (4.27) and (4.28) follow from the dissipation energy-entropy inequality (4.11). Bound
(4.29) follows from (4.22) and (2.5) (cf. a lower bound for ge before (4.11)).

From (4.26) we see that

2
‘ Vi + V5. — Zdiv, i1
3 L2(0,T;L2 (R3%3))

<C. (4.34)

From (2.7), (4.28) and (4.34) we get (4.30). Details can be found in [10] and [15]. From (4.26) we get

U log ¥
|+ (%) e (5%)
€ /20,1507 (2:R?)) €

which, using Poincaré inequality, gives (4.31) and (4.32). Finally by (2.9), (2.23) and (4.26) one gets

<C,
L2(0,T;L2(R?))

curl, B; <0

L2(0,T;L%(R?))

and (4.33) follows by using Theorem 6.1 in [14].
Our goal in the next Section will be to prove that the incompressible system (3.27)-(3.36) is the limit
of the primitive system (4.2)-(4.7) in the following sense

Theorem 4.2 Let Q C R? be a bounded domain of class C%¥. Assume that the thermodynamic functions
p, e, s satisfy hypotheses (2.1) — (2.6) with P € C* ([0,00))NC?%(0,00), and that the transport coefficients
W, M, K, A, 0q, 05 and the equilibrium function B comply with (2.7) — (2.12).

Let (Qg,ﬁa,ﬂa,ée,la) be a weak solution of the scaled system (1.1) — (1.11) for (¢t,z,@,v) € [0,T] x
0 x 8% x Ry, supplemented with the boundary conditions (1.12) — (1.18) and initial conditions
(QO,E; ﬁ(),sa 190,67 BO,ea IO,E) gz’ven by

_ B} B} - : - » ~(1)
Q&(Oa ) =0+ 5982; UE(O; ) = Uo,e, 196(0) ) =4+ 53198?27 IE(Oa ) =1+ 510(,15)5 BE(O7 ) = EBO,57

where 3> 0, ¥ >0, T >0 are constants in (0,T) x Q and

/g(()lg dxr =0, /19832 dx =0, /I(()IE) dx =0, /B}g? drx =0 for all e > 0.

Assume that
o6 = 0y weakly — (+) in L=(%),
ﬁoie — Uy weakly — (%) in L®°(Q;R?),
05) — 95 weakly — (+) in L=(9),
Io(,la) — Iél) weakly — () in (2 x 82 x Ry),
By — éél weakly — (¥) in L®(Q;R?),
Then

< Ce, (4.35)

ess sup [lo-(t) =l 5 <

te(0,7)
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and up to subsequences

. — U weakly in L*(0,T; Wl’Q(Q;R3)), (4.36)
f—] . " 4

5 = 93— © weakly in L3(0,T; W3 (Q)) (4.37)
I. — 1= By weakly in L*(0,T;L*(Q x S* x R,)), (4.38)

B. S0 4 o 1.2 3
— = B, " — B weakly in L“(0,T; W>=(£;R?)), (4.39)

and _
-1 .

— = I - I weakly in L*(0,T; L*(Q x 8% x Ry)), (4.40)

where (ﬁ,@,é,]l) solves the system (3.27)-(3.52).

5 Proof of Theorem 4.2
Let us first quote the following result of [11] (see [15]).

Proposition 5.1 Let {0:}c>0, {Uc }es0, {Ic tes0 be three sequences of non-negative measurable functions
such that
{ggl)} — g(l) weakly — (x) in L*>(0,T; LQ(Q)),

[ﬁgﬂ 9D weakly — (x) in L=(0,T; LA()),

[[él)} — TN weakly — (¥) in L>=(0,T; L*(2)), a.e. in S* x Ry,
€ess

where _ _ _
o) — 0:—0 9 — 195*19’ 0 = Ie*I.
€ € €
Suppose that
ess sup |ME ()] < Ce2 (5.1)
te(0,T)

Let G,GE € CY(O,s5) be given functions. Then

[G(o=,02)],.. —G(@ V)  0G(@ V) () , 0G(2,9)
et oy

—

€ do
weakly — () in L>=(0,T; L*(Q)), and if we denote

[GH(ILL)],,, = [G*Ue(, @, v)],,, = GR(IL) - Ine,,, for aa. (B,v) € S* xRy,

€SS

we have

[GR(1.)]

€ess

5 oI ’
weakly — () in L>(0,T; L*(2)), a.e. in S* x R,
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Moreover if G,GE € C?(O,ss) then

[G(967198)]625_G(§5§) 3Gé§gﬂ) {9(1)]6&S 9G(g,9) [ﬂu)}m

< Ck,

llzee 0,101 (2)
and

< Ck,
L>=(0,T;L} (%))

[GR(IE)] ess GR(T) aG(T) 1
o 1]

9 ess

for a.a. (B,v) € 8 x Ry.

Clearly, this result provides us with the convergence properties (4.35) — (4.36), (4.39) — (4.40). The
convergence of radiative intensity (4.38) follows from (4.24), (4.21), and the linearity of (3.9), cf. the
section 5.2 Radiative transfer equation. The equilibrium Planck function By does not satisfy the boundary
condition (1.13); however since it is isotropic; therefore has to be modified at the boundary 9. The last
convergence (4.37) is postponed to Section 5.3.

To conclude the proof of Theorem 4.2, let us prove that the limit quantities (U ,0, E, 1) solve the
target system (3.27)-(3.32).

As number of terms in the equations of our model are similar to those of the radiative Navier-Stokes-
Fourier analyzed in [11] we focus on the new contributions only.

5.1 Continuity and Momentum equations

For the continuity equation, one expects that in the low Mach number limit, it reduces to the incom-
pressibility constraint. In fact, from Lemma 4.2 we know that fOT Hﬁa(t)H%VLQ(Q,R;,) dt < C' so passing to
the limit after possible extraction of a subsequence, we deduce that

. — U, weakly in L2(0,T; WH2(Q; R®)). (5.2)

In the same stroke g. — B, weakly in L>(0,T; L5/3(Q;R?)). So we can pass to the limit in the weak
continuity equation (4.2) which gives fOT Jo U-Vao do dt =0 for all ¢ € D((0,T) x Q), which rewrites

— —

div,U =0, ae. in (0,7)xQ, U| =0,

provided 0fQ is regular.
For the momentum equation one knows that due to possible strong time oscillations of the gradient

component of velocity, one has only p.@. ® 4. — oU ® U weakly in L%(0,T; L35 (Q;R?)). However one
can show by the analysis in [15] that one can pass to the limit in the convective term and obtain

T - T
/ /gﬁ@ﬁzvzd)d:cdtﬂ/ /@ﬁ@ﬁzvzd)dazdt.
0 Q 0 Q

According to the hypotheses on the pressure law, the temperature ¥ is bounded in L°°((0,7); L*(Q)) N
L2(0,T; L5(%2)), which together with the strong convergence of ¥, by (4.31) imply that S, — u(7)(V,U+
VIT) weakly in L3 (0,T; L3 (Q; R?)).
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So taking a divergence free test vector field q; in (4.3), we have

T
/ / (Qaae 20+ 0:Ue DU : Vypp — 20X X s - ¢) dx dt
0 Q

e B .
. e — o lewlB. B - 1
:/ / (Sezvxé— e ¢ V.U, ¢— ar == - =20V, ¥ x Z* - )dxdt
o Ja € ( € € 2
7/ 000, - $(0,-) da. (5.3)
Q

Moreover, using (2.16) together with estimates (4.27), (4.33) and Aubin-Lions lemma we get

— B weakly in L*(0,T; W2(Q; R*)) and strongly in L?(0,T; L9(, R?)), (5.4)

m|031

1 curlmge g@
€

1 L ;
c X — Zcurle x B weakly in L4((0,7T) x Q;R3),
3

for any 1 < ¢ < 6.
Then passing to the limit and using (4.36)-(4.40), we get

T
/ /(@(7~8t$+§ﬁ®(7:Vx$—2§fxﬁ-$) dz dt
0 Q

/ /( V(.0 + VT ).vxa_glvxqj@.a_%cuﬂxéxé.g;) dxdt—/@(jo-cz_;dm,
Q

provided that @y . — Uo weakly- in L>®(Q;R?).
Moreover as in [15], the formal relation between o) and 7 is recovered by multiplying the momentum
equation by . One gets, using Proposition 5.1 and passing to the limit € — 0

T
/ / (Ver) ~29.9(2)) - 6 do dt =0, (5.5)
0o Ja
which is the weak formulation of
agp(ﬁ, 5)vx9(1) + aﬁP(@a 5)vx19(1) - @vx\p(@) =0. (56)
This rewrites as _
agp(ga ﬂ)vzgl - @Vz\p(é) =0. (57)
once we establish that 9(1) =¥, = 93 = 0 in the section 5.3. That means we have got an explicit formula
for 01
oY (2)
01=——= +hlt), (5.8)
agp(@, 19)

where h is an undetermined function.
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5.2 Radiative transfer equation

Using the L* bound shown in ([10]) for I, based on the initial data bound (4.1), it is clear that
I. — Iy weakly in L?((0,T) x Q x 82 x Ry), and we have also by virtue of (4.31) 9. — 0 weakly in
L2(0,T; Wh2(Q)).

By using the cut-off hypotheses (2.10), (2.12) and the same notation for any time-independent test
function ¢ € C°(Q x 8% x Ry ), we can pass to the limit in (4.7) and we get,

// /@.vxwfo dadydx+// / {aa(y,ﬁ)(B(yﬂ)—Io)+as(y,5)(fO—IO)}wdﬁdudx
QJ0 S2 QJ0 S2
:/ / oG - 7, o dT dv,
ry Jo

which is the weak formulation of the stationary problem
W - Vglp = So, (5.9)

with the boundary condition
Iy=0 onT_, (5.10)

where Sy = o,4(v,9) (B(v,9) — Ip) + o4(v,9) (fo - Io). The solution of (5.9) — (5.10) is the function

equal to B(v, ) = By in Q and 0 on T'_. This solution is unique at least for a particular type of domains
thanks to the linearity of (5.9).
Substracting from (4.7) and dividing by € gives

A// /32 (e0pp + & - Va:ll)) IO dwdz/dxdtJr/ /A /32{ ]d)dqul/dxdt
// /32 IOE?IO (0, z,d,v) dwdydx+/ /F/ l/JdFdth

for any ¢ € C°(0,T) x Q x 8% x R,), with S. — Sp := S(I.) — S(Ip). From Proposition 5.1, we get
SE - SO
€
+0gos(v, 5)19(1)15 + o5 (v, 5)]} — Oyos(v, 5)19(1)10 —os(v,9)
= —0u(w, DI + 0y, 9) (1 = 1)
weakly-* in L>°(0,T; L?(Q x S? x Ry)) with I; := (1),

Passing to the limit we find the limit equation based on the assumption Ié}e) — Iél) weakly-*
L>®(Q x 8% xRy)

// /Q-walld[u’dudat—i—// Supd&}dudx,:/ / LG ity dl dv,  (5.11)
aJo Js2 aJo Js2 r. Jo

using the same notation for any time-independent test function 1 € C°(Q x S x R) which is the weak
formulation of the stationary problem

— 81 1= 9y(0aB) (v, 0)9Y — dyoa (v, )9V Iy — 0, (v,9)];

&Vl =51, (5.12)
with the boundary condition
=0 onT_. (5.13)
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5.3 Entropy balance

First of all we analyze the weak limit of (4.6), then we substract it (with weak limits denoted by bars)
from (4.6) and divide by ¢ as in the last section. We follow the ideas of [16] and [24].

The most obvious convergence in (4.6) is in the entropy production rate measures. By virtue of (4.26)
it holds

m R.
(" + <50 eyory xa — 0 as e — O, (5.14)

and
. (" + <0 mseroryxm — 0 as e — 0+ (5.15)

We split the heat flux term into residual and essential parts as follows:

19 AV
/ / res x(pd:c dt+/ / 665 ~ ~Vx<pd:c dt. (5.16)

The first term on the rhs vamshes. The argument is as follows:
Firstly, from (4.26), (2.23) and (2.8) we get an exact estimate

-2

T
/ / 9 dxdt < ec. (5.17)
0o Jo
From (4.31) u‘ <, thus
L2(0,T;W2(92))
9. — 9 in L*(0,T;WH3(Q)) (5.18)

strongly. On the residual set we now apply the Sobolev embedding and interpolate (5.18) with the
information in (4.29). (Similarly we get 9 =0 in L2(0,T;W12(Q)) as well.) This leads to the
convergence

Welres = [lres =0 in L3 (0,75 L% (), (5.19)

meaning that the first integral in (5.16) converges. With the intention that its limit is zero we apply (2.8)
and split the integral into two parts. The second part, namely,

% 2 % 195
b= 0% +9°) \ /0], Vol - Vapdudt (5.20)

converges to zero as ¢ — 0 with the rate £? by the Poincaré inequality

3
2

3
v = H\/ Ce? 5.21
’ N L2(0,T5L2(Q)) — Ve L2(0,T;L2(Q)) — c (5.21)
by (5.17), (4.18) and (4.29). The first part, namely,
T ¥
/ / (1,05 92 ' Vo= - Vo da dt (5.22)
o Ja €
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converges to zero as ¢ — 0 with the rate ¢ by Cauchy-Schwarz inequality, (4.32) and (4.18). The second
term on the rhs of (5.16) converges by virtue of (5.17) and (5.18), at least for a subsequence, to

T
/ / m(@)ﬁ_lvxﬂg - Vo dedt. (5.23)
0o Ja

For the convergence of the initial entropies in (4.6) we use Proposition 5.1 and we get

,/ { ([(QS)O,E]ess - 53(57 5) te [5(1)%75} ess SR(T)> CP(O )} dx

= [ 2 (0@ D) 900, e (521)
Q
In particular _
[(05)0,e] o5 — @5(2:9) € — O, (5.25)
[s6] s = s"(D) e — 04, (5.26)

weakly — (x) in L>(0,T; L?()).

Residual parts of the initial conditions disappear thanks to the L weak star convergences of the
initial data in Theorem 4.2 for ¢ sufficiently small.

For the convergence in advective part of the entropy balance (4.6) we use (5.18) and the fact that

0 — 0 e — (5.27)

in L>(0,T; L3 (€2)). This allows to make the limit of entropy to a constant for a subsequence

s(0e,9e) — s(2,9) e — 0+ a. e in (0,7) x Q. (5.28)

The convergence of entropy of a photon gas follows from Proposition 5.1 as

R _ gR
57[55}%; ~ o, (5.29)

s R (5.30)

weakly — () in  L*°(0,T; L*(Q2)) as ¢ — 0+ according to (4.25) and (4.18) again. The convergence of
the next term containing o.s-u. is again split into two terms, first one on the residual, second one on the
essential set. For the second one we use again Proposition 5.1, the first one

T
/ / (0286 (02, Ve )]s e - Vapda dt (5.31)
0 Q

converges to 0 just in L((0,7) x ) as € — 0+ because of the estimates (4.18), (4.23), (4.29).

While the convergence of the equilibrial radiative entropy flux can be readily improved, e. g. to the
space L%((O, T) x ) because of the Gibbs’ relation between specific entropy and energy, cf. (2.5) and
(2.6), the integral with the material entropy flux part does not seem to have a right regularity to be
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meaningful. However, we can use usual cut-off functions Tk (z) := min(K, z), choose K large enough,
e.g. K= £7% and split the integral to two parts

T T
| [ eeseteeoa 109l dode = [ [ ffoeselon 9], T, g (D) 926l dadi
0 0

€

€

T
| [ teesetons 0o, ol [l = 7, (17D)] 1921 dot
0 Q

The first part converges to 0 by (4.23), the second one is of order O(e) by Sobolev embedding, estimate
(4.18) and Markov-Chebyshev inequality. The limiting part of this estimate is the first part, where the
need to improve the regularity the material part of the entropy flux faces the problem that we have not
got generally a better estimate than (4.23).

Previous works [31] [24] [16] rely on the closedness of the equation of state to the ideal gas law so
that es. is estimated essentially by o.|log oc|, 92 and o.|log .|, the last one being the most restrictive,
leading to the convergence in (5.31) in L2(0,T; L2 (Q2)). Without such an assumption we would estimate
the entropy by oZi. which is not tractable in view of (4.29). Nevertheless, in our case of low stratification
we do not need to identify the limit of the entropy flux on the essential set since it vanishes after an
integration by parts.

After (5.18) and (5.27)

T T
/ / [052(02, V)] gs Ue - Vapdx dt — / / 25(0,9)U - Vypdzdt = 0. (5.32)
o Ja 0o Ja
The last term contains the nonequlibirial radiative entropy flux q"R - Let us recall
(o]
=) =~ [ [ P ndogn. - (e + 1) log(n + 1} Gz
0o Js2

with n. = n(l;) = % We claim

T T a
J. = / / (j'RE -Vepdrdt — / / q -Vgepdzdt=:J (5.33)
0 Jo 0 Ja

because of the convergence on the essential set M¢ . that follows from (5.41) and on the residual set
ME,, we use (4.25). Collecting now all the aforementioned convergences in this section we readily get

the weak formulation of (3.25). With (3.18) we see that ¥ = 0 and search for V,0 = V. i3 :=
w — i

m a4 \V4 H
L3((0,T)xQ),e—0+ * &3
Let us recall that » = 3 that is needed for the proof of existence and try to relax it for the current

proof of convergence e — 0+ and realize that we can extract from (4.26) the bound

T _ )2
/ / 19;“—27|V“’(19;4 I dx dt < ¢ (5.34)
0 Q

with a constant ¢ independent of €. Therefore for r > 2 ‘W‘ is bounded in L3 ((0,T) x Q) and ©

exists.
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We substract equation (4.6) from its limit and divide by &

R _ R R R
[ /{gs .WH%E@M%.W} i

x Vo dr dt + = ! <<;” +§€P°;<p>[

M;C)([0,T)x) —

— R R
Soe — S S — S
—/ {(:QO,E % 420 70 ) w(o,-)} dz. (5.35)
Q g 13

We claim that all the terms in (5.35) are uniformly bounded, especially

k(W) Ve =39 k(D)
I g3 9

A (5.36)

weakly in L&r+15 ((0 T) x Q; R3) which gives for » = 3 the summability with the exponent of . To
show this we restrict ourselves to the residual set M., since on the essential set M¢,, the boundedness

is easy. For the set A. := {(t,x) : |V20:(¢t,z)| < 1} we use the estimates (4.18), (4.29) with Holder’s
inequality and r € [3, 5]

KO / /‘ 76&
M NAC

ess sup [T, t)|| <Ce BT =CT <e¢
te(0,T 5= ()

drdt <e~ // VLt drdt < Te || Ve, [Ty (5:37)

with ¢ independent of . In the opposite case (the complement of this set in M we estimate as follows

7‘66)

1 —1 3p_3 19
i _/ /‘ VL ddt = 000 (v H ol 1T gy
S\ fe\A —/—/
LS (M, \A.)
(5.38)
Va2
ryl 3,3 zUge
19513;;19; FValel? | g < (5.39)

R uniformly bounded in L* ((0,T)) x ), that is [9.]/"> is uniformly bounded in the

T) x Q). However we know that [J.],,, is bounded in L (0,77 L*(2)) N L" (0, T; L*"(£2))
as in [15]. By interpolation we get [0.],.., is uniformly bounded in L5 ((0,T) x Q) and that is why K
converges; moreover when we reiterate the same argument with a s—power of its integrand, we obtain
the bound s < &6 for Holder’s inequality.

6r+15
Similarly to [15], using Proposition 5.1 and energy estimates, we see that

provided [¢,]
space L' ((0,

Se — 8

0e —7 (3 5(2,0) 0™ + dys(3, )19(”) =0010,5(2,9)
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weakly-* in L"O(O,T;LQ(Q;Rg))7 and remind (5.15), (5.29), (4.25), (4.18) and (5.24).
Moreover the advective part weakly converges according to Proposition 5.1 again

Se —S

—

Ue — D (693(@ 5)9(1) + 6193(5,5)19(1)) U= 00,5(0, No1U,

Qe

weakly in L2(0,T; L3/2(; R?®)). This allows to pass to the limit in all terms of (5.35) except the non-
equilibrial radiative entropy flux term

/ / Ve dr dt. (5.40)

Let us compute the limit of ﬁTq.
Applying once more Proposition 5.1 with G(I) = n(I)logn(I) — (n(I) + 1)log(n(I) 4+ 1) and inte-
grating on S? x R, we find

;H/ / —log wI(l)dwdz/
S?

n(I)+1

weakly-* in L (0, T; L?(Q; R*)) on the essential set M2 (D)

€SS

and as log [ ] = %, we have got

with the radiative momentum FR(I(l)) =7 [e @ IM did dv. So

T R R T . gk

— Fo(I®m
/ / 19 -Va«pdxdt—>/ /L() odadt (5.41)
0o Jo € o Jo )

by the Proposition 5.1 , (4.25) and (4.18) on M:_,. As we have from (5.12)
div, F / aﬁaa (1, 0) (B(v, ) — Io) 9D + 04(v, D) (aﬁB(y, F)o — 11)} 43 dv,
82
the limit contribution in (5.35) becomes

/// /—aayﬁlltacwu)@ do dv dx dt.
82

Gathering all of these terms, we find the limit equation for entropy

00,5(0,0 / /Q1 O+ U - qu) dz dt + = / / V.0 -V dr dt

1 T [e'e] _ —
f:/ // aa(l/,ﬂ)/ L(t,x,d,v)pdd dv dx dt:fﬁﬁgs(@ﬂ)/ g(()l)ga(O,~)dac.
YJo JaJo s2 Q

Using (5.7) we easily verify that we finally obtained the thermal equation (3.31) once we take the Maxwell
relation dyp = 0,5 into account.
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5.4 Maxwell equation

From (5.2) and (5.4) we get

B - ; 5
— X i — B x U weakly in L9(0,T; LY, R%)) for ¢ € [1, 5)’
€
and .
B. — - R 34 34 3
A9 ) curl,— — Acurl, B weakly in Ler+17 (0, T, Ler+17 (Q, R?)).
€
Then it is easy to pass to the limit in (4.5), realizing that ﬁ >1for1<p< il

This last step ends the proof of Theorem 4.2.

A Appendix: Proof of Theorem 3.1

1. Consider now the linearly coupled problem for the remaining equations

—

div,U =0, (A.1)

- o - s 1 B2 1, = = o
U + (U - V,)U + V,II—aAU + Vel 7] - Z(B V.)B =F, (A.2)
OB+ (U-V,)B+ (B-V,)U-XAB =0, (A.3)
div,B = 0, (A4)
—A@zﬁﬂ—%/ oo | Lidddv+h (A.5)

KJo 52

G- Vaoly + 0ol — 0 (fl - 11) =0, (A.6)

where § € (L>(€2))3, together with the boundary conditions
[7|8Q =0, VO- ’r_i|aQ =0, B- T_i|aQ =0, Cuﬂxé X ’r_i|aQ =0 (A.7)

for (A.1)-(A.5) and
Lz, v,d)=0forx €0, J-71<0 (A.8)

for (A.6), and the initial conditions
Uli=o = U, Bli=o = Bo. (A.9)
We first consider the solution (U', B , I) of the “radiative-MHD problem”

—

div,U =0, (A.10)

L. . L1 Lo
U+ (U -V,)U + VIl —uAU = ZcurlzB x B+ F, (A.11)
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8B+ (U -V,)B+B-V,U~XAB =0, (A.12)

div, B =0, (A.13)
3-Vohh + ooy — o, (L - 11) =0, (A.14)
with . B B
Ulon =0, B-lon =0, curl, B x fi|spq = 0,
and

Uli—o = Uy, Bli—o = By I1i(z,v,3) =0 for z € 9Q, @ - < 0.

The MHD part has a weak solution U € L2(0,T;U(Q)), B € L2(0,T; W()) thanks to an extension
of the Leray-Hopf Theorem (see [36]). Moreover the stationary radiative equation (A.14) also has
a weak solution I; € L2((0,T) x Q x 8% x R, according to Theorem 1 and Proposition 2 of [2].

Then we consider the solution © of the stationary diffusion equation
I Y -
—A@zU-ﬁ—:/ aa/ Ldddv+h (A.15)
K 0 82
with

VO - iilgg = 0

subject to [,©dx = 0 for all times. It admits a weak solution © € L>((0,7;W?2%(Q)) N

L2((0,T; W42(€)) Vg < 2, thanks to classical elliptic regularity theory and due to regularity of the
rhs due to [18].

Since the "radiative-MHD problem” does not depend on the temperature perturbation © the proof
is complete.
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