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Basic fields in diffuse interface modeling

Density

% = %(t, x)

Bulk velocity

u = u(t, x)

Phase variable - concentration difference

c = c(t, x)

Free energy, pressure, chemical potential

f = f (%, c), p(%, c) = %2 ∂f (%, c)

∂%
, µ(%, c) ≈ ∂f (%, c)

∂c



Model by Anderson, McFadden and Wheeler

Mass conservation - equation of continuity

∂t% + divx(%u) = 0

Momentum equation

∂t(%u) + divx(%u⊗ u) +∇xp(%, c)

= divxS(c ,∇xu)− divx

(
∇xc ⊗∇xc −

|∇xc |2

2
I
)

S(c ,∇xu) = ν(c)

(
∇xu +∇t

xu−
2

3
divxuI

)
+ η(c)divxuI

Cahn–Hilliard equation

∂t(%c) + divx(%cu) = ∆µ, %µ = %
∂f (%, c)

∂c
−∆c



Model by Lowengrub and Truskinovsky

Mass conservation - equation of continuity

∂t% + divx(%u) = 0

Momentum equation

∂t(%u) + divx(%u⊗ u) +∇xp(%, c)

= −divx

(
%∇xc ⊗∇xc − %

|∇xc |2

2
I
)

Cahn–Hilliard equation

∂t(%c) + divx(%cu) = ∆µ, %µ = %
∂f (%, c)

∂c
− divx(%∇xc)



Existence of weak solution - viscous case

Basic assumptions

p(%, c) = pe(%) + %H(c), pe(%) ≈ %γ , γ >
3

2

Global-in-time weak solutions, H.Abels, EF [Indiana Univ.
Math. J. 2008]

The model by Anderson, McFadden and Wheeler (viscous model)
admits global-in-time weak solutions for any finite energy initial data



Existence of weak solutions - inviscid case

Basic assumption

f (%, c) = H(c) + log(%)

(
α1

1− c

2
+ α2

1 + c

2

)

Global-in-time weak solutions, EF [DCDS(S) 2016]

The model by Lowengrub and Truskinovsky (inviscid model) admits
infinitely many global-in-time weak solutions for any initial data

%0, u0, c0 ∈ C 3, %0 > 0.

The solutions satisfy % > 0 (no-vacuum)



Total energy - dissipative solutions

Total energy

E (%,u, c) =

∫ [
1

2
%|u|2 +

1

2
%|∇xc |2 + %f (%, c)

]
dx

Dissipative solutions

E (t) non-increasing

E (t) ≤ E0 for allt > 0



Existence of dissipative solutions

Theorem [EF, IM Preprint 2-2015 (to appear)]

Let %0 ∈ C 3 be given.
Then for a dense (in L2) set of c0 ∈ C 3, there exists u0 ∈ L∞ such
that the model by Lowengrub and Truskinovsky (inviscid model)
admits infinitely many global-in-time dissipative weak solutions



Abstract formulation

Variable coefficients “Euler system”

∂tv + divx

(
(v + H[v])� (v + H[v])

h[v]
+ M[v]

)
= 0

divxv = 0,

Kinetic energy

1

2

|v + H[v]|2

h[v]
= E [v]

Data

v(0, ·) = v0, v(T , ·) = vT



Abstract operators

Boundedness

b maps bounded sets in L∞((0,T )× Ω; RN) on bounded sets in
Cb(Q,RM)

Continuity

b[vn] → b[v] in Cb(Q;RM) (uniformly for (t, x) ∈ Q )

whenever

vn → v in Cweak([0,T ]; L2(Ω; RN))

Causality

v(t, ·) = w(t, ·) for 0 ≤ t ≤ τ ≤ T implies b[v] = b[w] in [(0, τ ]× Ω]



Subsolutions

Field equations, differential constraints

∂tv + divxF = 0, divxv = 0

v(0, ·) = v0, v(T , ·) = vT

Non-linear constraint

v ∈ C (Q;RN), F ∈ C (Q;RN×N
sym,0),

N

2
λmax

[
(v + H[v])⊗ (v + H[v])

h[v]
− F + M[v]

]
< E [v]



Subsolution relaxation

Algebraic inequality

1

2

|v + H[v]|2

h[v]
≤ N

2
λmax

[
(v + H[v])⊗ (v + H[v])

h[v]
− F + M[v]

]
< E [v]

Solutions

1

2

|v + H[v]|2

h[v]
= E [v]

⇒

F =
(v + H[v])� (v + H[v])

h[v]
+ M[v]



Oscillatory lemma

Hypotheses:

U ⊂ R × RN , N = 2, 3 bounded open set

h̃ ∈ C (U;RN), H̃ ∈ C (U;RN×N
sym,0), ẽ, r̃ ∈ C (U), r̃ > 0, ẽ ≤ e in U

N

2
λmax

[
h̃⊗ h̃

r̃
− H̃

]
< ẽ in U.



Conclusion:

wn ∈ C∞c (U;RN), Gn ∈ C∞c (U;RN×N
sym,0), n = 0, 1, . . .

∂twn + divxGn = 0, divxwn = 0 in R × RN ,

N

2
λmax

[
(h̃ + wn)⊗ (h̃ + wn)

r̃
− (H̃ + Gn)

]
< ẽ in U,

wn → 0 weakly in L2(U;RN)

lim inf
n→∞

∫
U

|wn|2

r̃
dxdt ≥ Λ(e)

∫
U

(
ẽ − 1

2

|h̃|2

r̃

)2

dxdt
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Basic ideas of proof

Localization

Localizing the result of DeLellis and Széhelyhidi to “small” cubes by
means of scaling arguments

Linearization

Replacing all continuous functions by their means on any of the
“small” cubes

Eliminating singular sets

Applying Whitney’s decomposition lemma to the non-singular sets
(e.g. out of the vacuum {h = 0})

Energy and other coefficients depending on solutions

Applying compactness of the abstract operators in C



Results

Result (A)

The set of subsolutions is non-empty ⇒ there exists infinitely many
weak solutions of the problem with the same initial data

Initial energy jump

1

2

|v0 + H[v0]|2

h[v0]
< lim inf

t→0

1

2

|v + H[v]|2

h[v]

Result (B)

The set of subsolutions is non-empty ⇒ there exists a dense set of
times such that the values v(t) give rise to non-empty subsolution
set with

1

2

|v0 + H[v0]|2

h[v0]
= lim inf

t→0

1

2

|v + H[v]|2

h[v]


