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Abstract: Across geosciences, many investigated phenomena relate to specific complex1

systems consisting of intricately intertwined interacting subsystems. Such dynamical com-2

plex systems can be represented by a directed graph, where each link denotes an existence3

of a causal relation, or information exchange between the nodes. For geophysical systems4

such as global climate, these relations are commonly not known theoretically but estimated5

from recorded data using causality analysis methods. These include bivariate nonlinear6

methods based on information theory and their linear counterpart. A trade-off between7

the valuable sensitivity of nonlinear methods to more general interactions and potentially8

higher numerical reliability of linear method may affect inference regarding structure9

and variability of climate networks. We investigate the reliability of directed climate10

networks detected by selected methods and parameter settings, using stationarized model11

of dimensionality-reduced surface air temperature data from reanalysis of 60-year global12

climate records. Overall, all studied bivariate causality methods provided reproducible13

estimates of climate causality networks; with linear approximation showing higher reliability14

than the investigated nonlinear methods. On the example dataset, optimizing the investigated15

nonlinear methods with respect to reliability increased similarity of the detected networks16

to their linear counterparts, supporting the particular hypothesis of surface air temperature17

climate reanalysis data near-linearity.18
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1. Introduction20

Across geosciences, many investigated phenomena relate to specific complex systems consisting21

of intricately intertwined interacting subsystems. These can be suitably represented as networks, an22

approach that is gaining increasing attention in complex systems community [1,2]. The meaning of the23

existence of a link between nodes of a network depends on the area of application, but in many cases it24

is related to some form of information exchange between the nodes.25

This approach has already been adopted for the analysis of various phenomena in the global climate26

system [3–7]. Typically, a graph is constructed by considering two locations linked by a connection, if27

there is an instantaneous dependence between the localized values of a variable of interest.28

This dependence can be conveniently quantified by mutual information - an entropy-based general29

measure of statistical dependence that takes into account nonlinear contributions to the coupling. In30

practice, for reasons of theoretical and numerical simplicity, linear Pearson’s correlation coefficient31

might be sufficient, although potentially negliging the nonlinear contributions to interactions. In32

particular, while initial works by Donges et al. stressed the role of mutual information in detecting33

important features of global climate networks [8,9], more detailed recent work has shown that34

the differences between correlation and mutual information graphs are mostly (but not necessarily35

completely) spurious, such as due to natural and instrumental (related to data collection) nonstationarities36

of the data [10].37

However, these methods do not allow to assess the directionality of the links and of the underlying38

information flow. This motivates the use of more sophisticated measures, known also as causality39

analysis methods.40

The family of causality methods include linear approaches such as the Granger causality analysis [11]41

as well as more general nonlinear methods. A prominent representative of nonlinear causality assessment42

method is the conditional mutual information [12] known also as transfer entropy [13].43

Arguably, the nonlinear methods, due to their model-free nature, have the theoretical advantage of44

being sensitive to forms of interactions that linear methods may detect only partially or not at all. On the45

other side, this advantage might be more than outweighed by a potentially lower precision. Depending46

on specific circumstances, this may adversely affect the reliability of detection of network patterns.47

Apart from uncertainty about the general network pattern, reliability is important when the interest is48

in detecting changes in time, with the need to distinguish them from random variance of the estimates49

among different sections of time series under investigation - a task that is relevant in many areas of50

geoscience including climate research.51

In other words, before analyzing a complex dynamical system using network theory, a key initial52

question is that of the reliability of the network construction, and of its dependence on the causality53

method choice and settings.54
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We study this question for a selection of standard causality methods, using a timely application in55

the study of climate network and its variability. In particular, surface air temperature data from the56

NCEP/NCAR reanalysis dataset [14,15] are used. The original data contain more than 10,000 time57

series - a relatively dense grid covering the whole globe. For efficient computation and visualization of58

the results, it is convenient to reduce the dimensionality of the data. We use principal component analysis59

and select only components that have significantly high explained variance compared to corresponding60

spatially independent but temporally dependent (i.e. ‘colored’) random noise.61

As the causality network construction reliability may crucially depend on the specific choice of the62

causality estimator, we quantitatively assess the effect of choice of different causality measures and their63

parametrization.64

We assess the network construction reliability by quantifying the similarity of causality matrices65

reconstructed from independent realization of a stationary model of data. These realizations are either66

independently generated, or they represent individual non-overlapping temporal windows in a single67

stationary realization. Optimal parameter choice of the applied nonlinear methods is detected, and the68

reliability of networks constructed using linear and nonlinear methods compared.69

The latter method, i.e. comparing networks reconstructed from temporal windows, allows to assess70

the network variability on real data and compare it with variability on the stationary model.71

2. Data and Methods72

2.1. Causality assessment methods73

2.1.1. Granger causality analysis74

A prominent method for assessing causality is so-called Granger causality analysis, named after Sir75

Clive Granger, who proposed this approach to time series analysis in a classical paper [11]. However, the76

basic idea can be traced back to Wiener [16], who proposed that if the prediction of one time series can77

be improved by incorporating the knowledge of a second time series, then the latter can be said to have a78

causal influence on the former. This idea was formalized by Granger in the context of linear regression79

models. In the following, we outline the methods of assessment of Granger causality, following the80

description given in [17] and [18,19].81

Consider two stochastic processes Xt and Yt and assume they are jointly stationary. Let further the82

autoregressive representations of each process be:83

Xt =
∞∑
j=1

a1jXt−j + ε1t, var(ε1t) = Σ1, (1)

Yt =
∞∑
j=1

d1jYt−j + η1t, var(η1t) = Γ1, (2)

and the joint autoregressive representation be:84
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Xt =
∞∑
j=1

a2jXt−j +
∞∑
j=1

b2jYt−j + ε2t, (3)

Yt =
∞∑
j=1

c2jXt−j +
∞∑
j=1

d2jYt−j + η2t, (4)

where the covariance matrix of the noise terms is:85

Σ = Cov

(
ε2t

η2t

)
=

(
Σ2 Λ2

Λ2 Γ2

)
. (5)

The causal influence from Y to X is then quantified based on the decrease in the residual model
variance when we include the past of Y in the model of X , i.e. when we move from the independent
model given by Equation (1) to the joint model given by Equation (3):

FY→X = ln
Σ1

Σ2

. (6)

Similarly, the causal influence from X to Y is defined as:

FX→Y = ln
Γ1

Γ2

. (7)

Clearly, the causal influence defined in this way is always nonnegative.86

The original introduction of the concept of statistical inference of causality [11] includes a third87

(potentially highly multivariate) process Z, representing all the other intervening process that should be88

controlled for in assessing the causality between X and Y . The bivariate (or ‘pairwise’) implementation89

of the estimator thus constitutes a computational cimplification of the original process, for the sake90

of numerical stability as well as comparability to the bivariate transfer entropy (conditional mutual91

information) approach introduced later. See section 4 for further discussion of related issues.92

2.2. Estimation of GC93

Practical estimation of the Granger causality involves fitting the full and depleted models described94

above to experimental data. While the theoretical framework outlined above is formulated in terms of95

infinite sums, the fitting procedure requires selection of the model order p for the models. For our report,96

we have selected p = 1 to allow direct comparability of the Granger causality analysis to the nonlinear97

methods considered later. This choice is the most common choice for Granger causality in literature and98

amounts to looking for links with lag 1 time unit.99

2.3. Transfer entropy100

To provide a framework for discussion of the related issues, it is useful to consider that for a general101

bivariate stochastic process the Granger causality concept, can be captured in information-theoretic102

terms. In particular, we can define that X causes Y if the knowledge of past of X decreases103
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the uncertainty about Y (above what the knowledge of past of Y and potentially all other relevant104

confounding variables already informs). This simple concept is captured in the definition of transfer105

entropy (TE, [13]). TE as can be defined in terms of conditional mutual information as shown below,106

following closely [12].107

For two discrete random variables X, Y with sets of values Ξ and Υ and probability distribution
functions (PDFs) p(x), p(y) and joint PDF p(x, y), the Shannon entropy H(X) is defined as

H(X) = −
∑
x∈Ξ

p(x) log p(x), (8)

and the joint entropy H(X, Y ) of X and Y as

H(X, Y ) = −
∑
x∈Ξ

∑
y∈Υ

p(x, y) log p(x, y). (9)

The conditional entropy H(X|Y ) of X given Y is

H(X|Y ) = −
∑
x∈Ξ

∑
y∈Υ

p(x, y) log p(x|y). (10)

The amount of common information contained in the variables X and Y is quantified by the mutual
information I(X;Y ) defined as

I(X;Y ) = H(X) +H(Y )−H(X, Y ). (11)

The conditional mutual information I(X;Y |Z) of the variables X, Y given the variable Z is given as

I(X;Y |Z) = H(X|Z) +H(Y |Z)−H(X, Y |Z). (12)

Entropy and mutual information are measured in bits if the base of the logarithms in their definitions108

is 2. It is straightforward to extend these definitions to more variables, and to continuous rather than109

discrete variables.110

Transfer entropy from processXt to process Yt then corresponds to the conditional mutual information111

between Xt and Yt+1 conditional on Yt:112

TX→Y = I(Xt, Yt+1|Yt). (13)

While the definition of these information-theoretic functionals describing dependence structure113

between variables is very general and elegant, the practical estimation faces challenges related to the114

problem of efficient estimation of the PDF of the studied variables from samples of finite size. For the115

further considerations, it is important to bear in mind the distinction between the true quantities of the116

underlying stochastic process, and their finite-sample estimators.117
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2.4. Potential causes of observed difference118

Interestingly, it can be shown that for linear Gaussian processes, transfer entropy is equivalent to
linear Granger causality, up to a multiplicative factor [20]:

TX→Y =
1

2
FX→Y . (14)

However, in practice, the estimates of transfer entropy and linear Granger causality may differ.119

There are principally two main reasons for this divergence between the results. Firstly, when the120

underlying process is not linear Gaussian, the true transfer entropy may differ from the true linear121

Granger causality corresponding to the linear approximation of the process. A second reason for122

divergence between sample estimates of transfer entropy and linear Granger causality, valid even for123

linear Gaussian processes, is the difference in the properties of the estimators of these two quantities, in124

particular bias and variance of the estimates.125

2.5. TE estimation126

There are many algorithms for estimation of information-theoretical functionals, that can be adapted127

to compute transfer entropy estimates. Two basic classes of nonparametric methods for the estimation of128

conditional mutual information are the binning methods and the metric methods. The former discretize129

the space in to regions usually called bins or boxes - a robust example is the equiquantal method, based130

on discretization of studied variables into Q equiquantal bins (EQQ, [21]). In the latter methods, the131

probability distribution function estimation depends on distances between the samples computed using132

some metric. An example of a metric method is the k-nearest neighbor (kNN, [12]) algorithm. For more133

detail on methods of estimation of conditional mutual information and their comparison see [12].134

Note that both these algorithms require setting an additional parameter. While some heuristic135

suggestions have been published in the literature, the suitable values of the parameters may depend136

on specific aspects of the application including the character of the time series. For the purpose of this137

study, we use a range of parameter values and subsequently select the parameter values providing the138

most stable results for further comparison with linear methods, see below.139

2.6. Data140

2.6.1. Dataset141

Data from the NCEP/NCAR reanalysis dataset [14] have been used. In particular, we utilize the time142

series xi(t) of the daily and monthly mean surface air temperature from January 1948 to December 2007143

(Td = 21900 and Tm = 720 time points respectively), sampled at latitudes λi and longitude φi forming a144

regular grid with a step of ∆λ = ∆φ = 2.5◦. The points located at the globe poles have been removed,145

giving a total of N = 10224 spatial sampling points.146
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2.6.2. Preprocessing147

To minimize the bias introduced by periodic changes in the solar input, the mean annual cycle is148

removed from the data to produce so-called anomaly time series. The data were further standardized so149

that the time series at each grid point has unit variance. The time series are then scaled by the cosine150

of the latitude to account for grid points closer to the poles representing smaller areas and being closer151

together (thus biasing the correlation with respect to grid points farther apart). The poles are thus omitted152

entirely by effectively removing data for latitude ±90.153

2.6.3. Computing the components154

The covariance matrix of the scaled time series obtained by preprocessing is computed. Note that this155

covariance matrix is equal to the correlation matrix, where each correlation is scaled by the inverse of156

the product of the cosines of the latitudes of the time series entering the correlation.157

Next, the eigendecomposition of the covariance matrix is computed. The eigenvectors corresponding158

to genuine components are extracted (estimation of the number of components is explained in the next159

paragraph). The eigenvectors are then rotated using the VARIMAX method [22].160

The rotated eigenvectors are the resulting components. Each component is represented by a scalar161

field of intensities over the globe, and by a corresponding representative time series. See Figure 6 for a162

parcellation of the globe by the components. For each location, the color corresponding to the component163

with maximal intensity is used - due to good spatial localization and smoothness of the components this164

leads to parcellation of the globe into generally contiguous regions.165

2.6.4. Estimating the dimensionality of the data166

To reduce the dimensionality, only a subset of the components is selected for further analysis. The167

main idea rests in determining significant components by comparing the eigenvalues computed from the168

original data to eigenvalues computed from a control dataset corresponding to the null hypothesis of169

uncoupled time series with the same temporal structure as the original data. To accomplish this, the time170

series in the control datasets are generated as realizations of autoregressive (AR) models fit to each time171

series independently. The dimension of the AR process is estimated for each time series separately using172

the Bayesian Information Criterion [23].173

This model is used to generate 10000 realizations in the control dataset. The eigendecomposition if174

each realization is computed and aggregated so a distribution of each eigenvalue (1st, 2nd, ...) is available175

under the null hypothesis.176

Finding the significant eigenvalues then reduces to a multiple comparison problem which we resolved177

using the False Discovery Rate (FDR) technique [24] which has led to the identification of 67 genuine178

components.179

For computational reasons, the decomposition was carried out on the monthly data and the component180

spatial distributions were used to extract daily time series from correspondingly preprocessed daily data181

(anomalization, standardization, cosine transform). The method thus yielded full-resolution component182

localization on the 10224-point grid while also providing a high-resolution time series associated with183

each component.184
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2.7. Network construction185

Formally, in the graph-theoretical approach a network is represented by an graph G = (V,E), where186

V is the set of nodes of G, n = #V is the number of nodes and E ⊂ V 2 is the set of the edges (or links)187

of G. In weighted graphs, each edge connecting nodes i and j can be assigned a weight ai,j representing188

the strength of the link. Thus, the causality matrix T having as its entries the pairwise causalities Ti,j =189

TXi→Xj
can be understood as a weighted graph with variable strength of links. Commonly, the graph is190

transformed into an unweighted matrix by suitable thresholding, keeping only links with weights higher191

than some threshold (and setting their weights to 1), while removing all the weaker links (setting the192

weights to zero).193

There are three principal strategies to choose the threshold - either a fixed value based on expert194

judgment of what constitutes a strong link, or adaptively to enforce a required density of the graph195

(relative number of links with respect to the maximum number possible, i.e. in a full graph of given196

size). The third option is to use statistical testing to detect statistically significant links.197

In the current paper, we start with the original unthresholded graphs, but provide also example results198

for thresholded graphs using the above named approaches.199

2.8. Reliability assessment200

In line with the terminology of psychometrics or classical test theory, by reliability we mean the201

overall consistency of a measure (consistency here not meant in the statistical sense of asymptotic202

behavior). In the context of network construction, we considered a method reliable if the networks203

constructed by its means from different samples of the same dynamical process would be similar to204

each other. Note that this does not necessarily imply validity or accuracy of the method - under some205

circumstances, a method could consistently arrive at wrong results. In a way, reliability/consistency can206

be considered a first step to validity. In practical terms, even if the validity was undoubted, reliability207

can give the researcher an estimate on the confidence he/she can have in reproducibility of the results.208

To assess similarity of two matrices, many methods are available, including (entry-wise) Pearson’s209

linear correlation coefficient. Inspection of the causality matrices suggests heavily non-normal210

distribution of the values with many outliers. Therefore, the correlation of ranks, using Spearman’s211

correlation coefficient, may be more suitable.212

Apart from reliability of the full weighted causality graphs, we also study the unweighted graphs213

derived by thresholding. Based on inspection of the causality matrices, a density of 0.01 (keeping 1214

percent of strongest links) was chosen for the analysis.215

To assess the similarity of two binary matrices, we use the Jaccard similarity coefficient. This is the216

relative number of links that are shared by the matrices with respect to the total number of links that217

appear at least in one of the matrices. Such a ratio is a natural measure of matrix overlap, ranging from218

0 for matrices with no common links to 1 for identical matrices.219
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2.8.1. Model220

A convenient method of assessing the reliability of a method on time series is to compare the results221

obtained on different sections (temporal windows) of that time series. However, dissimilarity among the222

results can be theoretically attributed both to lack of reliability of the method as well as to hypothetical223

true changes in the underlying systems over time (nonstationarity).224

Therefore, to isolate the effect of method properties, we test the methods on a realistic, but stationary225

model of the data.226

To provide such a stationary model of the potentially non-stationary data, a so-called surrogate data227

was constructed.228

Technically, the surrogate data are conveniently constructed as multivariate Fourier transform (FT)229

surrogates [25,26]; i.e. obtained by computing the Fourier transform of the series, keeping unchanged230

the magnitudes of the Fourier coefficients (the amplitude spectrum), but adding the same random number231

to the phases of coefficients of the same frequency bin; the inverse FT into the time domain is then232

performed.233

The surrogate data represent a realization of a linear stationary process conserving the linear structure234

(covariance and autocovariance) of the original data, and hence also the linear component of causality.235

Note that any nonlinear component of causality should be removed, and the nonlinear methods should236

therefore converge to the linear ones (as discussed in section 2.1).237

After testing the reliability on the stationary linear model, we assess the stability of the methods also238

on the real data. The variability here should reflect a mixture of method in-reliability and true climate239

changes. Note that also the nonlinear methods may potentially diverge from the linear, as there may be240

strictly nonlinear component of the causalities in real data.241

2.8.2. Implementation details242

For estimation, both the stationary model and real data time series were split into 6 windows (one for243

each decade, i.e. with approximately 3650 time points). For each of the windows, causality matrix has244

been computed with several causality methods.245

In particular, we have used pairwise Granger causality as a representative linear method, and246

conditional mutual information (transfer entropy) computed by two standard algorithms, using a range247

of critical parameter values. The first is an algorithm based on discretization of studied variables into Q248

equiquantal bins (EQQ, [21], Q ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}) and the second is a k-nearest249

neighbor algorithm (kNN, [12], k ∈ {2, 4, 8, 16, 32, 64, 128, 256, 512}).250

Each of these algorithms provides a matrix of causality estimates among the 67 climate components251

within the respective decade. We further assess the similarity of these matrices both across time and252

methods; first in stationary data (where temporal variability is attributable to method instability only) and253

subsequently in real data. Apart from direct visualization, the similarity of constructed causality matrices254

is quantified by the Spearman’s rank correlation coefficient of off-diagonal entries. The reliability is255

then estimated as the average Spearman’s rank correlation coefficient across all (6 ∗ 5)/2 = 15 pairs of256

temporal windows.257
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To inspect the robustness of the results, the analysis was repeated with several possible alterations258

to the paradigm. Firstly, the similarity among the thresholded rather than unweighted graphs was259

assessed by the means of the Jaccard similarity coefficient instead of Spearman’s rank correlation260

coefficient. Secondly, we repeated the analysis using linear multivariate AR(1) process for generation261

of the stationary model, instead of Fourier surrogates. Thirdly, the analysis was repeated on subsampled262

data (by averaging each 6 days to give one data point). This way, the same methods should provide263

causality on a longer time scale. To keep the same (and sufficiently high) number of time points, the264

subsampled data were not split into windows, but 6 realizations were generated from a fitted multivariate265

AR(1) process.266

Finally, to assess the role the different reliability of the methods might have for statistical inference,267

for selected methods we have tested the number of links that it was able to statistically distinguish268

compared to an empirical distribution corresponding to independent linear processes. This null269

hypothesis was realized by computing the causalities on a set of N=19 univariate Fourier surrogates.270

Under the hypothesis of no dependence between the processes, the probability of the data causality value271

for a given pair of variables being the highest from the total 20 values available is p = 0.05, providing a272

convenient nonparametric test of causality.273

3. Results274

3.1. Weighted causality networks275

The reliability of weighted causality networks computed from a decade of stationaty model data is276

shown in Figure 1 (for all methods and parameter values), along with the average similarity of the277

nonlinear network estimate by each method with the one obtained for the linear Granger causality278

method. The linear Granger causality shows the highest reliability, with the average Spearman’s rank279

coefficient ∼ 0.6. The equiquantal binning method provided most reliable network estimates for280

Q = 2 (r̄ ∼ 0.36), with reliability generally decreasing for increasing Q. The k-nearest neighbors281

algorithm provided even less reliable network estimates, with only weak dependence on the values of282

the k-parameter and optimum reliability of r̄ ∼ 0.33 for k = 64.283

The causality networks constructed by each nonlinear method have been compared to the causality284

network obtained using the linear Granger causality analysis, see white bars Figure 1. In general,285

the nonlinear causality networks have shown higher similarity to linear estimates than to nonlinear286

estimates for different section of the stationary model time series. Interestingly, the parameter settings287

that optimized the reliability also provided the (almost) closest results to the linear methods. We have288

also observed generally lower reliability of the EQQ method for odd Q-values, an effect that will be289

investigated in detail elsewhere.290

Figure 2 shows the results of an analogous analysis on original data rather than the stationary model.291

Note that here the computed causality network similarities reflect a combination of (lack of) reliability292

of the methods and real variability in the dynamical properties of the time series across time (i.e. true293

changes in the causality pattern). The results are both qualitatively and quantitatively similar to those294
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Figure 1. Reliability of causality network detection using different causality estimators,
and the similarity to linear causality network estimates: Fourier surrogates model. For each
estimator, six causality networks are estimated, one for each decade-long section of model
stationary data (a Fourier surrogate realization of the original data). Black: the height of
the bar corresponds to the average Spearman’s correlation across all 15 pairs of decades.
White: the height of the bar corresponds to the average Spearman’s correlation of nonlinear
causality network and linear causality network across 6 decades.
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shown in Figure 1, suggesting that the true variability of the causal networks on this time scale is likely295

rather small compared to the coarseness of the causality assessment methods.296

The results for other settings are shown in Figure 3 (use of multivariate AR(1) as the stationary model)297

and Figure 4 (6-day averages), generally confirming the main observations. However, some differences298

were observable, for instance in the 6-days-averaged data, the reliability dependence of the kNN method299

on the k-parameter was more pronounced and peak for a higher value of k = 256. The increase of300

reliability of the EQQ method for high Q was found to be spurious and is discussed in section 4.301

3.2. Unweighted causality networks302

For unweighted causality networks, the after thresholding to keep 1 percent of the strongest links,303

the network similarity was assessed by the Jaccard correlation coefficient. The results are plotted304

analogously as in the previous figures, see 5.305

3.3. Components and resulting networks306

To visualize the climatic networks, we first provide an overview of the localization of the networks in307

Figure 6 showing a parcellation of the globe by the components.308

As an example of causality networks detected, we provide the networks detected by the linear Granger309

causality (Figure 7) and the EQQ with Q = 2 (Figure 8) for the decade 1948-1957.310

4. Discussion311
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Figure 2. Variability of causality network detection using different causality estimators, and
the similarity to linear causality network estimates: original data. For each estimator, six
causality networks are estimated, one for each decade of the data. Black: the height of the
bar corresponds to the average Spearman’s correlation across all 15 pairs of decades. White:
the height of the bar corresponds to the average Spearman’s correlation of nonlinear causality
network and linear causality network across 6 decades.
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Figure 3. Reliability of causality network detection using different causality estimators,
and the similarity to linear causality network estimates, for stationary model constructed as
multivariate AR(1) surrogate of the original data. For each estimator, six causality networks
are estimated, one for each decade of modeled stationary data. Black: the height of the bar
corresponds to the average Spearman’s correlation across all 15 pairs of decades. White: the
height of the bar corresponds to the average Spearman’s correlation of nonlinear causality
network and linear causality network across 6 decades.
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Figure 4. Reliability of causality network detection using different causality estimators,
and the similarity to linear causality network estimates, for stationary model constructed as
multivariate AR(1) surrogate of the original data. For each estimator, six causality networks
are estimated, each for a separate realization of the multivariate AR(1) process fitted to the
original data. Black: the height of the bar corresponds to the average Spearman’s correlation
across all 15 pairs of decades. White: the height of the bar corresponds to the average
Spearman’s correlation of nonlinear causality network and linear causality network across 6
decades.
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Figure 5. Reliability of causality network detection using different causality estimators,
and the similarity to linear causality network estimates. For each estimator, six causality
networks are estimated, one for each decade of modeled stationary data. Black: the height
of the bar corresponds to the average Jaccard similarity coefficient across all 15 pairs
of decades. White: the height of the bar corresponds to the average Jaccard similarity
coefficient of nonlinear causality network and linear causality network across 6 decades.
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Figure 6. Location of areas dominated by specific components of the climate surface air
temperature data VARIMAX-rotated PCA decomposition. For each location, the color
corresponding to the component with maximal intensity it used. White dots represent
approximate centers of mass of the components, used in subsequent figures for visualization
of the nodes of the networks.

Figure 7. Example of detected causality network, detected by the linear Granger causality
for the decade 1948-1957. Links with TX→Y ≥ 0.02 shown.
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Figure 8. Example of detected causality network, detected by the equiquantal conditional
mutual information method with Q = 2, for the decade 1948-1957. Density fixed to
correspond to density of the network shown in Figure 7.
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The series of examinations provided evidence that both nonlinear and linear methods may be used312

to construct directed climate networks in a reliable way under a range of settings, with the basic linear313

Granger causality outperforming the studied nonlinear methods.314

For the sake of tractability, we have limited the investigation in several ways. On the side of nonlinear315

causality methods, we focused on the prominent family of methods based on estimation of conditional316

mutual information (transfer entropy). Two algorithms were used that represent key approaches of317

estimation of conditional mutual information and have been extensively used and proven efficient on318

real-world data. Alternative approaches also exist including the use of recurrence plots [27].319

The particular pairwise version of linear Granger causality was chosen for its theoretical equivalence320

to the transfer entropy (under the assumption of linearity), as this provides a fair comparison.321

However, the use of the strictly pairwise causality estimators suffers from inherent limitations. To322

give an example, a system consisting of three processes X, Y, Z, where Z drives both X and Y , but with323

different temporal lags, may erroneously show causal influence between X and Y even if these were324

not directly coupled. To deal with such situations, the concepts can be generalized to allow to take into325

account the variance explained by third variable(s).326

Similarly, the assumption of a single possible lag (1 time step of 1 or 6 days respectively in our327

investigation) may in real context not be suitable, although at least the relative reliability of different328

methods may not be strongly affected by this within reasonable range of parameters.329

In general, estimation of these generalized causality patterns from relatively short time series is330

technically challenging, particularly in the context of nonlinear, information-theory based causality331

measures, due to the exponentially increasing dimension of probability distributions to be estimated.332
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However, recent work has provided promising approaches to tackle this curse of dimensionality by333

decomposing TE into low-dimensional contributions [28]. For theoretical and numerical considerations334

on how a causal coupling strength can be defined in the multivariate context, see [29].335

For completeness we mention that apart from the time-domain treatment of causality, the whole336

problem can also be reformulated in the spectral domain, leading to frequency-resolved causality indices337

such as partial directed coherence (PDC, [30]) or Directed Transfer Function (DTC, [31]).338

The study also shows some key properties of the conditional mutual information estimates. Note that339

for instance for the 6-days networks (Figure 4), the EQQ method reliability increases again for Q ≥ 11,340

however, the similarity to the linear estimate further decreases. A direct check of the causality networks341

shows that they tend to a trivial column-wise structure, with the intensities for each column highly342

correlated to the autoregressive coefficient of the given time series. This corresponds to a manifestation343

of a dominant autocorrelation-dependent bias in the EQQ estimator for too high Q values (note that344

Q = 14 corresponds to less than one time point per average in a 4D bin, an unsuitable sampling of the345

space for effective probability distribution function approximation).346

Reconstruction of networks directly from gridded climatic field data is a challenging and perhaps not347

always the best approach, for reasons including efficient computation and visualization of the results.348

Instead, we apply here a decomposition of the data in order to get the most important components, i.e.,349

by using a varimax-rotated principle component analysis. This provides a useful dimension-reduction of350

the studied problem. In particular, the gridded data does not reflect the real climate subsystems, which351

may be better approximated by the decomposition modes. However, as the decomposition is an implicit352

(weighted) coarse-graining, the detected difference between the linear and nonlinear methods may be353

different from that in the original time series data. In particular, the spatial averaging may increase354

the reliability of both approaches by suppressing noise, but also suppress any highly spatially localized355

heterogeneous patterns of both nonlinear and linear character. This might be reflected in the specific356

results of the paper, in particular the obtained quantitative reliability estimates.357

In general, the differences in reliability may have important consequences for the detectability of358

causal links as well as of their changes. Of course, theoretically this is not necessary as in a particularly359

nonlinear system links may exist that would have negligible linear causality component, but their360

nonlinear causality fingerprint would be strong enough to be detected. Recent works have proposed361

approaches for explicit quantification of the nonlinear contribution of equal-time dependence [32] and362

applied them to neuroscientific [32] as well as climate data [10]. However, the generalization of the363

approach to higher dimension information-theoretic functionals is not straightforward and is subject of364

ongoing work. Thus, we give here at least an illustrative example of the practical result of trade-off365

between generality of transfer entropy and higher reliability of linear Granger causality: using the366

original 67 components data (divided into 6 decadal sections, see section 2), the basic statistical test367

at the 5 percent significant level (described in the 2 section) marked on average 1592 links as statistically368

significant (out of 4422 possible), while the EQQ method showed in general a lower number of significant369

links, dependent on the parameter value in a way similar to the reliability estimate, with maximum of370

983 significant links for Q = 2 and minimum of 287 significant links for Q = 13. Note that given the371

significance level of the test, on average 221 h 4422∗ 0.05 significant links would be expected to appear372

by chance in a collection of completely unrelated processes.373
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5. Conclusions374

Meaningful interpretation of climate networks and their observed temporal variability requires375

knowledge and minimization of the methodological limitations of the methods of their construction.376

In the presented work, we discussed the problem of reliability of network construction from time series377

of finite length, quantitatively assessing the reliability for a selection of standard bivariate causality378

methods. These included two major algorithms for estimating transfer entropy with a wide range of379

parameter choices, as well as the linear Granger causality analysis, which can be understood as linear380

approximation of transfer entropy. Overall, causality methods provided reproducible estimates of climate381

causality networks, with the linear approximations outperforming in reliability the studied nonlinear382

methods. Interestingly, optimizing the nonlinear methods with respect to reliability has led to improved383

similarity of the detected networks to those discovered by linear methods, in line with the hypothesis of384

near-linearity of the investigated climate reanalysis data, in particular the surface air temperature time385

series.386

The latter hypothesis regarding the surface air temperature has been supported by the study in [10]387

which extended the older results of [33] who tested for possible nonlinearity in the dynamics of the388

station (Prague-Klementinum) SAT time series and found that the dependence between the SAT time389

series x(t) and its lagged twin x(t+ τ) was well-explained by a linear stochastic process. This result390

about a linear character of the temporal evolution of SAT time series, as well as the results of this391

study about causal relations between the principal components obtained from the reanalysis SAT time392

series cannot be understood as arguments for a linear character of atmospheric dynamics per se. Rather,393

these results characterize properties of measurement or reanalysis data at a particularly coarse level of394

resolution, when the data reflecting a spatially and temporally averaged mixture of dynamical processes395

on a wide range of spatial and temporal scales are considered. For instance, a closer look on the dynamics396

on specific temporal scales in temperature and other meteorological data has led to identification of397

oscillatory phenomena with nonlinear behavior, exhibiting phase synchronization [34–38]. Also the398

leading modes of atmospheric variability exhibit nonlinear behavior [39,40] and can influence important399

seasonal circulation phenomena in a nonlinear way [41].400

Further work is needed to assess the usability and advantages of more sophisticated, recently proposed401

causality estimation methods. The current work also provides an important step towards reliable402

characterization of climate networks and detection of potential changes over time.403
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