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Interactions in complex systems

COMPLEX DYNAMICS
Not explained by a sum of properties of system components

INTERACTIONS OF SYSTEM COMPONENTS
EMERGENT PHENOMENA

STUDY OF INTERACTIONS
clues to understanding complex behaviour
facts for model building
characterization – diagnostics
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Mutual information

mutual information

I(X ; Y ) = H(X ) + H(Y )− H(X ,Y )

average amount of common information, contained in the
variables X and Y
measure of general statistical dependence
I(X ; Y ) ≥ 0
I(X ; Y ) = 0 iff X and Y are independent
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Conditional mutual information

conditional mutual information I(X ; Y |Z ) of variables X , Y
given the variable Z

I(X ; Y |Z ) = H(X |Z ) + H(Y |Z )− H(X ,Y |Z )

Z independent of X and Y

I(X ; Y |Z ) = I(X ; Y )

I(X ; Y |Z ) = I(X ; Y ; Z )− I(X ; Z )− I(Y ; Z )

“net” dependence between X and Y without possible
influence of Z
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Dynamics

stochastic process {Xi}:
indexed sequence of random variables X1, . . . ,Xn
characterized by p(x1, . . . , xn)

uncertainty in a variable X is characterized by entropy
H(X )

entropy rate of {Xi} is defined as

h = lim
n→∞

1
n

H(X1, . . . ,Xn)

h′ = limn→∞H(Xn|Xn−1, . . . ,X1)

for strictly stationary process h = h′

dynamical systems: Kolmogorov-Sinai, metric entropy
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n random variables

mutual information I(X1; X2; . . . ; Xn) or redundancy R

R(X1; X2; . . . ; Xn) = H(X1) + H(X2) + · · ·+ H(Xn)

−H(X1,X2, . . . ,Xn)

marginal redundancy

%(X1,X2, . . . , xn−1; Xn) = H(X1,X2, . . . ,Xn−1) + H(Xn)

−H(X1,X2, . . . ,Xn)
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Information-theoretic functionals

%(X1, . . . ,Xn−1; Xn) = R(X1; . . . ; Xn)− R(X1; . . . ; Xn−1)

%(X1, . . . ,Xn−1; Xn) = H(Xn)− H(Xn|X1, . . . ,Xn−1)
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Information-theoretic functionals from time series

a time series {y(t)} considered as a realization of a
stochastic process {Y (t)}, which is stationary and ergodic
due to ergodicity, information-theoretic functionals can be
estimated by using time averages instead of ensemble
averages
variables Xi are substituted as

Xi = y(t + (i − 1)τ),

due to stationarity, the redundancies

Rn(τ) ≡ R(y(t); y(t + τ); . . . ; y(t + (n − 1)τ))

%n(τ) ≡ %(y(t), y(t + τ), . . . , y(t + (n− 2)τ); y(t + (n− 1)τ))

are functions of the number n of variables
and the time lag τ , and are independent of t
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KSE and marginal redundancy

for n→∞
%n(τ) ≈ Aξ − h(Tτ , ξ),

where Aξ is a parameter independent of n and τ (and,
clearly, dependent on the partition ξ), and h(Tτ , ξ) is the
entropy of (continuous) transformation Tτ with respect to
the partition ξ, corresponding to the probability distribution
p(xi)

ξ generating partition with respect to T

lim
n→∞

%n(τ) = A− |τ |h(T1).

originally conjectured by Andy Fraser
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Lorenz system

(dx/dt ,dy/dt ,dz/dt) = (10(y − x), x(28− z)− y , xy − 8z/3)
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KSE from marginal redundancy
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FIG. 1. Time lag τ plots of marginal redundancies ϱn(τ) for the Lorenz system computed with different numbers q of marginal
(equi)quantization levels: a) q = 4, b) q = 16, c) q = 40, d) q = 64. Four different curves in each figure represent different
numbers n of lagged series, n = 2, 3, 4 and 5, reading from the bottom to the top.
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Entropy rate of Gaussian processes

stochastic process {Xi}:
indexed sequence of random variables, characterized by
p(x1, . . . , xn)

entropy rate of {Xi} is defined as

h = lim
n→∞

1
n

H(X1, . . . ,Xn)

for a Gaussian process with spectral density function f (ω)

hG =
1

2π

∫ π

−π
log f (ω)dω
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Entropy rate

Gaussian process – (nonlinear) dynamical systems

M. Paluš Interactions and Information Flow in Multiscale Systems



Baker transformation

baker transformation

(xn+1, yn+1) = (λxn,
1
α

yn)

for yn ≤ α, or:

(xn+1, yn+1) = (0.5 + λxn,
1

1− α
(yn − α))

for yn > α;
0 ≤ xn, yn ≤ 1, 0 < α < 1, λ = 0.25
Lyapunov exponent (KSE) analytical function of α

h(α) = α log
1
α

+ (1− α) log
1

1− α
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Dynamical systems

the logistic map

xn+1 = axn(1− xn);

the continuous Lorenz system

(dx/dt ,dy/dt ,dz/dt) = (σ(y − x), rx − y − xz, xy − bz),

σ = 16, b = 4.
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Entropy rates: Gaussian process – dynamical systems
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Entropy rates: Gaussian process – dynamical systems
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Entropy rates: Gaussian process – dynamical systems
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Interactions in complex systems

Coupling / dependence
none, unidirectional, bidirectional
linear, nonlinear

Synchronization
identical; generalized
phase

Direction of coupling (causal interaction)
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Mutual information rate

stochastic processes {Xi}, {Yi}, characterized by
p(x1, . . . , xn) and p(y1, . . . , yn)

mutual information rate

i(Xi ; Yi) = lim
n→∞

1
n

I(X1, . . . ,Xn; Y1, . . . ,Yn)
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Mutual information rate

for Gaussian stochastic processes {Xi}, {Yi},
characterized by power spectral densities (PSD) ΦX (ω),
ΦY (ω) and cross PSD ΦX ,Y (ω)

mutual information rate

i(Xi ; Yi) = − 1
4π

∫ 2π

0
log(1− |γX ,Y (ω)|2)dω

magnitude-squared coherence

|γX ,Y (ω)|2 =
|ΦX ,Y (ω)|2

ΦX (ω)ΦY (ω)
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Route to synchronization

unidirectionally coupled Rössler systems

ẋ1 = −ω1x2 − x3

ẋ2 = ω1x1 + a1 x2

ẋ3 = b1 + x3(x1 − c1)

ẏ1 = −ω2y2 − y3 + ε(x1 − y1)

ẏ2 = ω2y1 + a2 y2

ẏ3 = b2 + y3(y1 − c2)

a1 = a2 = 0.15, b1 = b2 = 0.2, c1 = c2 = 10.0
frequencies ω1 = 1.015, ω2 = 0.985.
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Route to synchronization and MIR, ER
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Route to synchronization and MIR, ER

Synchronization as adjustment of information rates: Detection from bivariate time series

Milan Paluš
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod voda´renskou veˇžı́ 2, 182 07 Prague 8, Czech Republic

Vladimı́r Komárek, Zbyněk Hrnčı́ř, and Katalin Sˇ těrbová
Clinic of Paediatric Neurology, 2nd Medical Faculty of Charles University, V u´valu 84, 150 06 Prague 5–Motol, Czech Republic
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An information-theoretic approach for studying synchronization phenomena in experimental bivariate time
series is presented. ‘‘Coarse-grained’’ information rates are introduced and their ability to indicate generalized
synchronization as well as to establish a ‘‘direction of information flow’’ between coupled systems, i.e., to
discern the driving from the driven~response! system, is demonstrated using numerically generated time series
from unidirectionally coupled chaotic systems. The method introduced is then applied in a case study of
electroencephalogram recordings of an epileptic patient. Synchronization events leading to seizures have been
found on two levels of organization of brain tissues and ‘‘directions of information flow’’ among brain areas
have been identified. This allows localization of the primary epileptogenic areas, also confirmed by magnetic
resonance imaging and pasitron emission tomography scans.

DOI: 10.1103/PhysRevE.63.046211 PACS number~s!: 05.45.Tp, 05.45.Xt, 89.70.1c

I. INTRODUCTION

During the last decade there has been considerable inter-
est in the study of the cooperative behavior of coupled cha-
otic systems@1#. Synchronization phenomena have been ob-
served in many physical and biological systems, even in
cases where the chaotic nature of the scrutinized processes
has not been proven or is in doubt, e.g., in the case of car-
diorespiratory synchronization@2,3# or synchronization of
neural signals@4–7#. In such physiological and neurophysi-
ological systems it is important not only to detect synchro-
nized states, but also to identify causal~drive-response! re-
lationships between studied~sub!systems. Although several
methods have been proposed and successfully applied, espe-
cially in the field of neurophysiology@4–7#, this problem is
far from being trivial and some claims of successful detec-
tion of the causal relationships are based on contradictory
assumptions@4,5#. Also, measures of synchronization based
on infinitesimal properties and performing well on artificial
systems can fail when applied to noisy experimental data.
We propose to start a study of synchronization in such data
with statistical, coarse-grained measures with a basis in in-
formation theory, which could provide an indication of syn-
chronization as well as of causal relationships if present in
the systems scrutinized.

In Sec. II the definitions of entropy, information, and in-
formation rates are briefly reviewed. More details can be
found, e.g., in Ref.@8#. Then, the concept of ‘‘coarse-grained
entropy rates,’’ originally introduced in Ref.@12# is summa-
rized and extended by defining the coarse-grained informa-
tion rates~CIR’s! and their mutual and conditional versions.
In Sec. III the CIR’s are applied to bivariate time series
generated by unidirectionally coupled chaotic systems
~Hénon maps, Ro¨ssler and Lorenz systems! in order to dem-
onstrate how the CIR’s can detect synchronization and drive-
response relationships. An application of the approach intro-
duced is demonstrated in Sec. IV by a case study of

electroencephalogram~EEG! recordings of an epileptic pa-
tient. A conclusion is given in Sec. V.

II. COARSE-GRAINED INFORMATION RATES

Consider discrete random variablesX and Y with sets of
valuesJ andY, respectively, probability distribution func-
tions ~PDF’s! p(x) and p(y), and joint PDFp(x,y). The
entropy H(X) of a single variable, sayX, is defined as

H~X!52 (
xPJ

p~x!log p~x!, ~1!

and thejoint entropy H(X,Y) of X andY is

H~X,Y!52 (
xPJ

(
yPY

p~x,y!log p~x,y!. ~2!

The conditional entropy H(YuX) of Y given X is

H~YuX!52 (
xPJ

(
yPY

p~x,y!log p~yux!. ~3!

The average amount of common information, contained in
the variablesX andY, is quantified by themutual information
I (X;Y), defined as

I ~X;Y!5H~X!1H~Y!2H~X,Y!. ~4!

The conditional mutual informationI (X;YuZ) of the vari-
ablesX, Y given the variableZ is given as

I ~X;YuZ!5H~XuZ!1H~YuZ!2H~X,YuZ!. ~5!

For Z independent ofX andY we have

I ~X;YuZ!5I ~X;Y!. ~6!
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Route to synchronization and MIR, ER
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Interactions in complex systems

Coupling / dependence
none, unidirectional, bidirectional

Direction of coupling (causal interaction)
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Information flow, (Granger sense) causality

{x(t)} and {y(t)} time series considered as realizations of
stationary and ergodic stochastic processes {X (t)} and
{Y (t)}, respectively, t = 1,2,3, . . . .
we will mark x(t) as x and x(t + τ) as xτ , and the same
notation holds for the series {y(t)}
mutual information I(y ; xτ ) measures the average amount
of information contained in the process {Y} about the
process {X} in its future τ time units ahead (τ -future
thereafter).
This measure, however, could also contain an information
about the τ -future of the process {X} contained in this
process itself if the processes {X} and {Y} are not
independent, i.e., if I(x ; y) > 0.
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Conditional mutual information

In order to obtain the “net” information about the τ -future of
the process {X} contained in the process {Y}, use the
conditional mutual information

I(y ; xτ |x)
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Conditional mutual information

time series {x(t)} and {y(t)} as realizations of stochastic
processes {X (t)} and {Y (t)}
alternatively {X (t)} and {Y (t)} dynamical systems
evolving in measurable spaces of dimensions m and n,
respectively
the variables x and y in I(y ; xτ |x) and I(x ; yτ |y) should be
considered as n− and m−dimensional vectors
one observable is recorded for each system – instead of
the original components of the vectors ~X (t) and ~Y (t), the
time delay embedding vectors according to Takens
embedding theorem
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Conditional mutual information

in time-series representation we have

I
(
~Y (t); ~X (t + τ)|~X (t)

)
=

I
((

y(t), y(t − ρ), . . . , y(t − (m − 1)ρ)
)
; x(t + τ)|(

x(t), x(t − η), . . . , x(t − (n − 1)η)
))
,

where η and ρ are time lags used for the embedding of
trajectories {~X (t)} and {~Y (t)}, respectively
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Conditional mutual information

conditional mutual information

I
(
~Y (t); ~X (t + τ)|~X (t)

)
equvalent to transfer entropy (Schreiber, 2000)
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Conditional mutual information

in practice it is sufficient

I
(
~Y (t); ~X (t + τ)|~X (t)

)
=

I
((

y(t)
)
; x(t + τ)|

(
x(t), x(t − η), . . . , x(t − (n − 1)η)

))
,

i.e., the dimension of the condition matters
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Rössler -> Rössler systems
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Inference of causality

Inference of direction of coupling is possible
when systems are coupled
but NOT yet synchronized

synchronization = equivalence of states of the systems
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Instantaneous phases

for a signal (time series) s(t), analytic signal

ψ(t) = s(t) + j ŝ(t) = A(t)ejφ(t)

ŝ(t) =
1
π

P.V.
∫ ∞
−∞

s(τ)

t − τ
dτ

instantaneous phase

φ(t) = arctan
ŝ(t)
s(t)
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CMI from phases

I(φ1(t);φ2(t + τ)|φ2(t)) and I(φ2(t);φ1(t + τ)|φ1(t))

phase difference

∆τφ1,2(t) = φ1,2(t + τ)− φ1,2(t),

I(φ1(t); ∆τφ2(t)|φ2(t))

I(φ2(t); ∆τφ1(t)|φ1(t))

short notation:
I(φ1; ∆τφ2|φ2) and I(φ2; ∆τφ1|φ1)
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Rössler -> Rössler systems
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Significance testing using surrogate data

Use of bootstrap-like strategy (surrogate time series)
Ideally preserve all properties except tested (coupling)

M. Paluš Interactions and Information Flow in Multiscale Systems



Rössler -> Rössler - surrogate type
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SCALE-SPECIFIC INTERACTIONS

OSCILLATORY PROCESS – specific frequency

BROAD-BAND SIGNALS

DIGITAL FILTERING
WAVELET DECOMPOSITION
EMPIRICAL MODE DECOMPOSITION
SINGULAR SPECTRUM ANALYSIS

SCALE-SPECIFIC SYNCHRONIZATION
SCALE-SPECIFIC GRANGER CAUSALITY
CROSS-SCALE INTERACTIONS
CROSS-FREQUENCY COUPLING
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Phase dynamics approach

ANALYTIC SIGNAL

ψ(t) = s(t) + j ŝ(t) = A(t)ejφ(t)

INSTANTANEOUS PHASE

φ(t) = arctan
ŝ(t)
s(t)

INSTANTANEOUS AMPLITUDE

A(t) =
√

ŝ(t)2 + s(t)2

FILTERING −→ HILBERT TRANSFORM
COMPLEX CONTINUOUS WAVELET TRANSFORM
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WITHIN AND CROSS-SCALE INTERACTIONS

Cross-frequency interactions

phase–phase
amplitude–amplitude
phase–amplitude

neurophysiology: phase of slow oscillations (δ, θ)
modulates the amplitude of fast oscillations (γ)
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CROSS-SCALE INTERACTIONS

CAUSAL PHASE –> AMPLITUDE INTERACTIONS

phase φ1 of slow oscillations
amplitude A2 of higher-frequency oscillations
I(φ1(t); A2(t + τ)|A2(t),A2(t − η), . . . ,A2(t −mη))

testing using surrogate data approach

Fourier transform (FT) surrogate data (Theiler et al.)
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Monkey LFP causality in phase-amplitude coupling
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Monkey LFP causality in phase-amplitude coupling
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CROSS-SCALE INTERACTIONS

CAUSAL PHASE –> AMPLITUDE INTERACTIONS
in about a century long records of daily near-surface air
temperature records from European stations

phase φ1 of slow oscillations (around 10 year period)
amplitude A2 of higher-frequency variability (periods 5
years and less)
I(φ1(t); A2(t + τ)|A2(t),A2(t − η), . . . ,A2(t −mη))

testing using surrogate data approach

Fourier transform (FT) surrogate data (Theiler et al.)
multifractal (MF) surrogate data (Paluš)
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TESTING INTERACTIONS WITH & WITHIN
MULTISCALE PROCESSES

Bootstrapping Multifractals: Surrogate Data from Random Cascades on Wavelet Dyadic Trees

Milan Paluš*

Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věžı́ 2, 182 07 Prague 8, Czech Republic
(Received 30 March 2007; revised manuscript received 21 June 2008; published 25 September 2008)

A method for random resampling of time series from multiscale processes is proposed. Bootstrapped

series—realizations of surrogate data obtained from random cascades on wavelet dyadic trees—preserve

the multifractal properties of input data, namely, interactions among scales and nonlinear dependence

structures. The proposed approach opens the possibility for rigorous Monte Carlo testing of nonlinear

dependence within, with, between, or among time series from multifractal processes.

DOI: 10.1103/PhysRevLett.101.134101 PACS numbers: 05.45.Tp, 05.45.Df, 89.75.Da

The estimation of any quantity from experimental data,
with the aim to characterize an underlying process or its
change, is incomplete without assessing the confidence of
the obtained values or significance of their difference from
natural variability. With the increasing performance and
availability of powerful computers, Efron [1] proposed to
replace (not always possible) analytical derivations based
on (not always realistic) narrow assumptions by computa-
tional estimation of empirical distributions of quantities
under interest using so-called Monte Carlo randomization
procedures. In statistics, the term ‘‘bootstrap’’ [2] is coined
for random resampling of experimental data, usually with
the aim to estimate confidence intervals (‘‘error bars’’).
Theoretically different, but sometimes technically similar
applications of the resampling approaches have been de-
veloped in the field of hypothesis testing. The latter has
entered physics and nonlinear dynamics with the question
of detection of chaotic dynamics in experimental data [3].
With the aim to prove that nonlinearity (and possibly,
chaos) is present in analyzed data, ‘‘surrogate data’’ are
constructed which preserve ‘‘linear properties’’ of the an-
alyzed data but otherwise are realizations of a random pro-
cess. The standard approach [3] uses the fast Fourier trans-
form (FFT). Randomization of the phases of the complex
Fourier coefficients and the inverse FFT provides realiza-
tions of a Gaussian process reproducing the sample spec-
trum and autocorrelation function of the analyzed data.
Common preservation of spectra and amplitude distribu-
tions are solved by appropriate amplitude transformation
and iterative procedures [3]. Breakspear et al. [4] have in-
troduced surrogate data based on the wavelet transform [5].
The randomization is performed by one of the following
three ways of manipulating the wavelet coefficients within
each scale: (i) random permutation; (ii) cyclic rotation with
a random offset; and (iii) block resampling, i.e., random
permutation of blocks of the wavelet coefficients. Keylock
[6] combines both the techniques in the sense that the
wavelet coefficients within each scale undergo the iterative
amplitude-adjusted FFT randomization combined with cy-
clic rotation in order to align extrema in coefficient values.

Generally, all these approaches reproduce the ‘‘linear
properties’’ (the first and the second moments) of analyzed

data in combinations with some constraints. Possible non-
linear dependence between a signal sðtÞ and its history
sðt� �Þ is destroyed, as well as interactions among vari-
ous scales in a potentially hierarchical, multiscale process.
Multiscale processes that exhibit hierarchical information
flow or energy transfer from large to small scales, success-
fully described by using the multifractal concepts (see [7]
and references therein) have been observed in diverse fields
from turbulence to finance [8], through cardiovascular
physiology [9] or hydrology, meteorology, and climatology
[10]. Angelini et al. [11] express the need for resampling
techniques in evaluating data from atmospheric turbulence
and other hierarchical processes. They apply a sophisti-
cated block resampling of the wavelet coefficients; how-
ever, the multifractal properties of the tested data are only
partially reproduced in the resampled data [11]. The
‘‘twin’’ surrogates [12] reproduce nonlinear dependence
in trajectories, using the recurrence properties of dynami-
cal systems evolving on or near attracting sets; however,
they are not suitable for randomization of multiscale pro-
cesses violating the recurrence condition.
In this Letter we propose a method for random resam-

pling of time series frommultifractal processes in the sense
that the resampled data replicate the multifractal properties
of the original (input) data. The method reproduces the
interactions among scales, so that multifractal spectra as
well as nonlinear dependence structures are preserved. The
proposed construction of such, let us call them multifractal
surrogate data, is based on the idea of synthesis of multi-
fractal signals using an orthonormal wavelet basis pro-
posed by Arneodo et al. [7].
Let us consider a set f j;kg of periodic wavelets that form

an orthonormal basis of L2ð½0; L�Þ. Thus any function f 2
L2ð½0; L�Þ can be written as

fðxÞ ¼ Xþ1

j¼0

X2j�1

k¼0

cj;k j;kðxÞ; (1)

where cj;k¼h j;kjfi¼
R
L j;kðxÞfðxÞdx,  j;k¼

2j=2 ð2�jx�kÞ. To construct a self-similar process whose
properties are defined multiplicatively from coarse to fine
scales, Arneodo et al. [7] propose to define a cascade using
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS

I(φ1(t); A2(t + τ)|A2(t),A2(t − η), . . . ,A2(t −mη))

series length 32768
forward lags τ = 1− 750 days
backward condition lags η = 1/4 of the slow period
Gaussian process estimator
conditioning dimension: stable results from 3
raw data include annual cycle
seasonal mean and variance removed before surrogate
randomization
seasonal mean and variance added back to surrogate
realizations
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS
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EFFECT PHASE –> AMPLITUDE COUPLING

HOW TO QUANTIFY THE EFFECT
OF PHASE –> AMPLITUDE COUPLING ?
EXTRACT THE CYCLE WITH PERIOD
AROUND 8 YEARS
EXTRACT ITS PHASE
DIVIDE THE PHASE INTO 8 BINS
COMPUTE CONDITIONAL TEMPERATURE MEANS
< T |φ ∈ (φ1, φ2) >
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SSA-extracted "7–8 yr cycle"
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EFFECT PHASE –> AMPLITUDE COUPLING
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CONCLUSION
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