Školitel: Mgr. Marek Piliarik, Ph.D.
Molekulární značky umožňují v přirozeném prostředí sledovat chování a pohyb jednotlivých molekul, například proteinů. Použití fluorescenčních značek je limitováno stabilitou a saturací fluorescenčního signálu. Alternativou jsou takzvané rozptylové značky, jakými jsou například kovové nanočástice, které vykazují silný rezonanční rozptyl. Nevýhodou rozptylových značek je jejich obvyklá velikost v řádu 20 až 50 nm, která významně přesahuje velikost sledovaných molekul a ovlivňuje jejich pohyb a interakce.
Cílem tohoto projektu je výzkum vlastností nové generace extrémně malých rozptylových molekulárních značek, jejichž velikost bude menší než velikost označené molekuly (např. 1.4 nm Au55 klastr). Takové nanočástice pak budou využity jako značky různých vazebných míst jediné molekuly (např. proteinu) a mohou posunout limity rozlišení „super-resolution“ optických mikroskopů až na na sub-molekulární úroveň.
Školitel: Mgr. Marek Piliarik, Ph.D.
Pochopení dynamiky vnitřního uspořádání makromolekul, zejména proteinů, v jejich přirozeném prostředí je kritickým krokem k poznání jejich biologické funkce. Experimentální metody však v této oblasti narážejí na řadu fundamentálních překážek, ať už to je prostorové rozlišení optických soustav, rychlost snímání fluorescenčních signálů, nebo průměrování přes heterogenní soubor molekul.
Náplň disertační práce využívá nejnovější metodu optického zobrazování jednotlivých molekul bez použití fluorescenčních značek, která je prvním krokem k jejich další analýze. Cílem projektu je vyvinout optické metody, které umožní na základě změn rozptylu světla na jednotlivých molekulách popsat změny prostorového uspořádání makromolekul v reálném čase.
Školitel: Ing. Pavel Peterka, Ph.D.
Cílem práce je výzkum nových typů optických vláken dopovanými thuliem, případně thuliem a holmiem. Pozornost bude soustředěna na výzkum procesů přenosu energie mezi prvky vzácných zemin a získání kvantitativních parametrů charakterizujících tyto přenosy energie pro využití v numerických modelech vláknových laserů. Vlákna budou připravována na pracovišti týmu Vláknové lasery a nelineární optika ÚFE nebo získána v rámci spolupráce v Evropské akci COST MP1401 "Advanced fibre laser and coherent source as tools for society, manufacturing and lifescience". Předpokládáme experimentální ověření vybraných aplikací thuliem dopovaných křemenných optických vláken v laserech v okolí vlnových délek 2000 nm.
Školitel: Ing. Pavel Peterka, Ph.D.
Nestability vláknových laserů jsou nyní aktuálním tématem výzkumu, zejména s ohledem na rostoucí výkony a nové vlnové délky těchto typů laserů a celospolečensky rychle rostoucí význam vláknových laserů. Předmětem práce bude výzkum fyzikálních příčin samovolných pulzací vláknových laserů v různých uspořádáních rezonátoru laseru, např. Fabryova-Perotova a kruhového rezonátoru. Teoretický a experimentální výzkum bude zaměřen na roli nedávno objeveného jevu samovolného rozmítání vlnové délky jako spouštěcího mechanizmu samovolného Q-spínání laseru a na roli stimulovaného Brillouinova rozptylu.
Zásady pro vypracování:
Školitel: Ing. Pavel Peterka, Ph.D.
Teoretický a experimentální výzkum nových typů laserů s křemennými optických vlákny dopovanými thuliem, případně thuliem a yterbiem. Sestavení spektrálně, časově a prostorově rozlišeného numerického modelu vlákna. Teoretická optimalizace parametrů thuliem dopovaných optických vláken a dvouplášťových optických vláken dopovaných kromě thulia i yterbiem. Charakterizace vláken připravených v laboratoři optických vláken Ústavu fotoniky a elektroniky AV ČR nebo na spolupracujícím pracovišti na Univerzitě v Nice ve Francii. Spektroskopická charakterizace připravených vláken s použitím teoretického modelu. Experimentální ověření vybraných aplikací thuliem dopovaných křemenných optických vláken v laserech a zesilovačích v pásmech v okolí vlnových délek 800, 1470 nm a 2000 nm.
Školitel: Ing. Michal Cifra, PhD.
Ultra-slabá emise fotonů (UPE) z biologických vzorků je univerzální jev v biologických systémech, při němž jako vedlejší produkt oxidativních reakcí dochází k vyzáření světla v optické části spektra. Tato emise má mimořádně nízkou intenzitu, takže je nejen neviditelná pouhým okem, ale je i podstatně slabší oproti ostatním známým bioluminiscenčním jevům. Bakalářské/diplomové/dizertační práce na toto téma budou mít zpravidla následující zaměření:
Téma je vhodné pro studenty širokého spektra oborů od biochemie, přes fyziku, až po elektrotechniku. Konkrétní zadání lze případnému zájemci upravit „na míru.“ Vzhledem k multidisciplinaritě tématu neočekáváme, že zájemce bude mít znalosti ze všech dotčených oblastí, avšak vyžadujeme od něj vysokou míru kompetence v oboru, který zájemce studuje. Předchozí laboratorní praxe není nutností, avšak je vítaná. Zájemce musí být schopen číst a psát anglický text a spolupracovat při řešení úkolů s ostatními členy týmu.
Seznam literatury:
Školitel: Ing. Michal Cifra, PhD.
Naprostá většina bílkovin váže ve své struktuře elektrický náboj, který je nezbytný pro jejich správnou funkci. Mechanické vibrace proteinů a struktur z nich tvořených proto vytvářejí oscilující elektrické pole v jejich blízkosti. Současný výzkum se zaměřuje na výpočetní predikci vlastností tohoto pole a jeho experimentální ověření. Bakalářské/diplomové/dizertační práce na toto téma budou mít zpravidla následující zaměření:
Téma je vhodné zejména pro studenty biofyziky nebo jiných fyzikálních a technických oborů. Konkrétní zadání lze případnému zájemci upravit „na míru“ podle jeho studijního zaměření. Předchozí zkušenost s laboratorní prací či molekulárními simulacemi je výhodou, avšak není nezbytná. Zájemce musí být schopen číst a psát anglický text a spolupracovat při řešení úkolů s ostatními členy týmu.
Seznam literatury: