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Abstract This paper deals with the relaxation of energies of media with structured deformations

introduced by Del Piero & Owen [7–8]. Structured deformations provide a multiscale geometry

that captures the contributions at the macrolevel of both smooth and non-smooth geometrical

changes (disarrangements) at submacroscopic levels. The paper examines the special case of

Choksi & Fonseca’s energetics of structured deformations [4] in which the unrelaxed energy does

not contain the bulk contribution. Thus the energy is purely interfacial, but of the general form.

Some new properties of the relaxed energy densities are derived: (i) the bulk relaxed energy is

the subadditive envelope of the unrelaxed interfacial energy and (ii) a broad sufficient condition

is given for the relaxed interfacial energy to coincide with the original one. The relaxations of the

specific interfacial energies of Owen & Paroni [14] and Barroso, Matias, Morandotti & Owen [3]

are simple consequences of our general results.
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1 Introduction

This paper deals with the relaxation of nonclassical continua modeled as media with
structured deformations introduced by Del Piero & Owen [7–8].¡¡ In their original
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setting, a structured deformation is a triplet �K Ùg ÙG� of objects of the following
nature. The set K ⊂ R

3Ù the crack site, is a subset of vanishing Lebesgue measure
of the reference region Ω, the map g Ú Ω ∼ K r R

3, the deformation map, is
piecewise continuously differentiable and injective, and G is a piecewise continuous
map fromΩ∼K to the set of invertible second order tensors describing deformation
without disarrangements.

Within this context, simple deformations are triples �K Ùg Ù ∇g� where g is a
piecewise smooth injective map with jump discontinuities describing partial or full
separation of pieces of the body. In view of this, in the general case of a structured
deformation �K Ùg ÙG�Ù the tensor

M ¨ ∇g −G Ù
the deformation due to disarrangements, measures the departure of �K Ùg ÙG� from
the simple deformation �K Ùg Ù ∇g�.

Choksi & Fonseca [4] introduced into the theory of structured deformations
energy considerations and the ideas of relaxation. For further studies in one and
multidimensional settings see Del Piero [5–6]. It is well-known that the existing
techniques of relaxation of the calculus of variations and continuum mechanics are
unable to cope with the injectivity requirements. Accordingly, Choksi & Fonseca
neglect the injectivity requirement; in addition, they assume weaker regularity. In
their interpretation, structured deformations are pairs �g ÙG� where g Ú Ω r R

n

is a special R
n-valued map of bounded variation from the space SBV�Ω� and

G Ú Ω r Lin is an integrable Lin-valued map from the space L1�Ω�Ø¡Thus

SD�Ω� Ú¨ SBV�Ω� � L1�Ω�
is the set of all structured deformations. Structured deformations of the form �g Ù ∇g�
with g X SBV�Ω� are called simple deformations in this paper.

The relaxation starts from the energy

E�g� ¨ �
Ω

W�∇g�dV + �
Jg

ψ�DgFÙ νg�dA

of a simple deformation �g Ù ∇g�Ø Here V and A are the Lebesgue measure and the
n − 1-dimensional Hausdorff measure in R

nÙ ∇g is the absolutely continuous part
of the derivative (¨ gradient) Dg of g Ù while the singular part

D
sg Ú¨ DgF � νgA õ Jg

is a tensor-valued singular measure describing the discontinuities of g Û that part is
formed from the jump set Jg ⊂ Ω of g Ù the jump DgF of g on JgÙ and the normal
νg to JgØ The reader is referred to (4.2), below, for a detailed description of these
objects. The material is characterized by the bulk energy density W Ú Lin r R and
by the jump energy ψ Ú Dn r RÙ where we denote

Dn ¨ R
n � S
n−1Ø

¡For brevity of notation, we omit the target spaces and write SBV �Ω� ª SBV �ΩÙRn� and

L
1�Ω� ª L

1�ΩÙ Lin�Ø See Section 4 for more notation and detailed definitions.
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The Approximation Theorem of Del Piero & Owen [7; Theorem 5.8] says that
every structured deformation is a well-defined limit of simple deformations. In the
framework of Choksi & Fonseca [4] (see also [16]) this means that corresponding to
each structured deformation �g ÙG� X SD�Ω� there exists a sequence �gkÙ ∇gk� X
SD�Ω� (i.e., with gk in SBV�Ω�) such that

gkr g in L1�Ω�,

∇gko G in M�ΩÙLin�Ù
sup !@∇gk@L1�Ω�

Ú k X N) ° ðØ
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


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(1.1)

The relaxed energy of a structured deformation �g ÙG� X SD�Ω� is defined by

I�g ÙG� ¨ inf !lim inf
krð

E�gk� Ú gk X SBV�Ω� satisfies (1.1))Ø (1.2)

Thus the sequence approaching the above infimum realizes the most economical
way to build up the deformation �g ÙG� using the approximations in SBV Ø The
relaxation theorem of Choksi & Fonseca [4; Theorems 2.6 & 2.17] says that under
some assumptions onW andψ (a particular case of which is Assumption 1.1, below),
the relaxed energy admits the integral representation

I�g ÙG� ¨ �
Ω

H�∇g ÙG�dV + �
Jg

h�DgFÙ νg�dA (1.3)

where H and h are some functions determined explicitly in the cited theorems
(particular cases are (2.1) and (2.2), below).

This note deals with the relaxation of energy functions E for which the bulk
contribution vanishes, i.e., with energy functions of the form

E�g� ¨ �
Jg

ψ�DgFÙ νg�dA (1.4)

for each simple deformation �g Ù ∇g�Ø Special cases of the energies of this type have
been considered previously by Owen & Paroni [14] and Barroso, Matias, Morandotti
& Owen [3], see Examples 1.4 and 1.5, below.

Throughout the paper, we assume that the energyE is given by (1.4), its relaxation
I is defined by (1.2), and it will be proved I takes the form (1.3) where H and h will
be determined by the function ψ alone. We make the following standing hypotheses
about ψ Ø

Assumption 1.1

• The function ψ Ú Dn r R is continuous;
• we have ψ�−aÙ −b� ¨ ψ�aÙb� and

c
1
@a@ ² ψ�aÙb� ² C

1
@a@ (1.5)

for every �aÙb� X Dn and some c
1
± 0Ù C

1
± 0Û

• the function ψ�ċÙ ν� is subadditive and positively homogeneous of degree 1 for
each ν X S
n−1.

The following two theorems are the main results of this note.
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Theorem 1.2 The function H is given by

H�AÙB� ¨ Φ�A − B�Ù AÙ B X LinÙ
where Φ Ú Lin r �0Ù ð� is a subadditive and positively homogeneous function of

degree 1; in fact Φ is the biggest subadditive function on Lin satisfying

Θ�a � b� ² ψ�aÙb� for every �aÙb� X Dn (1.6)

i.e.,

Φ�M� ¨ sup "Θ�M� Ú Θ Ú Lin r �0Ù ð� is subadditive and

Θ�a � b� ² ψ�aÙb� for every �aÙb� X Dn*Û
(1.7)

equivalently,

Φ�M� ¨ inf #
m

�
i¨1

ψ�aiÙbi� Ú m X NÙ �aiÙbi� X DnÙ
m

�
i¨1

ai � bi ¨M+ (1.8)

for every M X LinØ
To ease the statement of the next theorem, we extend the function h Ú Dn r

�0Ù ð� by homogeneity with respect to the second variable, i.e., we define h̃ Ú
R
n � R
n r �0Ù ð� by h̃�aÙb� ¨ @b@h�aÙ sgn�b�	 for every aÙ b X R

nÙ where

sgn�b� ¨














b/@b@ if b © 0Ù
0 else.

Theorem 1.3

(i) For every aÙ b X R
nÙ the functions h̃�ċÙb� and h̃�aÙ ċ� are subadditive and

positively homogeneous of degree 1.

(ii) If there exists a subadditive and positively homogeneous function Λ Ú Lin r
�0Ù ð� such that

ψ�aÙb� ¨ Λ�a � b� (1.9)

for every �aÙb� X DnÙ then h ¨ ψ Ø
Since the pointwise supremum of any family of subadditive functions is subadditive
(e.g., [13; Theorem 7.2.2]), Equation (1.7) really defines a subadditive function. The
proofs of Theorems 1.2 and 1.3 are given in Section 2, below. We now illustrate
Theorems 1.2 and 1.3 on particular cases. These motivated the present study.

Example 1.4 ([14; Theorem 4, particular case L ¨ I]) If

ψ@ċ@�aÙb� ¨ @a ċ b@ and ψ±�aÙb� ¨  a ċ b(±
for every �aÙb� X Dn, where  ċ(+ and  ċ(− denote the positive and negative parts

of a real number, then

Φ@ċ@�M� ¨ @tr M@ and Φ±�M� ¨  tr M(±Ù (1.10)

h@ċ@�aÙb� ¨ @a ċ b@ and h±�aÙb� ¨  a ċ b(±Ù (1.11)

respectively, for every M X Lin and �aÙb� X DnØ
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As shown in [14],  trM(+ is a volume density of disarrangements due to sub-
macroscopic separations,  tr M(− is a volume density of disarrangements due to
submacroscopic switches and interpenetrations, and @trM@ is a volume density of
all three of these non-tangential disarrangements: separations, switches, and inter-
penetrations. The evaluation in [14] of H (equivalently, of Φ) for (1.10) is rather
complicated; a recent paper by Barroso, Matias, Morandotti & Owen [3] presents
some simplification. Our version of the derivation is given in Section 3.

Example 1.5 ([3; Equation (5.3)]) If

ψ�aÙb� ¨ @a ċ p@
for �aÙb� X Dn, where p X R

n is a fixed vector, then

Φ�M� ¨ @MTp@ and h�aÙb� ¨ @a ċ p@ (1.12)

for any M X Lin and �aÙb� X DnØ

2 Proofs of Theorems 1.2 and 1.3

The following statement is a particular case W ¨ 0 of the relaxation theorem of
Choksi & Fonseca [4; Theorem 2.17].

Theorem 2.1 The effective energies H and h are given by

H�BÙC� ¨ inf !∆�u� Ú u X A�BÙC�)Ù (2.1)

h�aÙb� ¨ inf !∆�u� Ú u X B �aÙb ÙQb�) (2.2)

for any BÙ C X Lin and any �aÙb� X DnÙ where the objects occurring in these

formulas are defined as follows:
• for any u X SBV�Ω� and any bounded open set Ω ⊂ R

n,

∆�u� Ú¨ �
JuPΩ

ψ�DuFÙ νu�dA Û

• if Q ¨ �−1/2Ù1/2�n, then

A�BÙC� Ú¨ !u X SBV�Q� Ú u�x� ¨ Bx if x X ãQ Ù �
Q

∇u dV ¨ C)

• if for every �aÙb� X Dn the map uaÙb Ú Qb r R
n is defined by

uaÙb�x� ¨
1

2
a�sgn�x ċ b� + 1	Ù x X QbÙ

where Qb is any cube of unit edge, of center at 0 X R
nÙ and of two faces normal

to b Ù then

B �aÙb ÙQb� Ú¨ !u X SBV�Qb�Ùu ¨ uaÙb on ãQbÙ ∇u ¨ 0 on Qb)Ø

Theorem 2.1 will be employed in the proofs of Theorems 1.2 and 1.3, together
with the constructions in the lemmas to be presented now.
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Lemma 2.2 We have

H�BÙC� ¨Ψ�B − C�
for any BÙ C X LinÙ where Ψ Ú Lin r �0Ù ð� is given by

Ψ�M� ¨ inf !∆�u� Ú u X A�M Ù0�) (2.3)

for any M X LinØ
Proof It suffices to note that if u X A�BÙC� then vÙ given by v�x� ¨ u�x� − Cx,
x X Q Ù satisfies v X A�B − C Ù0� and ∆�u� ¨ ∆�v�Ø è

Remark 2.3 If the interfacial energy density ψ is of the special form (1.9) where
Λ Ú Lin r �0Ù ð� is a subadditive and positively homogeneous function then ∆�u�
is given by

∆�u� ¨Λ�Dsu�
where Dsu Ú¨ DuF � νuA õ Ju is the singular part of the derivative Du of u and

Λ�Dsu� Ú¨ �
Ju

Λ�DuF � νu�dA

is an instance of Reshetnyak’s [15] functional µ w Λ�µ� of a measure µ X
M�Q Ù Lin�; see, e.g., [1; Equation (2.29)]. The subadditivity and positive homo-
geneity of degree 1 of Φ (asserted in Theorem 1.2) is then an instance of the general
result [1; Proposition 2.37] asserting the same properties of the functionalµ w Λ�µ�.
Indeed, if Mi X Lin and ui XA�MiÙ0�Ù i ¨ 1Ù2Ù then u

1
+ u

2
XA�M

1
+M

2
Ù0�

and therefore

Φ�M
1
+M

2
� ² Λ�Ds�u

1
+ u

2
�	 ¨ Λ�Dsu

1
+D

su
2
� ² Λ�Dsu

1
� +Λ�Dsu

2
�Û

taking the infimum over all u
1
XA�M

1
Ù0�Ù u

2
X A�M

2
Ù0� gives

Φ�M1 +M2� ²Φ�M1� +Φ�M2�Ø
The positive homogeneity of degree 1 follows similarly. We note that the interfacial
energies in Examples 1.4 and 1.5 have the form (1.9), but this is not the case generally.
To prove the subadditivity and positive hemegeneity of degree 1 in the general case,
we shall proceed in a different way, proving the formulas (1.7) and (1.8) also.

Lemma 2.4 For any �aÙb� X Dn there exists a sequence uk X A�a � b Ù0�,

k ¨ 1ÙÜ Ù such that

∆�uk� r ψ�aÙb� (2.4)

as k r ðØ
Proof We denote by 〈r〉 the integral part of r X RØ In the proof we shall repeatedly
use the elementary fact that

〈kt〉/k r t as k r ð
uniformly in t X RØ For any k X N we put

Qk ¨ �1 − 1/k�Q Ù ck ¨ V�Q ∼Qk�/V�Qk�Ù
and define
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uk�x� ¨


















a�b ċ x� if x X Q ∼QkÙ
a�〈k�b ċ x�〉/k − ck�b ċ x�
 if x X QkÙ

x X Q Ø One has

∇uk�x� ¨


















a � b if x X Q ∼QkÙ
−cka � b if x X QkÛ

hence �Q∇uk dV ¨ 0 and as uk�x� ¨ �a � b�x if x X ãQ Ù we have uk X
A�a � b Ù0�Ø Furthermore,

Juk
¨ ãQkT Lk where Lk ¨ !x X Qk Ú k�x ċ b� X Z)

and

DukF � νuk
¨























a � νQk
�k�x� if x X ãQkÙ

a � b/k if x X Lk

where νQk
is the outer normal to ãQk and

�k�x� ¨ �1 + ck��b ċ x� − 〈k�b ċ x�〉/k Ø

Hence

∆�uk� ¨ �
ãQ
k

ψ�a�k�x�Ù νQk 	 dA + ψ�aÙb�A�Lk�/k Ø (2.5)

We now consider the limit k r ðØ By (1.5)
2
Ù 0 ² ψ��k�x�Ù νQk 	 ² C

1
@a@@�k�x�@

and since �b ċ x� − 〈k�b ċ x�〉/k r 0 uniformly in x and ck r 0Ù we have
@�k�x�@ r 0 uniformly and thus

�
ãQ
k

ψ�a�k�x�Ù νQk 	dA r 0Ø (2.6)

Next observe that

A�Lk�/k r 1Ø (2.7)

To see that, we introduce a sequence of scalar piecewise constant functions ωk Ú
Qk r R by putting ωk�x� ¨ 〈k�b ċ x�〉/k Ù x X QkØ Using Jωk

¨ Lk and DωkF �
νωk

¨ b/k on Jωk
Ù we see that the (scalar version of the) Gauss-Green theorem (4.1)

for ωk reads

�
Q
k

dDωk ª �
Juk

DωkF � νωk
dA ª bA�Lk�/k ¨ �

ãQ
k

ωkνQk
dAØ

Transforming the last integral onto a common domain ãQ and using ωk�x� r b ċ x
one obtains

bA�Lk�/k r �
ãQ

�b ċ x�νQ dA�x� ¨ b Ù

and (2.5) follows. But (2.5), (2.6) and (2.7) give (2.4). è
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Lemma 2.5 If M X Lin and �aiÙbi� X DnÙ i ¨ 1ÙÜ Ùm Ù satisfy

M ¨
m

�
i¨1

ai � bi

and if for any pair of distinct indices i Ù j X  1ÙÜ Ùm( the pair  biÙbj( is linearly in-

dependent (i.e., bi © bj and bi © −bj), then there exists a sequence uk X A�M Ù0�Ù
k ¨ 1ÙÜ Ù such that

∆�uk� r
m

�
i¨1

ψ�aiÙbi� (2.8)

as k r ðØ
Proof By Lemma 2.4, for each i X  1ÙÜ Ùm( there exists a sequence uik X
A�ai � biÙ0�, k ¨ 1ÙÜ Ù such that

∆�uik� r ψ�aiÙbi� (2.9)

as k r ð. Define uk Ú¨ �mi¨1 u
i
k for every k Ø By the linear independence of pairs of

different normals  biÙbj(Ù the jump sets of the maps uik and u
j
k with i © j intersect

at the set of A-measure 0 for every k Ø Consequently, ∆�uk� ¨ �mi¨1
∆�uik� and by

(2.9) the sequence uk has the required properties. è

Proof of Theorem 1.2 Let Ψ and Φ Ú Lin r �0Ù ð� be given by (2.3) and (1.7),
respectively. We first note that the two definitions of Φ in (1.7) and (1.8) are easily
seen to be equivalent (omitted).

The main part of the proof of Theorem 1.2 is to establish Ψ�M� ¨ Φ�M� for
any M X LinØ

To prove Ψ�M� ² Φ�M�Ù we take any sequence �aiÙbi� X Dn, i ¨ 1ÙÜ Ùm Ù
m X NÙ such that �mi¨1 ai � bi ¨ M and consider the infimum as in (1.8). It is
easy to see that the same infimum is obtained if one considers only the sequences
�aiÙbi� X Dn such that that for any part of distinct indices i Ù j X  1ÙÜ Ùm( the pair
 biÙbj( is linearly independent. Otherwise one joins the members with the same or
opposite value of bi into a single term and to use the subadditivity of ψ with respect
to the first variable to obtain possibly a smaller value of the sum in (1.8). Hence, for
the given sequence �aiÙbi� X Dn satisfying the linear independency condition, we
construct a sequence of maps uk X A�M Ù0�Ù k ¨ 1ÙÜ Ù as in Lemma 2.5. Then

Ψ�M� ² ∆�uk�
by the definition of ΨØ Letting k r ð and using (2.8), we obtain

Ψ�M� ²
m

�
i¨1

ψ�aiÙbi�Ø

Taking the infimum over all sequences aiÙ bi, one obtains from the definition of Φ
the inequality Ψ�M� ²Φ�M�Ø

To prove Φ�M� ² Ψ�M�Ù we let u X A�M Ù0� and observe preliminarily that

�
Ju

DuF � νu dA ¨ �
ãQ

uãΩ � νQ dA ¨ �
ãQ

Mx � νQ dA�x� ¨ M (2.10)

by the Gauss-Green theorem (4.1) with Du ¨ DuF � νuA õ JuÙ and Ω ¨ Q . The
idea of the proof is to replace the integrals in
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∆�u� ¨ �
Ju

ψ�DuFÙ νu�dA and M ¨ �
Ju

DuF � νu dA

by finite (Lebesgue) sums to obtain the sums occurring in the definition (1.8) of Φ.
The details can be as follows. Applying, e.g., [12; Corollary 1.77] to each component
of the pair of maps �DuFÙ νu� Ú Ju r DmÙ one obtains a sequence of simple maps
�skÙbk� Ú Ju r R
n�R
n such that, by applying the pointwise majorized convergence

asserted in [12; Corollary 1.77], one has

�
Ju

ψ�skÙbk�dA r �
Ju

ψ�DuFÙ νu�dA and �
Ju

sk � bk dA r �
Ju

DuF � νu dA Ø

(2.11)
In view of the second relation, it is possible to modify the functions skÙ bk slightly
to obtain simple functions, denoted again by skÙ bkÙ such that (2.11)

1
remains valid

while (2.11)2 is replaced by

�
Ju

sk � bk dA ¨ �
Ju

DuF � νu dA ¨M and @bk@ ¨ 1 for all k Ø

The pair �skÙbk� has the form

�skÙbk� ¨
mk

�
i¨1

�sikÙbik�1Sik
where the system  Sik Ú i ¨ 1ÙÜmk( is a partition of Ju and generally 1S is the
characteristic function of the set S ⊂ R

nØ Putting aik ¨ A�Sik�sikÙ for each k Ù we
have a sequence �aikÙbik�, i ¨ 1ÙÜ ÙmkÙ such that

mk

�
i¨1

aik � bik ¨ �
Ju

sk � bk dA ¨ M

and
mk

�
i¨1

ψ�aikÙbik� ¨ �
Ju

ψ�skÙbk�dA r ∆�u� as k r ðØ

As u X A�M Ù0� is arbitrary, we have Ψ�M� ³ Φ�M�Ø è

Proof of Theorem 1.3 , Part (i) The definition (2.2) gives

�
Ju

ψ�DuFÙ νu	 dA ³ h�aÙb� (2.12)

for every a X R
nÙ b X S
n−1 and u X B �aÙb ÙQb�. Througout the proof, let Qb be

a fixed cube and uaÙb the map as in Theorem 2.1.
To prove that h is subadditive and positively homogeneous of degree 1 in the

first variable, let a
1
Ù a

2
X R
nÙ b X S
n−1 and put a Ú¨ a

1
+ a

2
. Let H be the plane

of normal b containing the origin and let P Ú R
n r H be the orthogonal projection

onto H Ø The intersection QbPH is a square in H of unit edge and of center at 0Ø Let
S ⊂ H be a circle in H with origin 0 and of any radius r ± 0 such that S ⊂ Qb. The
number r remains fixed throughout the proof. For any positive ε ° 1/2 let Cε be the
(truncated) cylinder Cε ¨  x X R

n Ú Px X S Ù 0 ° x ċ b ° ε( and let uε Ú Qb r R
n

be defined by
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uε ¨


















a1 on CεÙ
uaÙb on Qb ∼ CεØ

Then
Juε

¨ ��QbPH� ∼ S	 T S T �S + εb�T Sε

where Sε ¨  x X R
n Ú Px X ãS Ù 0 ° x ċ b ° ε( is the mantle of the cylinder CεØ

Evaluating DuεF on each of the indicated parts of Juε we obtain

�
Juε

ψ�DuεFÙ νuε �dA ¨ �1 − A�S��ψ�aÙb� + A�S�ψ�a
1
Ùb�

+ A�S�ψ�−a
2
Ù −b� + �
Sε

ψ�−a
2
Ù νSε �dAØ

Inequality (2.12) reads

A�S��ψ�a
1
Ùb� + ψ�−a

2
Ù −b�	 + �
Sε

ψ�−a
2
Ù νSε �dA ³ A�S�h�aÙb�Ø

Letting ε r 0 and using �Sε ψ�−a2Ù νSε �dA r 0 and ψ�−a
2
Ù −b� ¨ ψ�a

2
Ùb�Ù

we obtain
h�a1 + a2Ùb� ² h�a1Ùb� + h�a2Ùb�Ù

i.e., the subadditivity in the first variable. The proof of the positive homogeneity of
degree 1 in the first variable of ψ uses a similar but simpler construction. The details
are omitted.

To prove that h̃ is subadditive and positively homogeneous of degree 1 in the
second variable, let aÙ b

1
Ù b

2
X R
nØ The case of b

1
and b

2
linearly dependent

being trivial, we assume that b
1

and b
2

are linearly independent and in addition that
b Ú¨ b

1
+b

2
is a unit vector. Let P be the infinite prism of triangular cross section with

faces formed by planar strips of outer normals and widths, respectively, − sgn�b
1
�

and @b
1
@Ù − sgn�b

2
� and @b

2
@, −b and 1, such that the origin 0 X R

n is in the center

of the face of normal −b Ø Let R ¨ 1

2
Qb and for each ε ± 0Ù let Pε ¨ R P �εP�. If

ε is sufficiently small, then Pε ⊂  x X Qb Ú 0 ° x ċ b ° 1/2(. Let uε Ú Qb r R
n

be defined by

uε ¨


















−a on !x X Qb Ú 0 ° x ċ b ° 1/2)∼ PεÙ
0 on !x X Qb Ú −1/2 ° x ċ b ° 0)T PεØ

The inequality �Ju ε
ψ�DuFÙ νuε 	dA ³ h�aÙb� is easily found to take the form

ε�h̃�−aÙ −b
1
� + h̃�−aÙ −b

2
�	 + Vε ³ εh̃�aÙb� (2.13)

where
Vε ¨ �
εPPR

ψ�−aÙ ν�dAØ

We divide Inequality (2.13) by ε and use Vε ¨ O�ε2� to obtain

h̃�aÙb
1
+ b

2
� ² h̃�aÙb

1
� + h̃�aÙb

2
�Ø

The proof of the positive homogeneity of degree 1 is similar. è
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Proof of Theorem 1.3 , Part (ii) Throughout the proof, let �aÙb� X Dn be arbitrary
and let Qb be a fixed cube and uaÙb the map as in Theorem 2.1. If u X B �aÙb ÙQb�,
we apply the Gauss-Green theorem in the same way as in the proof of (2.10) to obtain

�
Ju

DuF � νu dA ¨ a � b Ø (2.14)

Equations (1.9) and (2.14) and Jensen’s inequality [12; Theorem 4.80] then give

∆�u� Ú¨ �
Ju

ψ�DuFÙ νu	 dA

¨ �
Ju

Λ�DuF � νu	dA

³ Λ � �
Ju

DuF � νu dA�

¨ Λ�a � b� ¨ ψ�aÙb�Ø
Thus the definition (2.2) gives h ¨ ψ Ø è

3 Derivation of the examples

Example 1.4 Equation (1.10): We consider ψ@ċ@�aÙb� ¨ @a ċ b@ first, and prove
(1.10)

1
Ø Clearly, the function Θ�M� ¨ @trM@ is a subadditive function satisfying

(1.6) with ψ ¨ ψ@ċ@ and hence (1.8) gives Φ@ċ@�M� ³ @tr M@ for any M X Lin. To
prove the opposite inequality, we note that the definition (1.7) of Φ@ċ@ gives

ψ@ċ@�aÙb� ¨Θ�a � b� ²Φ@ċ@�a � b� ² ψ@ċ@�aÙb�
for every �aÙb� X Dn and hence

Φ@ċ@�a � b� ¨ @a ċ b@ and in particular Φ@ċ@�a � b� ¨ 0 if a ċ b ¨ 0

(3.1)
which determines Φ@ċ@ on tensor products a � b Ø To determine Φ@ċ@ on a general
M X LinÙ we write C ¨ A +W where A and W are the symmetric and skew parts of
C . Let e

1
ÙÜ Ù en be an orthonormal basis of eigenvectors of A with the eigenvalues

λi; then the equation A ¨ �ni¨1
λiei � ei can be rearranged as

A ¨ �trM�e
1
� e

1
+
n

�
i¨2

λi�ei � e
1
− e

1
� ei − �e1 + ei� � �e

1
− ei�	Û (3.2)

a combination with

W ¨ �
1²i©j²n

Wijei � ejÙ Wij ¨ −WjiÙ (3.3)

yields

C ¨ �tr M�e1 � e1 +
�n−1��n+3�

�
α¨1

aα � bα

where the collection of the dyads aα � bα, α ¨ 1ÙÜ Ù �n − 1��n + 3�Ù is formed
by the individual dyads in the sum in (3.2), which is altogether 3�n −1� dyads, and
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the dyads occurring in (3.3), i.e., n�n −1� dyads. The only fact needed below is that
these dyads satisfy aα ċ bα ¨ 0Ø The subadditivity of Φ@ċ@ gives

Φ@ċ@�C� ² Φ@ċ@��tr M�e
1
� e

1
	 +

�n−1��n+3�

�
α¨1

Φ@ċ@�aα � bα� (3.4)

We now employ (3.1)
1

to find thatΦ@ċ@��tr M�e
1
�e

1
	 ¨ @trM@Ùwhile all remaining

terms on the right-hand side of (3.4) vanish by (3.1)
2
. Hence Φ@ċ@�M� ² @tr M@Ø

This completes the proof of (1.10)1Ø
To prove the two equations in (1.10)

2
we employ (1.10)

1
as follows. One has

ψ±�aÙb� ¨ 1

2
�@a ċ b@ ± a ċ b	 and hence if �aiÙbi� X Dn and M X Lin satisfy

�mi¨1 ai � bi ¨ M then

m

�
i¨1

ψ±�aiÙbi� ¨
1

2
�
m

�
i¨1

ψ@ċ@�aiÙbi� ± trM
Ø

Taking the infimum as in (1.8) and using the above evaluation of Φ@ċ@ gives

Φ±�M� ¨ 1

2
�Φ@ċ@�M� ± tr M	 ¨ 1

2
�@tr M@ ± trM	 ¨  trM(±

which is (1.10)
2
Ø

Equation (1.11): We observe that ψ@ċ@�aÙb� ¨ Λ@ċ@�a � b� and ψ±�aÙb� ¨
Λ±�a � b� for every �aÙb� X Dn where Λ@ċ@�M� ¨ @tr M@ and Λ±�M� ¨
 trM(± for every M X Lin and apply Theorem 1.3(ii). è

Example 1.5 Equation (1.12)
1
: The function Θ�M� ¨ @MTp@ is a subadditive

function satisfying (1.6) and we obtain in the same way as in the proof of Example
1.4 that Φ�M� ³ @MTp@ for any M X Lin and

Φ�a � b� ¨ @a ċ p@Ù and in particular Φ�a � b� ¨ 0 if a ċ p ¨ 0Ø (3.5)

To prove Φ�M� ² @MTp@Ù we assume without loss in generality that @p@ ¨ 1 and
let  pÙ e

2
ÙÜ en( be any orthonormal basis. In view of I ¨ p � p +�ni¨2 ei � ei we

have

M ¨ IM ¨ p �MTp +
n

�
i¨2

ei �MTeiÛ

normalizing the second members of the dyads, we obtain

M ¨ @MTp@p � sgn�MTp� +
n

�
i¨2

@MTei@ei � sgn�MTei�Ø

The subadditivity of Φ provides

Φ�M� ² Φ�@MTp@p� sgn�MTp�	 +
n

�
i¨2

@Φ�MTei@ei � sgn�MTei�	 ¨ @MTp@

by (3.5). Thus Φ�M� ² @MTp@ and the proof of (1.12)
1

is complete.
Equation (1.12)

2
: We apply Theorem 1.3(ii) in an obvious way. è
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4 Notation; functions of bounded variation

We denote by Z the set of integers, by N the set of positive integers, by S
n−1 the unit

sphere in R
nÙ by Lin the set of all linear transformations from R

n into itself, often
identified with the set of n � n matrices with real elements. We use the symbols ‘ċ’
and ‘@ċ@’ to denote the scalar product and the euclidean norm on R

n and on Lin. The
latter are defined by B ċ C Ú¨ tr�BCT� and @B@ ¨

√
B ċ B where BT X Lin is the

transpose of B and tr denotes the trace.
A real-valued function f defined on a vectorspace X is said to be subadditive if

f �x + y� ² f �x� + f �y� for every xÙ y X X and positively homogeneous of degree
1 if f �tx� ¨ tf �x� for every t ³ 0 and x X XØ

If Ω is an open subset of R
nÙ we denote by L1�Ω� the space of Lin valued

integrable maps on ΩØ We denote by M�ΩÙ Lin� the set of all (finite) Lin valued
measures on ΩØ If µ X M�ΩÙ Lin�Ù we denote by µ õ B the restriction of µ to a
Borel set B ⊂ ΩØ If G Ù Gk X L1�Ω�Ù k ¨ 1Ù2ÙÜ Ù we say that Gk converges to G

in the sense of measures, and write

Gk o G in M�ΩÙ Lin�
if �ΩGk ċ H dV r �ΩG ċ H dV for every continuous map H Ú R

n r Lin which
vanishes outside ΩØ

We state some basic definitions and properties of the spaces of maps of bounded
variation and of special maps of bounded variation. For more details, see [1, 10, 17],
and [11].

We define the set BV�ΩÙRn� of maps of bounded variation as the set of all
u X L1�Ω� such that there exists a measure Du X M�ΩÙ Lin� satisfying

�
Ω

u ċ divT dV ¨ − �
Ω

T ċ dDu

for each class ð map T Ú R
n r R
n�n which vanishes outside some compact subset

of Ω. Here divT is an R
n valued map on Ω given by �divT �i ¨ �nj¨1 TijÙj

where the comma followed by an index j denotes the partial derivative with respect
to j th variable. The measure Du is uniquely determined and called the weak (or
generalized) derivative of u Ø We shall need the following form of the Gauss-Green
theorem for BV : if Ω is a domain with lipschitzian boundary and u X BV�ΩÙRn�
then there exist an A integrable map uãΩ Ú ãΩ r R

n such that

�
Ω

dDu ¨ �
ã�Ω�

uãΩ � ν
Ω
dA (4.1)

where ν
Ω

is the outer normal to ãΩØ The map uãΩ is determined to within a change
on a set of A measure 0 and is called the trace of u Ø

We define the set SBV�Ω� of special maps of bounded variation as the set of all
u X BV�ΩÙRn� for which Du has the form

Du ¨ ∇u V õ Ω + DuF � νuA õ Ju (4.2)

where ∇u Ù the absolutely continuous part of Du Ù is a map in L1�Ω� and the term

D
su Ú¨ DuF � νuA õ Ju
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on the right-hand side of (4.2) is called the jump (or singular) part of Du Ø The objects
Ju ⊂ ΩÙ DuF Ú Ju r R

n and νu Ú Ju r S
n−1 are called the jump set of u Ù the jump

of u and the normal to JuÙ respectively. Here Ju is the set of all x X Ω for which
there exist νu�x� X S

n−1 and u±�x� X R
n such that we have the approximate limits

u±�x� ¨ ap lim
yrx

yXH±�xÙνu �x��

u�x�Ù

where H
±�xÙ νu�x�� ¨  y X R

n Ú ±�y − x� ċ νu�x� ± 0(Ø For a given x X ΩÙ
either the triplet �νu�x�Ùu+�x�Ùu−�x�� does not exist or it is uniquely determined to
within the change �νu�x�Ùu+�x�Ùu−�x�� w �−νu�x�Ùu−�x�Ùu+�x��. With one
of these choices, one puts DuF�x� ¨ u+�x�−u−�x� and notes that DuF�x��νu�x�
is unique.

5 References

1 Ambrosio, L.; Fusco, N.; Pallara, D.: Functions of bounded variation and free

discontinuity problems Clarendon Press, Oxford 2000

2 Baía, M.; Matias, J.; Santos, P. M.: A survey on structured deformations São
Paulo Journal of Mathematical Sciences 5 (2011) 185–201

3 Barroso, A. C.; Matias, J.; Morandotti, M.; Owen, D. R.: Explicit formulas for

relaxed disarrangement densities arising from structured deformations (2016)
Preprint.

4 Choksi, R.; Fonseca, I.: Bulk and Interfacial Energy Densities for Structured

Deformations of Continua Arch. Rational Mech. Anal. 138 (1997) 37–103

5 Del Piero, G.: The energy of a one-dimensional structured deformation Math.
Mech. Solids 6 (2001) 387–408

6 Del Piero, G.: Foundations of the theory of structured deformations In Multiscale

modeling in continuum mechanics and structured deformations G. Del Piero &
David R. Owen (ed.), pp. 125–176, Springer, New York 2004

7 Del Piero, G.; Owen, D. R.: Structured deformations of continua Arch. Rational
Mech. Anal. 124 (1993) 99–155

8 Del Piero, G.; Owen, D. R.: Integral-gradient formulae for structured deforma-

tions Arch. Rational Mech. Anal. 131 (1995) 121–138

9 Del Piero, G., and Owen, D. R.: Multiscale modeling in continuum mechanics

and structured deformations Springer, New York 2004

10 Evans, L. C.; Gariepy, R. F.: Measure theory and fine properties of functions

CRC Press, Inc., Boca Raton 1992

11 Federer, H.: Geometric measure theory Springer, New York 1969

12 Fonseca, I.; Leoni, G.: Modern Methods in the Calculus of Variations: Lp Spaces

Springer, New York 2007

13 Hille, E.; Phillips, R. S.: Functional analysis and semi-groups American Math-
ematical Society, Providence, R. I. 1957



5. References 15

14 Owen, D. R.; Paroni, R.: Optimal flux densities for linear mappings and the

multiscale geometry of structured deformations Arch. Rational Mech. Anal. 218

(2015) 1633–1652

15 Reshetnyak, Yu. G.: Weak convergence of completely additive vector functions

on a set Siberian Math. J. 9 (1968) 1039–1045

16 Šilhavý, M.: On the Approximation Theorem for structured deformations from

BV�Ω� Mathematics and Mechanics of Complex Systems 3 (2015) 83–101

17 Ziemer, W. P.: Weakly differentiable functions Springer, New York 1989

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

