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Cytokinins (CKs) play a crucial role in many physiological and developmental processes at the levels of individual plant
components (cells, tissues, and organs) and by coordinating activities across these parts. High-resolution measurements of
intracellular CKs in different plant tissues can therefore provide insights into their metabolism and mode of action. Here, we
applied fluorescence-activated cell sorting of green fluorescent protein (GFP)-marked cell types, combined with solid-phase
microextraction and an ultra-high-sensitivity mass spectrometry (MS) method for analysis of CK biosynthesis and homeostasis at
cellular resolution. This method was validated by series of control experiments, establishing that protoplast isolation and cell
sorting procedures did not greatly alter endogenous CK levels. The MS-based method facilitated the quantification of all the well
known CK isoprenoid metabolites in four different transgenic Arabidopsis thaliana lines expressing GFP in specific cell
populations within the primary root apex. Our results revealed the presence of a CK gradient within the Arabidopsis root tip, with
a concentration maximum in the lateral root cap, columella, columella initials, and quiescent center cells. This distribution, when
compared with previously published auxin gradients, implies that the well known antagonistic interactions between the two
hormone groups are cell type specific.

INTRODUCTION

Plant hormones are signal molecules that are synthesized in many
different tissues and cell types, and their actions span from cell-
autonomous to short range to long distance. Understanding hor-
mone function therefore requires detailed knowledge of the spatial
regulation of biosynthesis, metabolism, transport, perception, and
signal transduction. In this study, we focused on cytokinins,
a class of hormone with multiple functions throughout the plant
that interact with several other hormone classes including auxin,
ethylene, abscisic acid, gibberellins, and strigolactones (El-Showk
et al., 2013).

Cytokinins (CKs) are N6-substituted adenines carrying an ali-
phatic side chain of isoprenoid origin (isoprenoid CKs) or an aro-
matic derivative side chain (aromatic CKs). Variation in structural
substituents on the adenine moiety of CKs includes nucleotide
forms, ribosides, and free bases, along with a wide range of other
conjugates. It is widely believed that CK free bases are the

bioactive CKs (Schmitz and Skoog, 1972; Spiess, 1975; Sakakibara,
2006). However, in CK receptor binding assays, either in vitro or in in
vivo heterologous expression systems, some ribosides also display
high affinity with CK receptors (Spíchal et al., 2004; Yonekura-
Sakakibara et al., 2004; Romanov et al., 2006). Moreover, bioassays
showed activity of compounds such as CK-O-glucosides that are
unable to bind to receptors (Spíchal et al., 2004; Gajdosová et al.,
2011). Therefore, measurements of CK free bases alone do not
provide a complete picture of bioactive and potentially bioactive
CKs within tissues. In parallel, variations in the CK side chain
and stereoisomeric configuration divide isoprenoid CKs into iso-
pentenyladenine (iP), trans-zeatin (tZ), dihydrozeatin, and cis-zeatin
(cZ) groups. While iP and tZ groups are considered the most im-
portant compounds (Sakakibara, 2006), the functional relevance of
cZ-type CKs has been elevated within the last decade (Gajdosová
et al., 2011; Köllmer et al., 2014).
Based on reporter gene expression studies, mainly performed

in Arabidopsis thaliana, the genes encoding ISOPENTENYL
TRANSFERASES (IPTs), catalyzing the first committed step of CK
biosynthesis, are expressed in almost every part of the plant, but
each IPT gene has a spatially distinct pattern of expression. For
example, IPT3 is expressed almost exclusively in the phloem,
whereas IPT5 expression is confined to root cap, columella, lateral
root initials, floral stems, and silique abscission zones (Miyawaki
et al., 2004; Takei et al., 2004). Similarly, genes encoding enzymes
for CK activation (LONELY GUY [LOG] and cytochrome P450
family [CYP735A]) and degradation by cytokinin dehydrogenase
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(CYTOKININ OXIDASE/DEHYDROGENASE [CKX]) also appear to
be spatially regulated. In root tips, expression of LOG3 and LOG8
is strongest in the procambium and quiescent center (QC), re-
spectively (Kuroha et al., 2009), whereas root expression of
CYP735A2 is predominantly in the vasculature (Kiba et al., 2013).
Analysis of GUS patterns reveals that CKX4 is expressed in guard
cells and root cap, CKX5 in axillary buds, and CKX6 in phloem
(Werner et al., 2003).

The evolutionary pressures that led to selection of such diversity
and apparently exquisite precision of spatial patterns of expression
are not yet clear. Despite the tight spatial regulation, there is
substantial redundancy among gene family members, with mini-
mal deleterious phenotypes seen in single and double ipt mutants
and altered development only becoming highly apparent in triple
and quadruple knockout lines (Miyawaki et al., 2006), suggesting
that CKs produced elsewhere in the plant can cause comple-
mentation by compensation for local deficiencies. This can extend
to systemic transport, as evidenced by complete rescue of
ipt1,3,5,7 quadruple mutant shoots by grafting to wild-type roots
(Matsumoto-Kitano et al., 2008).

Relatively little is known about regulation of CK transport.
Although PURINE UPTAKE PERMEASEs (PUPs) and EQUILI-
BRATIVE NUCLEOSIDE TRANSPORTERs (ENTs) can enable
movement of CKs across membranes (Bürkle et al., 2003; Hirose
et al., 2005), their biological importance remains to be fully as-
certained. Genetic studies of both PUPs and ENTs are hampered
by the large number of genes in each family and by the fact that
the proteins appear also to transport non-CK purine molecules in
addition to CKs. The ATP binding cassette transporter subfamily
G14 (ABCG14) has recently been shown to regulate entry of
zeatin-type CKs into the xylem transport stream and hence may
function primarily in long-distance export from root to shoot rather
than local transport (Ko et al., 2014; Zhang et al., 2014).

In relation to their spatially regulated effects on other hor-
mones, there is convincing evidence that CKs, at least when
supplied exogenously, modulate auxin PIN transporter expres-
sion and distribution (Rů�zi�cka et al., 2009; Zhang et al., 2011;
Marhavý et al., 2014), and CKs also affect auxin biosynthesis
rates in several root cell types (Jones et al., 2010).

As many forms of CKs are potentially mobile intercellular sig-
nals, knowledge of sites of biosynthesis does not necessarily re-
flect sites of maximal accumulation and biological action. To reveal
the pattern of CK distribution among different cell types, we used
a combination of fluorescence-activated cell sorting (FACS) and
ultra-high-performance liquid chromatography-tandem mass
spectrometry (UHPLC-MS/MS) to analyze the CK metabolite
content of a range of green fluorescent protein (GFP)-marked cell
types isolated from the Arabidopsis root apex, an approach pre-
viously used to generate a high-resolution map of auxin (indole-3-
acetic acid [IAA]) biosynthesis and distribution (Petersson et al.,
2009). Validation and control experiments revealed that the CK
amounts of protoplasts generally changed very little over the time
required to generate and collect different cell populations, and only
small proportions of CKs were lost by leakage from the proto-
plasts. Because CKs exist in multiple molecular forms and their
levels are generally much lower than that of IAA, an ultra-high-
sensitive UHPLC-MS/MS method was developed to detect 26
known isoprenoid CKs. This revealed that CK distribution was

similar across some of the tested cell types (stele, endodermis,
epidermis, and cortex) but significantly enhanced in the cell pop-
ulation that contained the lateral root cap, columella, columella
initials, and the quiescent center. This study, along with similar
studies of IAA and its catabolite 2-oxindole-3-acetic acid
(Petersson et al., 2009; P�en�cík et al., 2013), complements
transcriptional analyses performed at the cell-specific level in
the Arabidopsis root tip (Birnbaum et al., 2003, 2005; Brady
et al., 2007) and brings us closer to mapping the details of gene-
hormone regulation in complex plant organs comprising multiple
cell types in close proximity.

RESULTS

To quantify CKs in specific cell populations of the Arabidopsis root
apex, an efficient protoplast isolation and cell sorting process was
required. Moreover, in order to profile all different types of CK
metabolites in these cell populations, a sensitive and selective
method for CK analysis was developed, based on solid-phase
microextraction (microSPE) and mass spectrometry-based quan-
tification. To test whether these procedures alter endogenous CK
levels, a series of control experiments was conducted.

The Protoplast Isolation Process Does Not Greatly Alter
Endogenous Cytokinin Levels

To obtain free protoplasts for cell sorting and subsequent CK
analysis, the cell walls were removed by incubating Arabidopsis
roots in a medium containing cell wall-degrading enzymes. To
examine the possible effects of protoplast isolation on CK me-
tabolism, chemical treatments were applied during the 2 h of en-
zymatic degradation of the cell walls. Inhibiting CK irreversible
degradation with 2-chloro-6-(3-methoxyphenyl)aminopurine
(INCYDE) (Zatloukal et al., 2008; Aremu et al., 2012) resulted in
elevated levels of the CK bases iP and tZ and the riboside iPR,
while cZ levels were reduced (Figure 1A). Treatments with adenine,
previously used as a cytokinin transport antagonist (Bürkle et al.,
2003; Cedzich et al., 2008), mainly caused a small decrease of all
CK bases detected and slightly increased levels of all ribosides
(Figure 1B). When sodium azide was added to the protoplast
isolation buffer as an inhibitor of ATP-dependent metabolic and
membrane transport processes (Tucker, 1993), iPR level was el-
evated while tZR concentration was reduced (Figure 1C). Taken
together, the data derived from these chemical treatments suggest
that during protoplast isolation, measured CK levels still broadly
represent the endogenous hormone concentrations. Moreover,
these slight alterations in CK content indicate that active CK ho-
meostasis continues to operate in the isolated cells.

Cytokinin Leakage and Transport Is Minimal during
Cell Sorting

The effect of the cell sorting procedure on endogenous CK levels
was also determined. The isolated protoplasts were suspended in
0.7% NaCl (sorting buffer) and kept at 4°C for 180 min, imitating
the sorting process. The CK metabolites were quantified after 0,
90, and 180 min in the protoplast pellet and in the respective su-
pernatant to check for possible leakage and/or transport of CKs
into the medium.
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The distribution of CK metabolites in the protoplasts, pre-
sented in Figure 2A, remained largely stable during the 3 h of
incubation at 4°C, suggesting that there is no major net leakage
and/or transport of CKs out of the protoplasts over this period.
The CK levels detected in the corresponding supernatants of the
protoplast samples, shown in Figure 2B, are likely to be derived
from partially digested cell walls and damaged protoplasts.
Again, negligible alterations in the CK profiles of the super-
natants were observed over time. Taken together, these data
indicate that there are only slight modifications of CK levels and
metabolism during the sorting procedure (Figure 2C).

Miniaturized SPE Efficiently Purifies CK Metabolites from
Isolated Protoplasts

Inspired by the high selectivity, affinity, and capacity of the
multi-StageTip sorbents (Sva�cinová et al., 2012), we optimized
the micropurification step as a powerful, one-step high-
throughput approach for analysis of complex CK profiles from
isolated protoplasts. We first compared the extraction capability

of multi-StageTip microcolumns packed with one, two, and
three layers of each sorbent with the capacity of commercially
available mixed-mode cation-exchange (MCX) phase (Dobrev
and Kamínek, 2002). As shown in Supplemental Figure 1A, both
purification protocols exhibited similar extraction efficiencies
toward CKs, indicating that CKs could also be effectively en-
riched by in-tip microSPE from minute samples such as isolated
cell populations. Altogether, total extraction recoveries (76% 6
15%, 82%6 12%, and 81%6 9% for one, two and three layers
of each sorbent) were in good agreement with the excellent
recovery, high reproducibility, and robustness of the commonly
used MCX purification method (82% 6 6%). The increasing
amount and surface area of sorbent multilayers positively af-
fected the extraction yields of CK nucleotides (Supplemental
Figure 1A); hence, three-layer StageTip microcolumns were
chosen for purification of CKs from isolated protoplasts.

Figure 1. Cytokinin Concentration in Isolated Protoplasts.

Roots from seedlings 8 d after germination were treated with or without
10 mM INCYDE (a cytokinin dehydrogenase inhibitor; [A]), 100 mM ad-
enine (a cytokinin transport antagonist; [B]), or 3 mM sodium azide (an
inhibitor of ATP-dependent metabolic and membrane transport pro-
cesses; [C]) during protoplast isolation (2 h). The CK concentration was
calculated as fmol/100,000 protoplasts, and the respective ratios (trea-
ted to untreated) were then determined. Three biological replicates were
analyzed for each treatment, and for each replicate at least 1500 roots of
wild-type Arabidopsis plants (Col-0) were pooled. Error bars indicate SE.

Figure 2. Cytokinin Metabolite Profiles in Protoplast Pellet and Super-
natant.

Isolated protoplasts were suspended in sorting buffer and left on ice
during simulated sorting for up to 180 min. Samples were collected every
90 min, centrifuged, and processed for separate analysis of the CK
content in the protoplast pellet and supernatant. Nucleotides, ribosides,
and bases of iP and cis- and trans-zeatin were quantified as fmol/
100,000 protoplasts. Their percentage proportional distributions ([A] and
[B]) and their sum (C) were calculated. For each time point, three bi-
ological replicates were assessed, and every replicate was derived from
a pool of at least 1500 roots of wild-type Arabidopsis plants (Col-0). Error
bars indicate SE.

A Cytokinin Distribution Map of the Root Apex 1957

http://www.plantcell.org/cgi/content/full/tpc.15.00176/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00176/DC1
http://www.plantcell.org/cgi/content/full/tpc.15.00176/DC1


As described above, the isolated protoplasts were suspended in
0.7% NaCl (sorting buffer), which is not compatible with LC-MS
analysis. The large excess of sodium ions could result in the for-
mation of metal adduct ion species, limiting ionization efficiency
and thus reducing sensitivity of mass spectrometry detection.
Moreover, the presence of NaCl in the sorting buffer might also
have a detrimental effect on the process efficiency of the microSPE
protocol, especially because high concentrations of chloride anions
compete with CKs for the binding sites of the stationary phases
used and thus decreasing mainly the recovery of CK nucleotides.
Therefore, the initial extraction conditions (sorbent activation/
equilibration and sample loading) were optimized (Supplemental
Figures 1B and 1C). Following a published microSPE protocol
(Sva�cinová et al., 2012), the activation of C18/SDB-RPS/Cation-SR
layers by nondiluted/diluted solutions of 50% (v/v) nitric acid and
1M formic acid was examined using 0.1 pmol of each CKmetabolite
spiked in before extraction. Conditioning with strong nitric acid
enabled the sorbents to interact more efficiently with the sample
matrix, giving close to 60% process efficiency (Supplemental
Figure 1B). Simultaneously testing dilutions of 0.7% NaCl solution
on the sample loading step showed that most of the tested CK
metabolites were strongly retained using sorting buffer diluted with
water (ratio 3:1) (Supplemental Figure 1C). Supplemental Figure 2
describes the final optimized in-tip microSPE protocol used for
purification of CKs from isolated protoplasts.

A Methodology for High-Resolution Cell-Specific Analysis of
Cytokinin Distribution

After optimizing the microSPE protocol and validation of pro-
toplast isolation and sorting steps, we were able to quantify CK
metabolites in the apical root cell types under study. These
included the tissues of epidermis and cortex (J2812:GFP ex-
pression), stele (pWOODEN LEG:GFP [pWOL:GFP] expression),
endodermis and QC (pSCARECROW:GFP [pSCR:GFP] expres-
sion) and lateral root cap, columella, columella initials, and QC
cells (M0028:GFP expression) as also shown in Figure 3A. Root
protoplasts were isolated from 8-d-old Arabidopsis seedlings ex-
pressing GFP in the specific cell types mentioned above and thus
covering all the cell types of the root apex. The isolated protoplasts
were then sorted using FACS into GFP-expressing (GFP+) and
non-GFP-expressing (GFP–) protoplasts, with the latter repre-
senting a specific reference population for each sample (Figure
3B). For three of the transgenic lines analyzed, two samples of
200,000 GFP+ and GFP– cells were collected during each sorting
procedure (two technical replicates) and at least six cell-sorting
experiments were performed for each Arabidopsis line (6 to 10
biological replicates). For the M0028:GFP line, a total of 20,000 to
100,000 isolated protoplasts were collected for each biological
and technical replicate (for both the GFP+ and GFP– cell pop-
ulations). Commercial sorting buffers with unknown composition
were replaced by 0.7% NaCl solution to minimize sample matrix
effects. Known composition of the sorting buffer was also useful
during further optimization of the subsequent microSPE step, as
mentioned above (Figure 3C). After sample purification, the levels
of known isoprenoid CKs were measured in both the GFP+ and
GFP– samples using ultra-high-sensitive and selective UHPLC-
MS/MS (Supplemental Table 1). Finally, the CK concentration in

the GFP+ cells of each line was normalized according to the re-
spective GFP– reference population.

Cytokinin Concentrations in Arabidopsis Root Cell Types

Fifteen different cytokinins, representing three basic isoprenoid
side chain types (tZ, cZ, and iP) were successfully quantified in the
sorted cells (Supplemental Figure 3). In the GFP+ and GFP– pro-
toplast populations, the CK nucleotides (iPRMP and cZRMP), the
CK ribosides (iPR and cZR), the CK bases (iP, tZ, and cZ), and the
CK 7-/9-/O-glucoside conjugates (iP7G, iP9G, tZ7G, tZ9G, cZ9G,
tZOG, and cZOG) were detected, whereas cZROG was found only
in the GFP nonexpressing cells of the pSCR:GFP and M0028:GFP
lines. All the CK bases, ribosides, and 7-glucosides detected were
present in all cell types under study. On the other hand, some cell
lines lacked some nucleotides and O- and 9-glucoside forms. In-
terestingly, tZRMP and tZR were neither detected in the GFP+ nor
the GFP– cells (Supplemental Figure 3).
The levels of CK metabolites ranged from 0.3 to 10 fmol per

100,000 sorted cells depending on the cell types sorted from the
root apex. Expressed as total CK concentrations, 5.5 6 2.2, 2.4 6
0.9, 17.9 6 3.0, and 29.0 6 8.1 fmol/100,000 protoplasts were
found in GFP+ cells isolated from J2812:GFP, pWOL:GFP, pSCR:
GFP, and M0028:GFP lines, respectively (Supplemental Figure 4A).
The iP and cZ forms were the most abundant CK groups, with
tZ forms present at approximately 5-fold lower concentrations
(Supplemental Figure 4C). Surprisingly, only slight changes in overall
CK metabolite distribution (from 1 to 6%) were observed between
the GFP+ and GFP– protoplast populations (Supplemental Figure 3).
As mentioned above, a wide spectrum of CKmetabolite groups was
detected in GFP-expressing cells. Moreover, the highest concen-
trations of CK nucleotides, ribosides, and CK N-/O-glucosyl con-
jugates (around 50%) were found in the M0028:GFP cell population
representing lateral root cap, columella, columella initials, and QC
cells. In contrast, the concentration of CK bases (sum of iP, tZ, and
cZ) was the highest in the endodermis (pSCR:GFP population) fol-
lowed closely by CK nucleotides (Supplemental Figure 4B).
Altogether, the CK concentration map presented in Supplemental

Figure 4 demonstrates the existence of a gradient within the root
apex, with the highest CK concentration occurring in the lateral
root cap, columella, columella initials, and QC cells. Relatively high
CK concentration was also observed in the endodermis. Fur-
thermore, the distribution of the majority of CK metabolites in
GFP-expressing cell populations reveals their maxima in the apical
part of the root tip. Finally, the total CK levels show the following
progression among GFP-marked cell types: M0028:GFP > pSCR:
GFP >> J2812:GFP > pWOL:GFP. This heterogeneous distribu-
tion of CKs in the Arabidopsis root apex indicates that there could
either be a high rate of CK biosynthesis in these cell types and/or
a high rate of transport into the cells.

Mapping the Cytokinin Metabolites in the Arabidopsis
Root Apex

As summarized in Supplemental Figure 4C, total CK levels dis-
played variation between the GFP lines examined. Although six
biological replicates were analyzed for each line, there may be
variation due to genetic differences between the lines and/or
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technical variation since samples were each necessarily generated
by cell sorting runs on different days. To compensate for these
observed differences in CK concentrations between the transgenic
lines, the CK content in each cell population is presented as the
ratio of metabolite concentration between the GFP+ protoplasts
and the internal reference GFP– population for each cell line (Fig-
ures 4 and 5). The GFP– population included non-GFP-expressing
cells derived from the apical third of the root of each line; thus, the
CKs quantified represent an average background level. In general,
the CK metabolites showed similar trends in terms of their cell-
specific distributions. Therefore, the data are also presented as
a mean of total CK content (Figure 4B). However, the CK O-
glucosides and nucleotides were not detected in the pWOL:GFP
line, so information is lacking about these compounds in the stele
cell population. The GFP+-to-GFP– ratios for each CK metabolite
were also computed (Supplemental Figure 5). The pSCR:GFP and
M0028:GFP lines showed statistically significant differences in their
ratios compared with the J2812:GFP and pWOL:GFP lines (Figure
4B). Our data suggest that pSCR:GFP and M0028:GFP cells have
lower and higher relative total CK content, respectively. Of the five
CK metabolite groups, the pattern of CK bases, ribosides, and
N-glucosides mirrored that of the total CK pool, while the GFP+-to-
GFP– ratio of CK nucleotides in the J2812:GFP line was greatly
lowered (Figure 4C). Summed levels of the three isoprenoid CK
groups (tZ, cZ, and iP types) detected in the isolated protoplasts
showed very similar patterns across the four Arabidopsis lines
analyzed, with highest abundance in M0028:GFP cells (Figure 5B).

We next converted the mean of total CKs in each cell pop-
ulation into a CK level map for the root apex (Figure 5A). This
type of visualization helps to understand the CK distribution
across the four GFP-expressing lines, with clear evidence that

highest relative CK content was present in the M0028:GFP line.
This line expresses GFP in the lateral root cap, columella, col-
umella initials, and QC cells, in close agreement with the ex-
pression pattern of the synthetic CK reporter line, TCSn:GFP
(Zürcher et al., 2013; Figure 5C). Moreover, individual distribu-
tion maps of each CK metabolite group (Supplemental Figure 6)
show distinct patterns in the stele, the endodermis, the epider-
mis, and cortex cells. Together, these results strongly suggest
the existence of CK gradients within the Arabidopsis root apex.

DISCUSSION

Cytokinin gradients within the root apex have already been pre-
dicted from promoter-reporter expression studies of CK-related
genes. In Arabidopsis, the highest expression of a CK hydroxylase
involved in biosynthesis of trans-zeatin (CYP735A2) is in the vas-
culature (Kiba et al., 2013) along with the cytokinin transporter
(ABCG14) (Ko et al., 2014; Zhang et al., 2014), while cytokinin
oxidase/dehydrogenase (CKX4) is expressed in the root cap.
CKX5 and CKX6 expression is detected in the root vasculature
with and without reaching the QC cells, respectively (Werner et al.,
2003). However, because many CK compounds are mobile, CK-
related gene expression analysis does not always represent the
sites of hormone production, accumulation and biological func-
tion. We therefore decided to construct a CK distribution map
based on direct measurements of CK pools in different cell types.
In this detailed exploration of cell-specific cytokinin profiles, we
were interested in all the different metabolic forms, including pre-
cursors, bioactive molecules, and inactivation products. Such data
can lead to a better understanding of the CK content within dis-
tinct cell populations, tissues, and organs.

Figure 3. High-Resolution Cell-Specific Analysis of Cytokinin Distribution in the Arabidopsis Root Apex.

The methodology combined fluorescence-activated cell sorting of GFP-marked specific root tip cells with ultrasensitive mass spectrometry for the
determination of 26 CK metabolites. Protoplasts were isolated from the roots of Arabidopsis seedlings (8 d after germination) expressing GFP in specific
cell types (A) and then sorted using FACS (B). The samples containing collected GFP-expressing (+, green) and non-GFP-expressing (–, gray) cell
populations were purified by microSPE and analyzed by LC-MS/MS (C).
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To unravel the pattern of CK metabolites within individual cell
types of the Arabidopsis root apex, the newly developed method
combining FACS and UHPLC-MS/MS was used to quantify CKs
in four spatially distinct GFP-expressing cell populations within the
root tip (Figure 3), enabling generation of a detailed cell map of CK
distribution in the Arabidopsis root apex (Figure 4A). The approach
followed was previously applied to develop equivalent maps of
auxin distribution (Petersson et al., 2009; P�en�cík et al., 2013).
However, the presence of CKs in plant tissues at extremely low

concentrations (pmol$g21 fresh weight), ;100-fold lower than
auxin concentration, makes their quantification from very small
samples highly challenging. Improvements in mass spectrometry
during the last 15 years made it possible now to identify and
quantify CKs from milligram quantities of plant tissues (Sva�cinová
et al., 2012). The optimized methodology shown in Figure 3 en-
abled the performance of cell-type-specific quantification of CK
metabolites in transgenic lines with GFP expression in less than
50 cells per root tip (M0028:GFP line; Swarup et al., 2005).

Figure 4. Cytokinin Levels in Four Different Cell Types Isolated from the Arabidopsis Root Apex.

(A) The localization of GFP expression in the root apex indicated in different colors for each Arabidopsis line expressing GFP in specific cell types.
(B) Total CK levels calculated as mean of the GFP+-to-GFP– ratio of all CK metabolites quantified. Letters above the bars are as follows: a, significantly
different from J2812:GFP; b, significantly different from pWOL:GFP; c, significantly different from pSCR:GFP; d, significantly different from M0028:GFP
(Student’s t test, P < 0.05).
(C) Scheme of metabolism for different cytokinin metabolite groups. The metabolic pathways are based on Spíchal (2012). Enzymes involved in CK
biosynthesis, interconversions, and degradation are indicated by circled numbers: (1) 59-ribonucleotide phosphohydrolase, (2) adenosine nucleosidase,
(3) CK phosphoribohydrolase ‘Lonely Guy’, (4) purine nucleoside phosphorylase, (5) adenosine kinase, (6) adenine phosphoribosyltransferase, (7)
zeatin-O-glucosyltransferase, (8) b-glucosidase, (9) N-glucosyl transferase, and (10) CKX.
The CK metabolites were quantified in fmol/100,000 isolated protoplasts, and the GFP+-to-GFP– ratios were computed for each sorted transgenic line:
J2812:GFP, pWOL:GFP, pSCR:GFP, and M0028:GFP. In the pWOL:GFP line, CK O-glucosides and nucleotides were detected in neither the GFP+ nor
the GFP– cell populations. Data represent six biological replicates, and for each, two technical replicates were performed. Error bars indicate SE.
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The so-called StageTip (Stop and Go Extraction Tip) technology,
which has been developed for desalting, micropurification, en-
richment, and prefractionation of proteins and peptides prior to
LC-MS analysis (Rappsilber et al., 2003, 2007; Ishihama et al., 2006)
was recently adapted for isolation and quantification of CKs in
minute amounts of fresh plant tissues (1 to 5 mg) using a combi-
nation of two reverse phases [C18 and poly(styrene-divinylbenzene)
copolymer modified with sulfonic acid groups (SDB-RPS)] and one
cation-exchange phase (Cation-SR) (Sva�cinová et al., 2012).
A similar microSPE protocol (Supplemental Figure 2) was suc-
cessfully optimized to enable the rapid and effective extraction and
purification of CKs from a minimal quantity of protoplasts, with
efficient isolation and enrichment (Supplemental Figure 1). This
was coupled with a faster, highly selective and extremely sensitive
UHPLC-MS/MS analysis (Supplemental Table 1) to facilitate the
screening of 26 isoprenoid CK metabolites in specific Arabidopsis
root cell populations (Supplemental Figure 4C). It has previously
been published that the average cell diameters of the four different
cell populations of the Arabidopsis root apex examined here were
not significantly different (Petersson et al., 2009), allowing com-
parisons of the CK levels among the individual cell types. CK
concentration of the GFP+ protoplasts was then normalized to the
concentration of the respective GFP– protoplasts, in order to
compensate for changes in CK levels caused by slight differences
in growth conditions and genetic background.

Importantly, the method was tested for alterations in CK me-
tabolism and content, and for leakage of CKs from protoplasts,
during the protoplast isolation and cell sorting procedures,

respectively. As displayed in Figure 1A, inhibiting CK degradation
with the specific CKX inhibitor, INCYDE, resulted in slightly ele-
vated levels of the CK bases iP and tZ and the riboside iPR,
compounds known to be efficiently degraded by CKXs (Gajdosová
et al., 2011; Köllmer et al., 2014). Treatment with adenine (Figure
1B), a known cytokinin transport antagonist (Bürkle et al., 2003;
Cedzich et al., 2008), caused a slight decrease of cZ and tZ bases
and increased levels of their respective ribosides. This is in ac-
cordance with the H+-coupled high-affinity purine uptake trans-
porter system shared by the structurally similar CK bases and
adenine. Likewise, CK transport competition studies showed that
there was a stronger inhibition of labeled adenine uptake when
competing with tZ than with zeatin riboside (Bürkle et al., 2003).
Inhibition of ATP-dependent metabolic and membrane transport
processes (Tucker, 1993) with sodium azide also resulted in less
than 2-fold changes in CK metabolite concentrations (Figure 1C).
In addition to inhibition of respiration (Drake 1979), sodium azide
also causes other changes in plant cells, including increased cy-
tosolic Ca2+ levels (Gilroy et al., 1989) and reduction of intracellular
pH (Spanswick and Miller, 1977). The latter might have an impact,
for example, on CKX enzyme activity, which is highly pH de-
pendent (Galuszka et al., 2007) and thus could alter CK metabo-
lism. Taken together, the data derived from these chemical
treatments suggest that during protoplast isolation, CK metabo-
lism is still active but at sufficiently low levels to allow estimation of
endogenous CK concentrations. Further evidence of the robust-
ness and reproducibility of the methods comes from examination
of CK leakage from the isolated protoplasts during cell sorting

Figure 5. Cytokinin Distribution within the Arabidopsis Root Tip.

(A) CK gradient map showing a concentration maximum in the lateral root cap, columella, columella initials, and QC cells.
(B) CK distribution of three isoprenoid groups (tZ, cZ, and iP types) detected in isolated protoplasts.
(C) TCSn:GFP expression pattern in 5-d-old Arabidopsis root tip.
The data presented in the map were derived from four GFP lines (J2812:GFP, pWOL:GFP, pSCR:GFP, and M0028:GFP) covering almost all of the
different cell types of the root apex. Cell-type-specific CK concentrations were calculated in fmol/100,000 isolated GFP+ protoplasts and then nor-
malized to the GFP– reference population for each GFP cell line. The red color scale indicates the CK content relative to this reference population; NA
represents cell populations that were not analyzed. A value of 1 represents CK level in GFP+ cells equivalent to that in reference GFP– cells.
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(Figure 2). CK content of the protoplast pellets changed only
slightly during the 3-h period required for sorting at 4°C, while no
significant leakage was detected over this period. The CKs de-
tected in the supernatant samples (Figure 2B) instead may derive
from damaged protoplasts and undigested cell wall fragments
accumulated during protoplast isolation.

The four transgenic Arabidopsis lines, described in Figure 3A,
were chosen due to the distribution of their tissue-specific fluo-
rescent labeling collectively covering all cell types within the root
apex. Using the method developed here, it can now be estimated
that the concentration of CK metabolites in a single root cell is in
the zeptomole range (between 33 10221 and 1003 10221 mol per
cell). This is somewhat lower than previous estimations of total CK
levels in potato (Solanum tuberosum) shoot meristematic cells
(600 3 10221 to 5000 3 10221 mol per cell) (Turnbull and Hanke,
1985). It should be also taken into account that only intracellular
CKs were quantified using this method since the measurements
derived from protoplast samples. However, since CK receptors
have been shown to be localized in the endoplasmic reticulum
(Caesar et al., 2011; Wulfetange et al., 2011; Lomin et al., 2012),
intracellular CKs can be considered of crucial importance. Indeed,
the active CK bases displayed enriched levels in the endodermis,
whereas CK nucleotides were at similar levels in this cell type. This
could indicate CK biosynthesis in the endodermis and possible di-
rect conversion to the CK bases. Conversion of the bioactive forms
back to their phosphate precursor forms also cannot be excluded.

Most of the iP-, tZ-, and cZ-type CKs were consistently de-
tected in all the root cell types investigated (Supplemental Figure
3). Interestingly, it was shown that cZ-type CKs were the pre-
dominant forms in Arabidopsis root apices followed by iP types,
whereas tZ-type CKs were detected at much lower levels than the
other forms (Figure 2; Supplemental Figure 4C). These findings are
in agreement with previous evidence that cZ-type CKs are en-
riched in the apical part of the Arabidopsis root. Bielach et al.
(2012) measured CK concentration in root segments representing
zones of lateral root initiation, lateral root formation, and lateral root
emergence and showed that cZ and cZR concentration increased
significantly from lateral root emergence to lateral root initiation
zones. Consistently, tZRMP and tZR levels were below the de-
tection limit in the root tip. This could be explained by the con-
strained local expression of CYP735A2 in only a few columella
cells compared with the main expression site of the gene in the
root vasculature (Kiba et al., 2013). However, tZ was present in all
cell types examined. We therefore hypothesize that tZRMP is
produced in the CYP735A2-expressing columella cells, which is
converted with a high efficiency to tZ through LOG gene activity
and then transported through ABCG14 (Ko et al., 2014; Zhang
et al., 2014) to the other cell types of the root tip. In broader terms,
the lack of detection of tZRMP and tZR is consistent with the re-
duced levels of all tZ-type forms detected in the root tip (tZ, tZ7G,
tZ9G, and tZOG) compared with levels of iP and cZ types
(Supplemental Figure 4C). Our results further show that the CK
metabolite pattern in each transgenic line examined was highly
similar between GFP-expressing and non-GFP-expressing cells
(Supplemental Figure 3). In accordance with this, concentration of
all CK types detected (grouped as iP, tZ, and cZ metabolites)
displayed almost the same distribution pattern in all other cell
populations of the Arabidopsis root apex (Supplemental Figure

4C). Taken together, these findings indicate that CK enrichment in
specific cell types is not compound or CK type specific and thus
represents total CK concentration levels.
A series of cell-type-specific CK maps of the Arabidopsis root

apex was constructed for total CKs and for each of the CK me-
tabolite groups (Figure 5A; Supplemental Figure 6). These maps all
strongly suggest that there is a gradient of CKs in the apical part of
the Arabidopsis primary root with a maximum in the lateral root
cap, columella, columella initials, and QC cells. This was confirmed
from both our quantitative analysis of the data (Supplemental
Figure 4A) and the normalized data using the respective GFP– cells
as a reference cell population for each line (Figure 5A). As shown
also in Figure 5C, CK enrichment in the lateral root cap, columella,
columella initials, and QC cells is in accordance with the expres-
sion patterns of TCSn:GFP, a widely used CK reporter line
(Zürcher et al., 2013). In previous studies, exogenous CK appli-
cation reduced the root meristem size, consistent with enlarged
meristems displayed by the triple ipt3,5,7 CK biosynthesis mutant
(Dello Ioio et al., 2007). In the same work, it was further shown that
the CK depletion required for delimiting the meristem was spatially
restricted to the transition zone. Likewise, our results show no CK
maxima in the J2812:GFP and pSCR:GFP cell populations that
extend into the transition zone.
The free bases iP, cZ, and tZ are the most active CKs and

showed greatest accumulation in the columella, lateral root cap,
columella initials, and QC cell populations (Figure 4; Supplemental
Figure 6). The same trend was seen for their corresponding pre-
cursor and conjugate forms, suggesting local metabolism and
turnover. The tZ content in these cell types was the highest among
the free bases, whereas iP showed relatively enhanced content
also in the stele (Supplemental Figure 5). The latter trend matches
the maximal expression of the ARABIDOPSIS HISTIDINE KINASE4
(AHK4) receptor gene in the vascular initials (Nishimura et al., 2004)
and is consistent with AHK4 having significantly higher affinity than
AHK3 for iP compared with tZ in both Arabidopsis and maize (Zea
mays) (Yonekura-Sakakibara et al., 2004; Romanov et al., 2006).
A complementary cell-specific analysis of the Arabidopsis root

apex compiled the expression data for 107 CK-related genes
(Supplemental Tables 2 and 3). The data were derived from four
individual microarray and proteomic studies in distinctive cell
populations of the root (Birnbaum et al., 2003; Brady et al., 2007;
Dinneny et al., 2008; Petricka et al., 2012). To compare the cell-
specific gene expression of CK-related genes with the CK gradient
maps (Figure 5; Supplemental Figure 6), the data were classified
into four categories corresponding to the cell-type populations in
which M0028:GFP, J2812:GFP, pWOL:GFP, and pSCR:GFP are
expressed. The data set (Supplemental Table 3) was then aug-
mented by multiple studies of promoter driven CK-related ex-
pression of GUS and/or GFP reporters (Werner et al., 2003;
Miyawaki et al., 2004; Mähönen et al., 2006; Kuroha et al., 2009;
Kiba et al., 2013; Zürcher et al., 2013; Zhang et al., 2014).
This cell-specific meta-analysis of the Arabidopsis root apex

indicated that out of the 12 CK-related genes enriched in the cell
types of lateral root cap, columella, columella initials, and QC
cells (M0028:GFP) where the CK maximum was determined, two
belonged to the CKX family and another two to the URIDINE
DIPHOSPHATE GLUCOSYLTRANSFERASE (UGT ) family. Both
these enzymes deactivate CKs. These findings are in agreement
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with previous evidence that enhanced CKX activity corresponds to
high concentrations of CKs (Motyka et al., 1996; Gaudinová et al.,
2005) and that the ugt76c2 mutant has reduced levels of most CK
metabolites (Wang et al., 2013). In Supplemental Figure 6, it is also
shown that the CK content in the respective gradient maps differs
according to the CK metabolite group. Although CK bases are
often considered the main bioactive forms, we grouped the bases
and ribosides together because they both have high activities in
CK receptor in vitro assays and in bioassays (Spíchal et al., 2004;
Romanov et al., 2006). These CKs displayed the highest content in
the root tip followed by cytokinin N- and O-glucosyl conjugates,
with the nucleotide precursors being the least abundant CK forms.
This profile is in accordance with the CK gene expression gradients
presented in Supplemental Table 3. Expression of several LOG
genes, which catalyze the conversion from nucleotides to CK
bases, and gene families linked with CK signaling (ARRs and CRFs)
were enriched in all the cell types examined. Enhanced transcript
levels of UGT genes encoding for CK glucosyltransferases were
also present in all the cell populations apart from endodermis. Fi-
nally, genes responsible for CK nucleotide biosynthesis showed
the least abundant expression: Expression of IPT and CYP73A2
genes was enriched in the stele and in the columella, respectively.
These complementary profiles between CK gene expression and
metabolite abundance reinforce our evidence for the presence of
a CK gradient in the Arabidopsis root apex.

Cytokinin response profiles have previously been reported to
complement the corresponding profile of auxin in Arabidopsis
root apex. While expression of the auxin signaling reporter DR5
was maximal in the central columella cells, the TCSn-monitored
CK output exhibited its highest enrichment in the outer colu-
mella cells surrounding the DR5 territory (Bielach et al., 2012).
Asymmetric distributions of auxin and cytokinin in the root tip
are suggested to be needed for gravitropic response to facilitate
downward root bending (Aloni et al., 2006). We therefore com-
pared our CK distribution map of the Arabidopsis root apex with
the corresponding data for auxin derived from the same trans-
genic lines (P�en�cík et al., 2013). The ratios of the contents of
total CKs:IAA and active CKs:IAA were then calculated (Figure
6). Both ratios showed that in the epidermis, cortex, and stele
cells, the relative content of the two hormones is quite similar,
whereas in the endodermis, the IAA level is significantly elevated
relative to that of CKs. In contrast, relative CK content is slightly
higher than IAA in the cell population containing columella, lat-
eral root cap, columella initials, and QC. The antagonistic in-
teractions of these two major hormone groups within the root
tissues regulating several critical aspects of development and
organogenesis have been reported many times, specifically in
root apical meristem size determination (Dello Ioio et al., 2007,
2008), embryonic root stem cell niche specification (Müller and
Sheen, 2008), determination of QC activity (Zhang et al., 2013),
root vasculature patterning (Bishopp et al., 2011), and lateral
root primordia formation (Moreira et al., 2013). As recently re-
viewed by Schaller et al. (2015), in all the above-mentioned
functions regulated by auxin and cytokinin interplay, there are
spatially bisymmetric response maxima of the two hormones.
However, this information derives only from reporter lines for
each of the two hormone signaling pathways. The CK map
generated here, combined with the respective work for auxin
(Petersson et al., 2009), enables direct measurement of levels of
the two hormones at these cellular sites of action. Based on the
hormone ratios estimated in Figure 6, it can be predicted that
auxin and CK interactions may vary depending on the cell type
within the Arabidopsis root tip.
Here, we established tools for cell-specific quantification of

CKs within the Arabidopsis root apex. The selectivity of FACS in
combination with sensitivity of mass spectrometry measure-
ments have great potential to provide a deeper understanding of
CK biosynthesis and regulation of homeostasis at the cellular
level. The combination of such knowledge about the cytokinin-
auxin hormonal interplay can shed light on complex regulatory
aspects of plant development.

METHODS

Cell-Specific Analysis of the Arabidopsis thaliana Root Apex

Root protoplasts were isolated from four different lines expressing GFP in
specific cell types of the root apex. GFP+ and GFP– protoplasts were
isolated through FACS, purified by multilayer microSPE, and analyzed for
cytokinin content by ultra-high-sensitivity mass spectrometry, as de-
scribed below. The detection of the hormone in such minute amounts as
50,000 to 200,000 cells was achieved by high optimization of all parts of
the method prior to the analysis of the samples.

Figure 6. Ratio of Cytokinins to Free IAA in Four Different GFP-Ex-
pressing Cell Populations.

Ratio between the relative content of CKs and free IAA (diamonds, total
CKs/IAA; squares, active CKs/IAA) in four Arabidopsis lines (M0028:GFP,
pWOL:GFP, pSCR:GFP, and J2812:GFP) expressing GFP protein. Active
CK forms represent sum of CK bases and ribosides; total CKs represent
sum of all CK metabolites detected. The concentrations of free IAA were
analyzed in same sorted cell populations using LC-MS/MS (published in
P�en�cík et al., 2013). Prior to the final CK/IAA ratio computing, the data for
both hormones had been normalized against the concentration of their
respective internal reference population, consisting of the non-GFP-
expressing cells from the same samples. Error bars indicate SE (n = 6). Both
ratios of CKs to free IAA showed similar statistical patterns; letters above
the bars are as follows: a, significantly different from J2812:GFP; b, signif-
icantly different from pWOL:GFP; c, significantly different from pSCR:GFP; d,
significantly different from M0028:GFP (Student’s t test, P < 0.05).
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Plant Material and Growth Conditions

Four well-characterized GFP-expressing lines (shown in Figure 3A) were
selected to cover all cell types in the Arabidopsis root apex (epidermis, cortex,
stele, endodermis, lateral root cap, columella, columella initials, and QC);
pWOODEN LEG:GFP (pWOL:GFP) and pSCARECROW:GFP (pSCR:GFP)
are in the Columbia genetic background (Birnbaum et al., 2003), while the
M0028:GFP (Swarup et al., 2005) and J2812:GFP lines are in the C24
background and derive from the Haseloff GAL4-GFP enhancer trap col-
lections (Haseloff Lab, University of Cambridge). Col-0 wild-type seedlings
were used for the control experiments. All seeds were sterilized using
20% (v/v) bleach and 0.1%Tween for 5min (23 2.5min) and then rinsed five
timeswith sterile water. Theywere then sown in three rows (;100 seeds/row)
on square Petri dishes containing standard Murashige and Skoog medium
(13 concentration Murashige and Skoog salt mixture: 4.4 g/L, 1% sucrose,
0.5 g/L MES, 1% agar and adjusted to pH 5.7 with KOH) covered with sterile
mesh squares to facilitate the harvesting of the apical part of the primary root.
All plated seeds were stratified for 3 d in darkness at 4°C before being
transferred to 23°C and long-day conditions (16 h light and 8 h darkness)
where they were grown vertically for 8 d (under 150 mmol m22 s21 light). One
standard cell-sorting experiment required 30 to 40 Petri dishes. For confocal
microscopyexperiments, seedsof theTCSn:GFP line (Zürcher et al., 2013)were
also sterilized, sown (;10 seeds/row), and grown for 5 d as described above.

Protoplast Isolation

The apical parts of the seedling roots (approximately one-third of the root)
were harvested and rinsed with distilled water. The collected root part was
then further dissected in 2- to 5-mm pieces and added to 100-mL flasks
containing 25mL protoplast isolation buffer (600mMmannitol, 2 mMMgCl2,
10 mMKCl, 2 mMCaCl2, 2 mMMES, and 0.1%BSA, pH 5.7) containing cell
wall disintegrating enzymes (0.3 units/mL pectolyase and 45 units/mL cel-
lulysin). The solution was incubated for 2 h at 22°C in darkness and with
stirring at 125 rpm (manual stirring also occurred every 20 min). The in-
cubation of all individual biological replicates took place between 9 and11 AM

to avoid any circadian clock effect. The protoplasts were separated from the
undigested root tissue using a 40-mm cell filter (Becton Dickinson and
Company) and centrifuged for 3min at 1000 relative centrifugal force (Hettich
Universal 32) at 4°C. The resulting protoplast pellet was resuspended in 1mL
of sorting buffer (0.7% NaCl) and kept at 4°C until initiation of cell sorting.

Cell Sorting

In order to separate the GFP+ from the GFP– root protoplasts of each GFP-
expressing line, cell sorting was performed using a BD FACS Aria I flow
cytometer (BD Biosciences) as described by Petersson et al. (2009) and
P�en�cík et al. (2013) with minor modifications. The resuspended isolated
protoplasts were loaded in the cell sorter (4°C) and passed individually
through a 100-mm nozzle (Becton Dickinson and Company) using 0.7%
NaCl as sorting buffer. The undamaged protoplasts were selected according
to their forward and side scatter light absorption, while the fluorescent ones
were distinguished by their GFP excitation (488-nm laser) using their au-
tofluorescence as a control. The isolated cell populations were frozen im-
mediately after sorting with liquid nitrogen and stored at 280°C until
purification. The software used for data processing was BD FACSDiva
version 6.1.2.

Cytokinin Purification Protocols

Aliquots of around 200,000 protoplasts in 0.7%NaCl (;1mL) were diluted
with water at a ratio of 3:1 (v/v) and adjusted to pH 2.7 with 1 M HCl. Prior
to extraction, 0.1 to 1.0 pmol of isotope-labeled CK standards (Olchemim)
were added to each sample as follows: 0.1 pmol of [13C5]cZ, [

13C5]tZ, [
2H3]

dihydrozeatin (DHZ), [2H6]iP, [
2H5]tZR, [

2H3]DHZR, [
2H6]iPR, [

2H5]tZ7G, and

[2H6]iP7G; 0.2 pmol of [2H5]tZOG, [2H7]DHZOG, [2H5]tZ9G, [2H3]DHZ9G,
and [2H6]iP9G; 1.0 pmol of [2H5]tZROG, [2H5]tZRMP, [2H3]DHZRMP, and
[2H6]iPRMP. Two SPE protocols were tested according to previously
published purification methods with some modifications (Dobrev and
Kamínek, 2002; Sva�cinová et al., 2012). The first method used Oasis MCX
cartridges (1 mL/30 mg; Waters) conditioned with 1 mL each of 100%
methanol and water, equilibrated sequentially with 1 mL of 50% (v/v) nitric
acid, 1 mL of water, and 1 mL of 1 M HCOOH. After sample application
onto an Oasis MCX column, unretained compounds were removed by
a wash step using 1 mL of 1 M HCOOH and preconcentrated analytes
were eluted by two-step elution using 1 mL of 0.35 M NH4OH aqueous
solution and 2 mL of 0.35 M NH4OH in 60% (v/v) methanol solution. The
second method utilized the in-tip microSPE based on the StageTips
technology (Rappsilber et al., 2003). The final optimized microSPE pro-
tocol is shown in Supplemental Figure 2. Briefly, combined multi-
StageTips (containing C18/SDB-RPSS/Cation-SR layers) were activated
sequentially with 50 mL each of acetone, methanol, water, 50% (v/v) nitric
acid, and water (by centrifugation at 2000 rpm, 15 min, 4°C). After ap-
plication of the sample (200mL, 2500 rpm, 30min, 4°C), themicrocolumns
were washed sequentially with 50 mL of water and methanol (2200 rpm,
20 min, 4°C), and elution of samples was performed with 50 mL of
0.5 MNH4OH in 60% (v/v) methanol (2200 rpm, 20min, 4°C). Eluates were
evaporated to dryness using a SpeedVac concentrator and dissolved in
40 mL of 10% methanol. Ten microliters of each sample was then ana-
lyzed using UHPLC-MS/MS.

UHPLC-MS/MS Method

Separation and determination of samples were performed on a 1290 Infinity
Binary LC System coupled to the 6490 Triple Quad LC/MS System with Jet
Stream and Dual Ion Funnel technologies in positive mode (Agilent Tech-
nologies). The samples were injected onto a reverse-phase column (Acquity
UPLC CSH C18 1.7 mm, 2.1 3 150 mm; Waters) and separated using
agradient ofmethanol (A) and15mMammonium formate (pH3.95,B) at a flow
rate of 0.35mL$min21. The gradient used was: 0 min, 10:90 (A:B) to 10.0 min,
23:77 (A:B) to 15.0min, 36:64 (A:B). At the end of the gradient, the columnwas
washed with 100% methanol and reequilibrated to initial conditions (5 min).
Column temperature was set to 45°C and sample temperature to 4°C. De-
termination of endogenous CKs in protoplasts was performed by multiple
reactionmonitoring of the protonated precursor and appropriate product ions.
The multiple reaction monitoring transitions, optimized instrument settings,
retention times, and detection limits are shown in Supplemental Table 1.
MassHunter software (version B.05.02; Agilent Technologies) was used to
determine the concentrations of CKs using stable isotope dilution.

Control Experiments

Protoplast Treatments

Root protoplasts were isolated as described above from Col-0 wild-type
roots while being simultaneously treated with either 10 mΜ INCYDE
(Zatloukal et al., 2008), 100 mM adenine, 3 mM NaN3, or the DMSO
control, by adding the chemicals into the protoplast isolation buffer. The
isolated protoplasts were collected by centrifugation and resuspended in
200mL of sorting buffer. The CKswere purified throughMCX columns and
their content was measured as previously described.

Leakage Tests

Isolated root protoplasts from Col-0 wild-type roots were resuspended in
1 mL of cold sorting buffer and kept on ice for 180 min, imitating the
sorting procedure. After 0, 90, or 180 min, protoplast samples were
centrifuged for 3 min at 1000 rpm at 4°C. The pellet and respective
supernatant were separated and processed for CK quantification.
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Confocal Microscopy

GFP expression patterns in 5-d-old seedlings of the transgenic Arabi-
dopsis line TCSn:GFP were recorded using confocal laser scanning
microscopy (Zeiss LSM 780). Contrast adjustments were performed using
ImageJ (http://imagej.nih.gov/ij/).

Accession Numbers

The accession numbers of all 107 cytokinin-related genes examined by
complementary cell-specific analysis of the Arabidopsis root apex can be
found in Supplemental Table 2.

Supplemental Data

Supplemental Figure 1. Recovery (%) of different cytokinin groups in
relation to the number of sorbent multilayers (C18/SDB-RPS/Cation-SR)
and total process efficiency (%) of in-tip microSPE protocol.

Supplemental Figure 2. Optimized in-tip microSPE protocol.

Supplemental Figure 3. Cytokinin metabolite patterns in GFP-
expressing and GFP-nonexpressing cells of four transgenic Arabi-
dopsis lines.

Supplemental Figure 4. Cytokinin concentration gradient exists
within the Arabidopsis root apex.

Supplemental Figure 5. Cytokinin metabolism in four different GFP-
expressing cell populations.

Supplemental Figure 6. Distribution of cytokinin metabolite groups
within the Arabidopsis root tip.

Supplemental Table 1. MS optimized conditions.

Supplemental Table 2. List of 107 cytokinin-related genes indicated
with their published name and their corresponding accession number.

Supplemental Table 3. Cytokinin-related gene expression enriched in
pWOL:GFP, M0028:GFP, pSCR:GFP, and J2812:GFP cell types.
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