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Summary 
 
The thesis consists of five parts and deals with issues of volatility and volatility spillovers 
on financial markets. The abstracts of the thesis bring forth the essential concept, 
methods, and results of the thesis. 
 
The first part describes the analysis of comovements, interdependence, and spillovers 
among three stock markets (Hungary, the Czech Republic, and Poland) in Central and 
Eastern Europe (CEE) with respect to their Western European counterparts (Germany, 
France, and the United Kingdom). A component GARCH model is employed with five-
minute-tick intraday price data to distinguish between short-term (transitory) and long-
term (permanent) conditional volatility. In terms of spillovers, there are signs of short-
term spillover effects both on stock returns and stock price volatility. Volatility spillover 
effects are identified among the CEE markets, among the Western markets, and from 
Western markets to CEE markets. An especially important result is the identification of 
volatility spillovers running from stock exchanges in Budapest and Warsaw to 
exchanges in Frankfurt and London, respectively. This result is the first of its kind 
published in the literature and shows that even smaller markets may impact dominant 
markets in terms of volatility spillovers. 
 
The second part introduces an analysis of exchange rate volatility in the Visegrad Four 
countries during the period in which they abandoned tight regimes for more flexible 
ones. An augmented GARCH methodology accounts for path dependency, asymmetric 
shocks, and movements in interest rates. The overall findings are that path-dependent 
volatility has a limited effect on exchange rate developments and that the introduction of 
floating regimes tends to increase exchange rate volatility. When the countries had 
flexible regimes, volatility was mainly driven by surprises. Asymmetric effects of news 
tend to decrease volatility under a floating regime. Interest differentials impact exchange 
rate volatility contemporaneously under either regime, although no intertemporal effect 
of interest differentials is found. As a general observation, volatility is found to be driven 
primarily by country-specific effects, and budgetary imbalances correlate well with 
exchange rate volatility in these countries. 
 
The third part addresses the issue of volatility-related foreign exchange risk and its 
macroeconomic determinants in several new EU members. The observable 
macroeconomic factors—consumption and inflation—are derived using the stochastic 
discount factor (SDF) approach. The joint distribution of excess returns in foreign 
exchange markets and the macroeconomic factors are modeled using a multivariate 
GARCH-in-mean specification. The findings show that both real and nominal factors 
play important roles in explaining the variability of the foreign exchange risk premium. 
Both types of factors should be included in monetary general equilibrium models 
employed to study excess returns despite the fact that the effect of the nominal factor is 
greater than that of the real factor. On a policy level, the results show that to contribute 



to the further stability of domestic currencies, new EU members should strive to 
implement stabilization policies aimed at achieving nominal as well as real convergence 
with core EU members. 
 
The fourth part studies the dynamics of volatility transmission between CEE currencies 
and the euro/dollar foreign exchange using model-free estimates of daily exchange rate 
volatility based on intraday data. A multivariate GARCH specification is used to model 
the daily realized volatility of a given exchange rate depends both on its own lags as 
well as on the lagged realized volatilities of the other exchange rates. For accurate 
measurement of the overall magnitude and evolution of volatility transmission over time, 
a dynamic version of the Diebold-Yilmaz volatility spillover index is constructed. The 
results show ample evidence of statistically significant intra-regional volatility spillovers 
among the CEE foreign exchange markets. With the exception of the Czech and, prior 
to the turbulent economic events related to the crisis in 2007, Polish currencies, no 
significant spillovers are found running from the euro/dollar exchange to the CEE 
foreign exchange markets. It is also shown that volatility spillovers tend to increase in 
periods characterized by market uncertainty. From a medium-term perspective, volatility 
increases for those countries with troubled financial sector development. A generally 
observed difference in the pre- and post-crisis patterns is an increase in the strength of 
short-term links, a sign of generally faster reaction of the markets to volatility dynamics. 
 
The fifth, and last, part introduces a new approach how to quantify asymmetries in 
volatility spillovers that emerge due to bad and good volatility. The new method is based 
on computing the Diebold-Yilmaz volatility spillover index when negative and positive 
changes in returns are considered separately via realized semivariances. As a result, a 
volatility spillover index robust to ordering in VAR is computed so that it captures 
asymmetries in volatility spillovers. The new method is applied on stocks and 
commodity markets data. There is ample evidence of the asymmetric connectedness of 
the most liquid U.S. stocks in seven sectors at the disaggregate level. Moreover, the 
spillovers of bad and good volatility are transmitted at different magnitudes that sizably 
change over time in different sectors. While negative spillovers are often of substantial 
magnitudes, they do not strictly dominate positive spillovers. It is found that the overall 
intra-market connectedness of U.S. stocks increased substantially during the 2007–
2008 financial crisis. Further, asymmetries in the volatility spillovers of petroleum 
commodities are evidenced. The increase in volatility spillovers after 2001 correlates 
with the progressive financialization of the commodities. Increasing spillovers from 
volatility among petroleum commodities substantially change their pattern after 2008 
(the financial crisis and advent of tight oil production): asymmetries in spillovers 
markedly declined in terms of total as well as directional spillovers. For petroleum 
commodities, asymmetries in spillovers due to negative (price) returns materialize to a 
greater degree than volatility spillovers due to positive returns. An analysis of directional 
spillovers reveals that no petroleum commodity dominates other commodities in terms 
of general spillover transmission. 
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1. Volatility Spillovers among Stock Markets  
 
Outline 
Egert and Kočenda (2007) analyze volatility spillovers among stock markets in Central 
and Eastern Europe (CEE) that underwent some remarkable developments both in 
terms of market capitalization and daily trade volume from the very beginning of the 
economic transformation. Although the financial systems of these countries largely 
remain bank-dominated, the stock exchanges appear to be well integrated with global 
financial markets following the lifting of restrictions on portfolio capital movements. 
However, given that these markets are small compared to the stock exchanges of the 
largest OECD countries, they may be sensitive to shifts in regional and worldwide 
portfolio adjustments of large investment funds and other market participants, even 
though the amount of capital involved in such moves are not necessarily very large by 
global standards. Consequently, these markets may be more volatile than well-
established stock markets. 

A number of earlier papers investigated the short- and long-term linkages among 
the CEE stock exchanges both in terms of stock returns and stock market volatility 
(Gilmore and McManus (2002, 2003); Voronkova (2004); Syriopoulos (2004); Bohl and 
Henke (2003); Scheicher (2001); Tse, Wu, and Young (2003); Serwa and Bohl (2005)). 
The evidence in the earlier literature is mostly based on data with daily or even lower 
frequencies, since historical intraday series from the CEE stock markets were usually 
unavailable; the only exception at that time was Černý and Koblas (2005). Yet, 
developments in volatility and contagion effects that materialize during the trading day 
represent a finer picture that often cannot be extracted from daily observations. Another 
big advantage of using intraday data is that the estimates are more robust to structural 
breaks (Terzi, 2003) given the relatively short time horizon studied (about 2 years) as 
compared to studies employing daily data (up to 10 years). 

Against the general lack of empirical evidence for intraday stock market 
interlinkages between Eastern and Western European stock markets, Egert and 
Kočenda (2007) fill this gap in the literature by investigating the links and possible 
spillover effects for stock returns and stock volatilities among markets in Budapest, 
Prague, and Warsaw from June 2003 to February 2005, including their interactions with 
selected major developed markets in the EU (Frankfurt, London, and Paris—Western 
markets) on the basis of intraday data recorded in five-minute intervals. Given that this 
period does not cover any major crisis, the focus is on interdependence rather than on 
contagion. No robust cointegration relationship is identified for any of the stock index 
pairs but short-term spillover effects are found both in terms of stock returns and stock 
price volatility. 
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Methodological contribution to analyzing stock volatility 
In order to investigate volatility spillovers among markets, Granger causality tests are 
applied to stock volatility. In this context, one may use either volatility measures based 
on the implied volatility of option prices or volatility derived using econometric 
techniques, such as the GARCH framework. 

The second avenue is followed mainly because of the general lack of data on 
stock options in the countries under study, especially data at an intraday frequency. In 
our endeavor, we estimate the component GARCH (CGARCH) model of Engle and Lee 
(1999), where equation (1) is the mean equation and equation (2) is the conditional 
variance equation: 
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The optimal lag length of the mean equation is selected based on the Schwarz 
information criterion. The CGARCH model distinguishes between short-term (transitory) 
and long-term (permanent) conditional volatility. Contrary to constant conditional 
volatility in a standard GARCH model, long-term volatility ( tq ) is allowed to vary over 

time, to which the short-term volatility or the transitory component of long-term volatility 
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CGARCH makes it possible to separately model the effect of spillovers on stock 
volatility in the short- and long-run. Consequently, Granger causality tests are applied to 
the stock volatility derived from the CGARCH model. 

The paper was the first contribution that applied the above framework with intra-
day high-frequency data on stock markets in CEE countries along with developed 
European counterparts. 
 
Empirical contribution to analyzing stock volatility 
The estimation results indicated that for a common daily window adjusted for the 
observed U-shaped pattern running from mid-2003 to early 2005 there existed short-
term spillover effects both in terms of stock returns and stock price volatility. We were 
able to identify volatility spillover effects among CEE markets, among Western markets 
and from Western markets to CEE markets. Specifically, an important result was the 
identification of volatility spillovers running from stock exchanges in Budapest and 
Warsaw to exchanges in Frankfurt and London, respectively. This casted some doubt 
on the well-established position that only dominant markets can influence volatility on 
other markets. Our findings also indicated a peculiar pattern in CEE: the Prague and 
Warsaw stock exchanges seemed to interact both in terms of returns and volatility with 
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the Budapest stock exchange, but not with each other. As a result, short-term spillovers 
from Prague to Warsaw and vice versa were mostly likely to transit via Budapest. 

The above result was the first of its kind published in the literature and bears an 
important implication. First, it was shown that even smaller markets may impact 
dominant markets in terms of volatility spillovers. Second, by this token, the CEE 
markets could be considered by hedge funds and institutional investors as a separate 
“asset class” as compared to stocks in Western markets. 
 
2. Exchange Rate Volatility and Regime Change 
 
Outline 
Kočenda and Valachy (2006) analyze exchange rate volatility in the four Visegrad 
countries, i.e., the Czech Republic, Hungary, Poland, and Slovakia, during the period in 
which they were abandoning tight foreign exchange regimes in favor of more flexible 
ones. It was the first comprehensive analysis of exchange rate volatility that accounts 
for path dependency, asymmetric shocks, and movements in interest rates underlined 
by interest rate parity theory. 

The overall monetary policy framework has an important impact on exchange 
rate volatility. After eliminating currency pegs, the Visegrad countries adopted direct 
inflation targeting (DIT). Therefore, nominal exchange rates are likely to exhibit 
increasing volatility for at least two reasons. First, switching from currency pegs to 
flexible exchange rates and adopting DIT policies, at least for Poland and to a lesser 
degree for the Czech Republic, is accompanied by a benign neglect of exchange rate 
stability, as Orlowski (2005) discusses. Second, during periods of faster money growth, 
the pressure on domestic inflation rises and contributes to exchange rate volatility, as 
evidenced in Hungary and Poland. Clearly, a converging economy should give priority 
to the objective of lowering inflation over exchange rate stability because price stability 
is a prerequisite for exchange rate stability, as shown empirically by Orlowski (2004). 
Other sources of exchange rate volatility are the increasing openness of the economy 
and instabilities related to the balance of payments. Still, the key sources of exchange 
rate volatility and their development can be attributed to tighter versus looser exchange 
regimes. Kočenda and Valachy (2006) hypothesize that volatility effects will differ 
depending on the specific regime and comprehensively assess the regimes. 
 
Methodological contribution to analyzing changes in volatility under different 
exchange rate regimes and subject to interest rate parity 
Many early empirical studies use standard deviation as a proxy for exchange rate 
volatility, e.g., Hallett and Anthony (1997), Andersen and Bollerslev (1998), Jorion 
(1995), and Scott and Tucker (1988). This approach assumes constant average daily 
returns, which is directly opposed to the interest rate parity condition. Hence, neglecting 
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movements in interest rates leads to unreliable results. Therefore, in the spirit of the 
excess volatility debate, we consider whether and to what extent the volatility of 
exchange rates exceeds the volatility of interest rates. To approximate an otherwise 
unobservable volatility, we follow an approach suggested by Andersen, Bollerslev, 
Diebold, and Labys (2001). Specifically, we fit a parametric econometric model of the 
autoregressive conditional heteroskedasticity (ARCH) type, attributed to Engle (1982), 
augmented by appropriate parameters to account for the effect of interest rate 
differentials on the volatility of exchange rates. 

To augment our ARCH-type model, we use the concept of uncovered interest 
rate parity (UIP), which connects movements in exchange rates and interest rates and 
allows us also to distinguish the effect of interest rates on exchange rate volatility 
(Golinelli and Rovelli, 2002; Svensson, 2000); empirical support for the UIP in the 
Visegrad countries was presented by Golinelli and Rovelli (2005) and Chinn (2006). 

The conventional notion of interest rate parity can be expressed as: 

 *
1 tttt iiss  ,        (1) 

where st denotes the natural logarithm of an exchange rate at time t and it and it* are the 
domestic and foreign interest rates of equal maturity, respectively. For UIP, st+1 
indicates an expected exchange rate one period ahead. Under the UIP condition, the 
exchange rate should adjust in every period so that the change is equal to the size of 
the interest rate differential. In contrast to this theoretical equality, the exchange rate is 
likely to show short-run deviations from UIP and in practice such deviations may be 
related to the size of the interest rate differential. Hence, such deviations may affect 
exchange rate volatility and corresponding movements in interest rates are also likely to 
affect the volatility of exchange rates. 

Although the effect of movements in interest rates is ambiguous, Bilson (1999) 
shows that the volatility of exchange rates is related to the difference between the 
interest rates of the two currencies. To account for nonlinearity, an ARCH-type model 

should be augmented by the squared interest rate differential, i.e., ( *
tt ii  )2. However, 

this variable may not be sufficient because it captures only the contemporaneous effect 
of the differential and not its dynamics. Hence, we include the change in the interest 

rate differential squared, i.e., ( )( *
tt ii  )2, as a second variable to account for 

intertemporal change. 
To test empirically for exchange rate volatility, we employ the augmented 

generalized autoregressive conditional heteroskedasticity (GARCH) model from 
Bollerslev (1986). In this extension of the GARCH model, volatility, i.e., conditional 

variance 2
t , is modeled not only as a function of past squared innovations and its own 

past variance, but also as a function of additional parameters. First, the mean extension 
includes a conditional variance in the mean equation so that we can analyze the 
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process with a path-dependent rather than the zero-conditional mean. Second, the 
threshold extension accounts for asymmetric information: in essence, good news and 
bad news do not have the same effect. Inclusion of a threshold dummy, dt, enables us 
to make a distinction between positive and negative shocks to volatility or to allow 
innovations to have an asymmetric effect on conditional volatility. Third, we augment the 
variance specification by two parameters, i.e., the interest rate differential and its 
intertemporal change, to isolate the effect of movements in interest rates on exchange 
rate volatility. 

We use the following specification of the augmented threshold GARCH-in-mean 
(TGARCH-M) model: 
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where ∆st is the difference of the log of the exchange rate between time t and t-1, i.e., 
the change in the exchange rate over two consecutive trading days and k, p, and q are 
the numbers of lags chosen by the Schwarz-Bayesian lag selection criterion. The log of 

the conditional variance in the mean equation, i.e., 2ln t , allows for an exponential 

rather than quadratic effect of observed volatility. The threshold dummy variable dt-1 is 
equal to 1 if t-1 < 0, i.e., a negative shock or good news, and 0 otherwise, i.e., a positive 

shock or bad news. The variables ( *
tt ii  ) and ( )( *

tt ii  ) are the annualized interest 

rate differential and the change in the interest rate differential, respectively. The shock 
dummy, i.e., SDt, in the mean equation accounts for a few infrequent outliers: 
appreciation and depreciation movements of the currencies. 
 
Empirical contribution to analyzing exchange rate volatility under different 
regimes 
In this paper, we analyze exchange rate volatility in the four Visegrad countries, i.e., the 
Czech Republic, Hungary, Poland, and Slovakia, during the period in which they were 
abandoning tight regimes in favor of more flexible ones. In analyzing exchange rate 
volatility, we account for path dependency, asymmetric shocks, and movements in 
interest rates. We find that the introduction of floating regimes tends to increase 
exchange rate volatility in general, which conforms to conventional wisdom. Moreover, 
the degree of persistence in exchange rate volatility differs with respect to the currency 
but remains at a similar level under the floating regime. Furthermore, the effect of 
asymmetric news tends to decrease volatility under the float. Finally, the interest rate 
influences exchange rate volatility in somewhat non-obvious ways in that, under both 
regimes, the contemporaneous effect of interest differentials impacts exchange rate 
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volatility but the coefficients measuring the intertemporal effect of interest differentials 
are insignificant.  

Our estimates of conditional volatility indicate that volatility tends to increase after 
the switch to a more flexible regime. This finding is consistent with the stylized fact that 
exchange rate volatility is greater under a float than under a fixed regime. In general, 
our findings indicate that the width of the fluctuation band, be it narrow or broad, does 
not have an unambiguous influence on exchange rate fluctuation. Nonetheless, the type 
of regime is likely to be the strongest factor affecting exchange rate volatility because of 
the role played by the interest rate. Furthermore, we find that the impact of external 
shocks, i.e., news or surprises, on exchange rate volatility differs across countries. 
Hence, we conclude that volatility has been driven primarily by country-specific effects. 

Finally, we conclude that exchange rate volatility is not a completely exogenous 
process. Budgetary imbalances are the most critical issue for the Visegrad countries 
because they affect not only exchange rate volatility but also the entire process of 
conversion to the EMU, as Kočenda, Kutan, and Yigit (2005) discuss. Uncertainty about 
fiscal discipline is a common exogenous factor behind exchange rate volatility for these 
countries. Hence, the coordination of monetary and fiscal policies would help to reduce 
exchange rate volatility in these four countries, but this is a considerable task for 
policymakers currently. 
 
3. Macroeconomic Sources of Foreign Exchange Risk 
 
Outline 
Kočenda and Poghosyan (2009) was the first analysis of the role of macroeconomic 
factors as systemic determinants of currency risk in the new member states of the 
European Union (EU). Since currency stability has been an important part of the 
macroeconomic policies in these countries on their way to becoming part of the EU and 
adopting the Euro, the impact of macroeconomic factors appears to play a crucial role in 
explaining currency risk premia in these countries. The analysis of the impact of 
macroeconomic factors for the currency risk premium in new EU states was largely 
disregarded in the previous literature. However, its proper assessment can expand our 
understanding of the importance of theoretically motivated macroeconomic 
fundamentals as foreign exchange risk premium drivers. 

Research on explaining the currency risk premium using the uncovered interest 
rate parity condition is widespread and the literature has been growing since the earliest 
work of Hansen and Hodrick (1980) and Fama (1984); Lustig, Roussanov, and 
Verdelhan (2008) review the most recent additions to the literature and empirically show 
that risk premia in currency markets are large and time-varying. Arguably, time-variation 
in the currency risk premia is closely related to the fundamental factors driving the risk 
appetite of investors. However, most of the existing literature either focuses on the time-
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series properties of the risk premium without considering its relationship with 
fundamental macroeconomic factors (e.g. Cheung, 1993) or derives an implausibly 
large impact of macroeconomic factors on the risk premium using data on developed 
economies (e.g., Kaminsky and Peruga, 1990; Smith and Wickens, 2002a), in which 
many other aspects (e.g., carry-trading) make the identification of the impact of 
macroeconomic factors difficult. 

In terms of the new EU countries, Kočenda and Valachy (2006) show that foreign 
exchange risk is pronounced in new EU members. The sources of the persistency in the 
foreign exchange risk premium in these countries are different due to underlying 
systemic differences among them, but there exists a common source of foreign 
exchange risk propagation, which is the questionable perspective of their 
macroeconomic policies (Kočenda, Kutan, and Yigit, 2008). However, the question of to 
what extent nominal and real macroeconomic factors are significant in terms of 
explaining currency risk in new EU members was not addressed in the earlier literature. 
Hence, the empirical analysis of the macroeconomic sources of foreign exchange risk is 
performed on four new EU member countries: the Czech Republic, Hungary, Poland, 
and Slovakia over the period 1999–2008. 
 
Methodological contribution to analyzing volatility-related foreign exchange risk 
One of our methodological contributions was that we derive our results in a multivariate 
framework, which had been largely neglected in the literature. The main advantage of 
the semi-structural modeling approach employed is that it provides a broader scope for 
an economic interpretation of factors driving the currency risk premium. The empirical 
implementation is based on a multivariate GARCH model with conditional covariances 
in the mean of the excess returns. This methodological framework allowed us to impose 
a no-arbitrage condition on the estimations, a feature that is absent in the univariate 
models used in most previous studies. 

The foreign exchange risk premium has been empirically analyzed using various 
approaches. Its modeling is closely associated with observed deviations from 
uncovered interest rate parity (UIRP): on international currency markets the domestic 
currency tends to appreciate when domestic interest rates exceed foreign rates (Engel, 
1996). These deviations from UIRP are interpreted as a risk premium from investing in a 
foreign currency by a rational and risk-averse investor. Apart from the negative 
correlation with the subsequent depreciation of the foreign currency, another well-
documented property of these deviations includes extremely high volatility. 

One branch of the empirical literature analyzing the foreign exchange risk 
premium is based on econometric models with strong theoretical restrictions coming 
from two-country asset pricing models. However, pricing theory to date was not 
successful in producing reliable risk premium estimates (see Backus, Foresi, and 
Telmer, 2001). Another part of the literature pursued a pure time-series approach that 
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imposes minimal structure on the data. These studies were more successful in 
capturing empirical regularities observed in the excess return series but the lack of a 
theoretical framework made it difficult to interpret the predictable components of the 
excess return as a measure of the risk premium (see Engel, 1996). Given the above 
disadvantages the literature to date favored a semi-structural modeling approach. The 
stochastic discount factor (SDF) methodology is a convenient vehicle because it 
imposes a reasonable amount of structure on the data sufficient for identifying a foreign 
exchange risk premium, but otherwise leaves the model largely unconstrained. In our 
analysis we followed the SDF approach with observable and theoretically motivated 
factors to explain the variability of the foreign exchange risk. 
 
Modeling framework 
We denote Rt and R*

t to be nominal gross returns on risk free assets (T-Bills) between 
time t and t+1 in the domestic and foreign country, respectively. Further, St is the 
domestic price of the foreign currency unit at time t (an increase in St implies domestic 
currency depreciation). The excess return to a domestic investor at time t+1 from 

investing in a foreign financial instrument at time t is
t

t
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 , which can be 

expressed in logarithmic form as: 

 1
*

1   tttt srrer , (1) 

where the lowercase letters denote the logarithmic values of the appropriate variables. 
In the absence of arbitrage opportunities, excess return should be equal to zero if 
agents are risk neutral, and to a time-varying element t if agents are risk averse. The 

term t is given the interpretation of a foreign exchange risk premium required at time t 
for making an investment through period t+1. 

The stochastic discount factor (SDF) model is based on a generalized asset 
pricing equation, which states that in the absence of arbitrage opportunities there exists 
a positive stochastic discount factor Mt+1, such that for any asset denominated in 
domestic currency the following relationship holds:  

 ][1 1 ttt RME  , (2) 

where Et is an expectations operator with respect to the investor’s information set at 
time t. In the consumption-based CAPM models, equation (2) is an outcome of the 
consumer’s utility maximization problem and the stochastic discount factor is given the 
interpretation of the intertemporal marginal rate of substitution (see Smith and Wickens, 
2002). 

The above asset pricing relation can be extended to an international context by 

considering domestic currency returns on a foreign investment
t

t

S

S
tR 1*  , which can be 

substituted into equation (2) to yield: 
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The no-arbitrage condition between the two currencies’ financial markets implies 
that the risk-weighted yields on domestic and foreign currency investments should be 
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logarithmic form as:  
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Subtracting equation (5) from (4) and using (1) yields a relationship from which 
risk premium can be conveniently identified: 

 ];[][
2
1][ 1111   ttttttt ermCoverVarerE . (6) 

Based on equation (6), the risk premium t is expressed as 1 1[ ; ]t t tCov m er    . 

This implies that the excess return is a function of its time-varying covariance with the 
discount factor. The previous literature mainly focused on the relationship between the 
variance of the return and its mean and disregarded the covariance term, which is 
instrumental for the no-arbitrage condition to be held in equilibrium (Smith, Soresen, 
and Wickens, 2003). 

Equation (6) suggests that uncertainty about the future exchange rate influences 
the expected excess returns and serves as a source for the risk premium. The 
economic interpretation of the required risk premium is straightforward: the larger the 
predicted covariance between the future excess returns and the discount factor, the 
lower the risk premium, since the larger future excess returns are expected to be 
discounted more heavily. In other words, the gain is smaller in economies where money 
is considered relatively more valuable. 

Following the above exposition, we formally derive and present the non-arbitrage 
specification for the excess return as a function of its own variance plus its dynamic 
covariance with macroeconomic factors (the formal derivation is not presented here for 
the sake of space limitation but it is fully described in the paper). The derived 
specification takes the form: 

 ];[][][ 11,
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where the βis (i =1,2,...K+1) are the coefficients of interest to be estimated. 
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In terms of macroeconomic factors (zi), the foreign exchange risk premium is 
modeled to be influenced by the fundamental factors of the home country and not the 
foreign countries. This is due to the fact that we consider the four CE countries as small 
open economies that are acting as price takers in international financial markets and 
that take the foreign interest rate as given. This means that when there is a deviation 
from uncovered interest parity relationship, it is the exchange rate and interest rate of 
the small CE country that adjusts to the international level (for example Germany), 
rather than vice versa. 
 
Econometric framework 
We model the distribution of the excess return in the foreign exchange market jointly 
with the macroeconomic factors in such a way that the conditional mean of the excess 
return in period t+1 given the information available at time t satisfies the no-arbitrage 
condition given by equation (7). We employ the multivariate GARCH-in-mean model 
(see Smith, Soresen, and Wickens, 2003) that allows for a time-varying variance-
covariance matrix. This is because the conditional mean of the excess return depends 
on time-varying second moments of the joint distribution. The multivariate GARCH 
model with mean effects is specified in a general form as: 

 ~ N[ ]
 

 



  

     

t 1 t t 1

t 1 t t 1

t 1 t t t

y Φvech{H } ε

ε | I 0,H

H C C AH A B ε ε B

, (8) 

where },,,{ 1,1,11   tKtt zzER 1ty  is a vector of excess returns and K (observable) 

macroeconomic factors used in the estimations, Ht+1 is a conditional variance-
covariance matrix, It is the information space at time t, and vech{.} is a mathematical 
operator that converts the lower triangular component of a matrix into a vector. 

The first equation of the model is restricted to satisfy the no-arbitrage condition 
(7), which restricts the first row of matrix  to a vector of βis. Since there is no 
theoretical reason for the conditional means of macroeconomic variables zi,t to be 
affected by the conditional second moments, the other rows in matrix  are restricted to 
zero.  

In our estimations we employ a sandwich estimator that is robust to the 
distributional assumptions of variables (Huber, 1967; White, 1982). Our specification of 
the variance-covariance process in (8) is the so-called BEKK formulation proposed by 
Engle and Kroner (1995). The BEKK specification guarantees the positive definiteness 
of the variance-covariance matrix and still remains quite general in the sense that it 
does not impose too many restrictions. 

For estimating our model we employ two macroeconomic factors derived from 
the C-CAPM model: inflation rate (π) and consumption growth (∆c). Together with the 
excess return, the vector of variables in the system, corresponding to specification (8), 
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becomes 1 1 1{ , , }t t tER c     t 1y . The pricing kernel thus depends on both real and 

nominal factors and the shocks are allowed to arrive from both sides of an economy. 
 
Empirical contribution to the analysis of volatility-related foreign exchange risk 
In this paper we presented evidence of the impact of both real and nominal 
macroeconomic factors derived from the stochastic discount factor model on currency 
risk. We also provided the first evidence of the impact of macroeconomic factors on 
explaining the foreign exchange risk premium in selected new EU member countries. 
The generalized SDF model is used to ensure the derivation of theoretically grounded 
factors and model specification in a multivariate estimation framework. The previous 
attempts to explain foreign exchange risks in new EU economies were based on 
univariate models, which disregard the conditional covariance terms and allow for 
arbitrage possibilities. A multivariate approach was adopted to overcome these 
weaknesses and to provide reliable empirical results. 

The estimation results suggested that the real factor (consumption) plays a role 
in explaining the variability in foreign exchange returns. This finding was in line with the 
evidence coming from more developed economies (Hollifield and Yaron, 2001; Lustig 
and Verdelhan, 2007). The impact of the real factor was quite leveled across the 
countries since they were well integrated among themselves as well as with respect to 
the Eurozone. On other hand, the impact of consumption was much smaller than that of 
inflation. Inflation, as a nominal factor, was found to be a significant factor for the risk 
premium in all countries. The results also suggested that there are some differences 
across the new EU markets, as the impact of each of the Eurozone factors differs 
across the countries. Our findings on the nominal factor seemed to be sensitive to the 
differences in inflationary history experienced by each country and the monetary policy 
regimes adopted in the examined countries. This finding supported the idea of the 
optimality of monetary policies based on inflation targeting for the nominal convergence 
process of the new EU members towards the Eurozone (see Orlowski 2005, 2008). 

Our findings had both theoretical as well as empirical applications. In general, our 
empirical results implied that a monetary general equilibrium model employed to study 
excess returns should have both real and nominal risk components. To contribute to the 
further stability of the domestic currency, the new EU members should strive to 
implement stabilization policies aimed at achieving nominal as well as real convergence 
with the core EU members, since both real and nominal factors play important roles in 
explaining the variability of the foreign exchange risk premium. 

In this paper we augmented the discussion and filled a gap in the literature by 
sharpening a quantitative assessment of the critical real and nominal macroeconomic 
factors that drive currency risk. These factors are grounded in the theoretical stochastic 
discount factor model. Our main contribution to the financial knowledge was in 
strengthening the limited evidence at that time that both nominal and real factors play a 



12 
 

role in explaining the foreign exchange risk premium. This finding was in accordance 
with theoretical models of currency pricing. 
 
4. Volatility Transmission in Foreign Exchange Markets 
 
Outline 
Motivated by the impact of the 2007–2008 financial crisis, Bubák, Kočenda, and Žikeš 
(2011) analyze the dynamics of volatility transmission to, from, and among Central 
European (CE) foreign exchange markets. In particular, we analyzed volatility spillovers 
among the Czech, Hungarian and Polish currencies together with the U.S. dollar during 
the period 2003–2009, and the extent to which shocks to foreign exchange volatility in 
one market transmit to current and future volatility in other currencies. It was the first 
analysis of dynamic volatility spillovers on forex markets in Central Europe. 

Despite their growing integration with developed markets, in terms of volatility 
transmission, European emerging markets had been under-researched. The joint 
behavior of the volatility of CE currencies was of key importance for international 
investors contemplating the diversification benefits of allocating part of their portfolio to 
CE assets (Jotikasthira et al. (2010), de Zwart et al. (2009)). Further, there were even 
more fundamental reasons to be interested in analyzing volatility transmission in 
European emerging markets. The new EU members committed themselves to adopting 
the euro upon satisfying the set of Maastricht convergence criteria, one of which was 
exchange rate stability. Foreign exchange volatility is a measure of currency stability. 
This precondition was to some extent in contrast with historical evidence that foreign 
exchange risk is pronounced in new EU members (Kočenda and Valachy, 2006); 
Kočenda and Poghosyan (2009). Soriano and Climent (2006) review the relevant 
volatility transmission literature: studies that aim at foreign exchange volatility 
transmission are less frequent than those covering equity markets. Studies of volatility 
transmission analyzing forex data were chiefly based on low-frequency data. A limited 
number of previous studies make use of intraday or high-frequency data, hoping to 
address these and related issues (Baillie and Bollerslev (1991) Engle et al. (2009) 
Wongswan (2006)). The studies that make use of high-frequency data to construct 
realized measures of integrated variance as means of analyzing volatility spillovers in 
foreign exchange markets were rare (Melvin and Melvin, 2003; Cai et al., 2008) 

The contribution of our paper to the existing literature was a thorough study of 
volatility transmission among CE exchange rates and the U.S. dollar using high-
frequency data. By relying on model-free non-parametric measures of ex-post volatility, 
our analysis was in sharp contrast to the existing empirical literature on CE exchange 
rates that employs almost exclusively a GARCH framework to study the dynamics of 
exchange rate volatility. We proposed a simple and flexible multivariate time-series 
specification for the series of realized volatilities of the four exchange rates, allowing 
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explicitly for the time-varying nature of the volatility of realized volatility itself. The model 
was essentially a multivariate generalization of the HAR-GARCH model of Corsi et al. 
(2008). Within the model we formally tested for volatility spillovers by running simple 
pairwise Granger causality tests. As a more advanced approach we constructed a 
dynamic version of the Diebold and Yilmaz (2009) spillover index in order to properly 
assess the overall magnitude and dynamics of the volatility spillovers.  
 
Methodological contribution to analyzing forex volatility spillovers 
Following the approach of Andersen et al. (2007), we assume that the vector of the 
logarithmic spot exchange rate, ࢞௧, belongs to the class of jump-diffusions 

௧࢞ ൌ ଴࢞ ൅ න ݑ௨dࣆ
௧

଴
൅ න દ௨d࢝௨

௧

଴
൅  ,௧࢒

where ࣆ௧  denotes a vector drift process, દ௧  is the spot co-volatility process, ࢝௧  is a 
standard vector Brownian motion, and ࢒௧  a vector pure-jump process of finite activity 
(i.e. the associated Levy density is bounded in the neighbourhood of zero). We make no 
parametric assumptions regarding the respective laws of motion (Andersen et al., 
2003). 

A natural measure of variability in this model is the well-known quadratic variation 
given by 

௧ࢂࡽ ൌ 	න દ௨
ᇱ દ௨dݑ ൅ ෍ Δ࢒ୱᇱΔ࢒௦,

௦	∈ሾ଴,௧ሿ

௧

଴
 

where the first component captures the contribution of the diffusion, while the second 
component is due to jumps. To measure the daily quadratic variation of the individual 
components of ࢞௧ using intraday data we employ the realized variance (RV) defined as 

    ܴ ௜ܸ,௧,ெ ൌ ∑ Δ௜ݔ௝,௧
ଶெ

௜ୀଵ ,       (1) 

where Δ௜ݔ௝,௧	denotes the i-th intraday return of the j-th components of ࢞௧ on day t. When 

we construct the realized variance estimator we have to account for the presence of 
market microstructure noise that renders the realized variance estimator in equation (1) 
biased and inconsistent. To this end, we employ the moving-average based estimator of 
Hansen et al. (2008). 

Given the time series of realized volatilities, we employ a multivariate version of 
the heterogeneous autoregressive (HAR) model of Corsi (2009) to model their joint 
behavior. To formally define the multivariate HAR model, we stack the logarithmic 
realized variances of a set of assets into a vector ࢜௧. Working with logarithmic realized 
variance instead of realized variance itself has two advantages. First, the method 
requires no parameter restrictions to ensure the non-negativity of the realized variance 
and second, the distribution of the logarithmic realized variance is much closer to 
normality, which is attractive from a statistical point of view. The vector HAR (VHAR) 
specification is given by 
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௧࢜ ൌ ଴ࢼ ൅ ௧ିଵ࢜ଵࢼ ൅ ௧ିଵ|௧ିହ࢜ହࢼ ൅ ௧ିଵ|௧ିଶଶ࢜ଶଶࢼ ൅ ௧ࢠࢽ ൅  ,௧ࢿ

where the ࢼ s are square matrices of coefficients, ࢠ௧  is a vector of (exogenous) 
regressors, ࢿ௧ is a vector innovation term, and the lagged vector of realized variances is 

௧ିଵ|௧ି௞࢜ ൌ
1
݇
෍࢜௧ି௝.

௞

௝ୀଵ

 

The ability of the HAR model to describe the interaction(s) of volatility across time 
makes it an attractive tool for studying the volatility dynamics both within and across the 
exchange rates. Specifically, the HAR model allows analyzing how the long-term 
volatility affects the expectations about the future market trends and risk. Indeed, given 
the multivariate framework, we can study both the qualitative and quantitative 
implications of short-term and/or long-term volatility components characterizing one 
foreign exchange market on the evolution of another. Despite its simplicity, the HAR 
model performs remarkably well in reproducing the widely documented presence of the 
volatility of financial products. 

In our analysis, we further generalize the multivariate HAR model by allowing the 
vector innovation term (ࢿ௧) to follow a multivariate GARCH process (VHAR-MGARCH). 
By extending the model in this manner, we are able to capture the volatility-of-volatility 
effect, i.e., an empirical observation that the volatility of volatility tends to increase 
(decrease) whenever volatility itself increases (decreases). While the idea is not new 
(Corsi et al., 2008), recent findings that a univariate HAR-GARCH model fits very well 
the realized variances of the CE exchange rates (Bubák and Žikeš, 2009) drives our 
motivation for generalizing the model with an MGARCH structure. 

To model the dynamics of the conditional variance of the innovation process ࢿ௧	, 
we employ the DCC model from Engle (2002). In this model, the variance covariance 
matrix evolves according to 

௧ࡴ ൌ  ,௧ࡰ௧ࡾ௧ࡰ

where ࡰ௧ ൌ ݀݅ܽ݃൫݄ଵଵ,௧
ଵ ଶ⁄ , … , ݄௄௄,௧

ଵ ଶ⁄ ൯  and ݄௜௜,௧  represents any univariate (G)ARCH(p,q) 

process, ݅ ൌ 1,… , ݇. The particular version of the dynamic conditional correlation model 
that we use is from Engle and Sheppard (2001) and Engle (2002). In this model, the 
correlation matrix is given by the transformation 

௧ࡾ ൌ ݀݅ܽ݃൫ݍଵଵ,௧
ିଵ ଶ⁄ , … , ௄௄,௧ݍ

ିଵ ଶ⁄ ൯ࡽ௧݀݅ܽ݃൫ݍଵଵ௧
ିଵ ଶ⁄ , … , ௄௄,௧ݍ

ିଵ ଶ⁄ ൯, 

where ࡽ௧ ൌ ൫ݍ௜௝,௧൯ in turn follows 

௧ࡽ ൌ ሺ1 െ ߙ െ ഥࡽሻߚ ൅ ௧ିଵߟ௧ିଵߟߙ
ᇱ ൅  ,௧ିଵࡽߚ

where ߟ௧ ൌ ௜,௧ߝ ඥ݄௜௜,௧⁄  are standardized residuals, ࡽഥ ൌ ܶିଵ ∑ ௧ᇱ்ߟ௧ߟ
௧ୀଵ  is a k x k 

unconditional variance matrix of ߟ௧, and ߙ and ߚ are non-negative scalars satisfying the 
condition that ߙ ൅ ߚ ൏ 1. Recall that it is an ARMA representation of the conditional 
correlations matrix that guarantees the positive definiteness of ࡽ௧ and hence of ࡾ௧. 
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To estimate the DCC-MGARCH model, we proceed as follows. First, we find a 
suitable specification of the volatility transmission where all variables are significant. 
The DCC model is then fitted to the series of residuals, where the estimation is 
performed by optimizing the likelihood function using the Feasible Sequential Quadratic 
Programming (FSQP) algorithm of Lawrence and Tits (2001). We estimate the model 
efficiently in one step to obtain valid standard errors for the DCC estimates. 

It is possible to write the VHAR model with determined number of lagged 
responses as a VAR(22) with restricted parameters. We can therefore employ the 
dynamic version of the Diebold and Yilmaz (2009) index to quantify the overall 
magnitude and evolution of volatility spillovers among the four foreign exchange 
markets. The Diebold-Yilmaz index is constructed as follows. Let ࢜௧  denote a k-
dimensional random vector following a VAR(p) process with conditionally 
heteroskedastic innovations: 

௧࢜ ൌ ࢉ ൅ ௧ିଵ࢜ଵࢶ ൅ ௧ିଵ࢜ଵࢶ ൅ ⋯൅ࢶ௣࢜௧ି௣ ൅  	,௧ࢿ
௧ࢿ ൌ ௧ࡴ

ଵ/ଶ࢛௧,			࢛௧~Dሺ૙,  	,ሻࡵ
where ࡴ௧ is a ࡲ௧ିଵ measurable conditional covariance matrix. Provided that the 

VAR process is stationary, the moving-average representation exists and we can write 
௧࢜ ൌ ࣆ ൅ ௧ࢿ ൅ ௧ିଵࢿଵࢸ ൅ ௧ିଶࢿଶࢸ ൅ ⋯. 

The optimal h-step-ahead forecast is given by 
E௧ሺ࢜௧ା௛ሻ ൌ ࣆ	 ൅ ௧ࢿ௛ࢸ ൅ ௧ିଵࢿ௛ାଵࢸ ൅ ⋯, 

and the forecast error vector, ࢋ௧ା௛|௧, is written as 

௧ା௛|௧ࢋ ≡ ௧ା௛࢜ െ E௧ሺ࢜௧ା௛ሻ ൌ 	 ௧ା௛ࢿ ൅ ௧ା௛ିଵࢿଵࢸ ൅ ௧ା௛ିଶࢿଶࢸ ൅ ⋯൅ࢸ௛ିଵࢿ௧ାଵ. 

The corresponding conditional mean-square error matrix, ઱௧ା௛|௧, is given by 

઱௧ା௛|௧ ≡ E௧ሺࢋ௧ା௛|௧ࢋ௧ା௛|௧
ᇱ ሻ ൌ E௧ሺࡴ௧ା௛ሻ ൅ ଵࢸ௧ା௛ିଵሻࡴଵE௧ሺࢸ

ᇱ ൅ ⋯൅ࢸ୦ିଵࡴ௧ାଵࢸ୦ିଵ
ᇱ . 

Now define ۿ௧ା௛|௧ to be the unique lower triangular Choleski factor of E௧ሺࡴ௧ା௛ሻ, 
and let 

௧ା௛|௧ۯ
ሺ௜ሻ ≡ ݅					,௧ା௛ି௜|௧ۿ௜ࢸ ൌ 0,… , ݄ െ 1, 

so we can write 

઱௧ା௛|௧ ൌ ௧ା௛|௧ۯ
ሺ଴ሻ ௧ା௛|௧ۯ

ሺ଴ሻᇱ ൅ ௧ା௛|௧ۯ
ሺଵሻ ௧ା௛|௧ۯ

ሺଵሻᇱ ൅ ⋯൅ ௧ା௛|௧ۯ
ሺ௛ିଵሻۯ௧ା௛|௧

ሺ௛ିଵሻᇱ. 

The time-varying Diebold-Yilmaz spillover index (St+h׀t) based on h-step-ahead 
forecasts is then defined as 

௧ା௛|௧܁ ൌ

∑ ∑ ሺ௔೟శ೓|೟
ሺ೗ሻೖ

೔,ೕసభ
೔ಯೕ

ሺ௜,௝ሻሻ૛೓షభ
೗సబ

∑ ୲୰ሺ೓షభ
೗సబ ೟శ೓|೟ۯ

ሺ೗ሻ ೟శ೓|೟ۯ
ሺ೗ሻᇲ ሻ

. 

In the above definition ܽ௧ା௛|௧
ሺ௟ሻ ሺ݅, ݆ሻ is a typical element of ۯ௧ା௛|௧

ሺ௟ሻ . If ࡴ௧  follows a 

stationary MGARCH process, the forecasts E௧ሺࡴ௧ା௛ሻ can be obtained recursively. 
The Diebold-Yilmaz index measures the proportion of the h-step-ahead forecast 

error of its own volatility that can be attributed to shocks emanating from other markets. 
In other words, the larger the fraction of h-step-ahead forecast error variance in 
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forecasting the volatility of market i that is due to shocks to market j relative to the total 
forecast error variation, the larger the value of the spillover index and hence the degree 
of volatility spillovers. In the case when there are no spillovers, the index is equal to 
zero. 
 
Empirical contribution to analyzing volatility spillovers on Central European forex 
markets 
Our empirical results documented the existence of volatility spillovers between CE 
foreign exchange markets on an intraday basis. We found that each CE currency has a 
different volatility transmission pattern. During the pre-2008 period, the histories of the 
Czech and Polish currencies and both the short- and long-term volatility components of 
the Hungarian currency as well as the long-term volatility component of the EUR/USD 
exchange rate affected the volatilities of the Czech and Polish currencies. In contrast, 
the Hungarian forint seemed generally irresponsive to any foreign component. Our 
finding that volatility spillovers had a greater effect on the volatility of the Czech and 
Polish currencies correlates with the fact that both currencies exhibited very similar and 
small deviations from a random walk. This contrasted with the managed regime of the 
Hungarian currency and its volatility being irresponsive to spillovers. During the post-
2008 period our results showed that volatility increased in general but the volatilities of 
all currencies reflect chiefly their own history. This lack of effect from neighboring 
markets might have been a sign of isolationist sentiment on the forex markets during the 
global crisis. Further, using a dynamic version of the Diebold-Yilmaz spillover index we 
found that the magnitude of the volatility spillovers increases significantly during periods 
of market uncertainty. From a medium-term perspective, volatility increased for those 
countries with troubled financial sector development (e.g. Hungary). Finally, a general 
difference in the pre- and post-crisis patterns was an increase in the strength of the 
short-term relation, which seemed to indicate a generally faster reaction of the market to 
volatility dynamics, especially in the case of the Czech koruna, Polish zloty, and the US 
dollar. 

Our results on volatility transmission augmented the literature on developed 
foreign exchange markets and filled a gap in the literature on emerging markets in 
Europe. The uncovered differences in volatility patterns and their drivers lent new 
insights into the trading strategies assessed by de Zwart et al. (2009). Further, the 
synthesis of our findings was also relevant from the perspective of research on 
investment strategies, as Jotikasthira et al. (2010) show that all of the three countries 
under research are attractive investment destinations. 
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5. Asymmetries in Volatility Spillovers 
 
Outline 
Baruník, Kočenda, and Vácha (2016, 2015) extended the spillover index methodology 
of Dieboled and Yilmaz (2009, 2012) by employing the concept of realized 
semivariances from Barndorff-Nielsen et al. (2010). This new approach enables 
accounting for asymmetries in volatility spillovers; to date this phenomenon has not 
been measured and quantified dynamically. 

The presence of asymmetric volatility in financial markets has long been 
recognized in the literature (Black, 1976; Christie, 1982; Pindyck, 1984; French et al., 
1987). On the other hand, asymmetries in volatility spillovers have not yet received the 
same attention, despite the fact that the proper quantification of such asymmetries is 
highly relevant to risk valuation and portfolio diversification strategies (Garcia and 
Tsafack, 2011). One of the stylized facts associated with financial markets reveals that 
the interdependence of markets exhibits asymmetries as large negative returns are 
more correlated than large positive returns (Longin and Solnik, 2001; Ang and Chen, 
2002). When contemporaneous returns and their conditional volatility exhibit negative 
correlation, then a stronger reaction to negative news results in asymmetric volatility of 
the assets (Wu, 2001). The causal link often leads to volatility spillovers, which tend to 
increase the idiosyncratic risk that diminishes gains from portfolio diversification (Kanas, 
2001). In addition, Amonlirdviman and Carvalho (2010) explicitly show that the 
asymmetry in the correlations of returns decreases the gains from portfolio 
diversification. 

Asymmetry in volatility on financial markets implies that past returns are 
negatively correlated with present volatility (Bekaert and Wu, 2000). Since volatility is 
transferred across markets via spillovers, it is worth assuming that volatility spillovers 
exhibit asymmetries as well and such asymmetries might stem from qualitative 
differences due to bad and good uncertainty (Segal et al., 2015). In this regard we 
hypothesized that volatility spillovers might substantially differ, e.g. exhibit asymmetries, 
depending on the qualitative nature of the preceding shock(s).  

Our contribution was twofold. First, in terms of methodology, we suggested a way 
to quantify asymmetries in volatility spillovers due to bad and good volatility that is 
defined in the same way as in Segal et al. (2015). Second, we provided new empirical 
evidence of asymmetries in volatility spillovers among U.S. stocks as well as petroleum-
based commodities over distinctively different periods before, during, and after the 
recent financial crisis. 
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Methodological contribution to analyzing asymmetries in volatility spillovers 
In order to better illustrate the methodological contribution, the two previously existing 
concepts are first introduced. Then we describe a simple way to combine them in order 
to capture asymmetric volatility spillovers using high-frequency measures. 

Realized variance and semivariance 
The first concept we introduce describes measures of volatility. Consider a continuous-
time stochastic process for log-prices, ݌௧, evolving over a time horizon [0 ≤ t ≤ T], which 
consists of a continuous component and a pure jump component 

௧݌  ൌ ׬ ݏ௦݀ߤ ൅ ׬ ௦݀ߪ ௦ܹ
௧
଴

௧
଴ ൅ 		,௧ܬ 	 	 	 		 	 	 ሺ1) 

where ߤ is a locally bounded predictable drift process and ߪ is a strictly positive volatility 
process and everything is adapted to some common filtration ࣠. The quadratic variation 
of the log-prices ݌௧ is 

 ሾ݌௧, ௧ሿ݌ ൌ ׬ ௦ଶߪ
௧
଴ ݏ݀ ൅	∑ ሺΔ݌௦ሻଶ,଴	ழ	௦	ஸ	୲ 	 	 		 	 	 	 ሺ2) 

where Δ݌௦ ൌ ௦݌ െ  ௦ି are jumps, if present. A natural measure for quadratic variation݌
has been formalized by Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-
Nielsen (2002), who propose estimating quadratic variation as the sum of squared 
returns and coined the term "realized variance" (RV). Formally, let us suppose that the 
intraday returns ݎ௜ ൌ ௜݌ െ ௜ିଵ݌ , defined as a difference between intraday log prices 
,଴݌ … , ,௡, are equally spaced on the interval ሾ0݌   then	ሿ,ݐ
 ܴܸ ൌ ∑ ௜ݎ

ଶ௡
௜	ୀ	ଵ 		 	 	 	 		 	 	 	 	 ሺ3) 

converges in probability to ሾ݌௧, ݊ ௧ሿ with݌ → ∞. 
Barndorff-Nielsen, Kinnebrock, and Shepard (2010) decomposed the realized 

variance into estimators of realized semivariance (RS) that capture the variation due to 
negative or positive movements in a specific variable (e.g. bad and good volatility). The 
technique was adopted by Feunou, Jahan-Parvar, and Tédongap (2013), Patton and 
Shepard (2014), and Segal, Shaliastovich, and Yaron (2015). We employ the realized 
semivariance in a very similar manner. The negative and positive realized 
semivariances ሺܴܵିand ܴܵାሻ are defined as follows: 

 ܴܵି ൌ 	∑ ॴሺ௡
௜ୀଵ ௜ݎ ൏ 0ሻݎ௜

ଶ	 	 	 	 	 		 	 	 ሺ4) 
 ܴܵା ൌ 	∑ ॴሺ௡

௜ୀଵ ௜ݎ ൒ 0ሻݎ௜
ଶ	 	 	 	 	 		 	 	 ሺ5) 

Realized semivariance provides a complete decomposition of the realized 
variance, as ܴܸ ൌ ܴܵି ൅ ܴܵା, and can serve as a measure of downside and upside 
risk. The decomposition holds exactly for any n. Barndorff-Nielsen, Kinnebrock, and 
Shepard (2010) show the limiting behavior of realized semivariance, which converges to 

׬1/2 ௦ଶߪ
௧
଴   .and the sum of the jumps due to negative and positive returns ݏ݀

Consequently, the negative and positive semivariance provides information about 
variation associated with movements in the tails of the underlying variable. For example 
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negative semivariance corresponds to the bad state of the underlying variable and we 
use the measure as the empirical proxy for bad volatility as in Segal, Shaliastovich, and 
Yaron (2015). Similarly, positive semivariance corresponds to the good state of the 
underlying variable and serves as a proxy for good volatility. Below, we hypothesize that 
the two states may spill over differently across markets, creating asymmetries in 
volatility spillovers.  
 
Measuring volatility spillovers 
The second concept we introduce describes how to measure volatility spillovers. 
Diebold and Yilmaz (2009) introduce a volatility spillover measure based on forecast 
error variance decompositions from vector auto regressions (VARs). Variance 
decompositions record how much of the ܪ-step-ahead forecast error variance of some 
variable ݅  is due to innovations in another variable ݆ , and hence provide a simple, 
intuitive way of measuring volatility spillovers. Later, Diebold and Yilmaz (2012) 
improved their early concept and use a generalized vector autoregressive framework in 
which forecast error variance decompositions are invariant to the variable ordering and 
that explicitly includes the possibility to measure directional volatility spillovers.  

Further, and most important to us, Diebold and Yilmaz (2009, 2012) use the daily 
or weekly range-based volatility of Garman and Klass (1980) to compute spillovers. 
Whereas range-based estimators provide an efficient way of estimating volatility, high-
frequency data can further improve the understanding of the transmission mechanism. 
Due to the work of Barndorff-Nielsen, Kinnebrock, and Shepard (2010) we can 
conveniently decompose daily volatility into negative (and positive) semivariance, 
providing a proxy for downside (and upside) risk. Replacing the total volatility, which 
enters the computation by the measures of downside (upside) risk, will allow us to 
measure the spillovers from bad and good volatility, and test if they are transmitted in 
the same magnitude. Thus, we consider ܜ܄܀ ൌ ሺܴ ଵܸ௧, … , ܴ ௡ܸ௧ሻ′ to measure total volatility 
spillovers and ିܜ܁܀ ൌ ሺܴ ଵܵ௧

ି , … , ܴܵ௡௧ି ሻᇱ  and ܜ܁܀
ା ൌ ሺܴ ଵܵ௧

ା , … , ܴܵ௡௧
ା ሻᇱ  to measure volatility 

spillovers due to negative and positive returns, respectively. 
To measure spillovers we use the Diebold and Yilmaz (2012) directional spillover 

measure, which follows directly from the variance decomposition associated with an ܰ-
variable vector autoregression fitted to volatility (in our case semivariances). To set the 
stage, consider an  

ܰ -dimensional vector ܜ܄܀ ൌ ሺܴ ଵܸ௧, … , ܴ ௡ܸ௧ሻ′  holding the realized variance of ܰ 
assets, which is modeled by a covariance stationary vector autoregression VAR(p) as 
ܜ܄܀  ൌ ∑ ઴ܑ

௣
௜	ୀ	ଵ ܑିܜ܄܀ ൅ 	࢚ࣕ 	 	 	 	 		 	 	 ሺ6) 

with ࢚ࣕ ∼ Nሺ0, ઱૓ሻ  being a vector of independently and identically distributed 
disturbances and ઴ܑ for ݅ ൌ 1,… ,  coefficient matrices. Provided that the VAR process ݌
is invertible, it has the moving average representation 
ܜ܄܀  ൌ ∑ શ୧

ஶ
௜	ୀ	଴ 		,࢏ି࢚ࣕ 	 	 	 	 		 	 	 	 ሺ7) 
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where the ܰ ൈ ܰ	matrices holding coefficients શܑ  can be obtained from the recursion 

શ௜ ൌ ∑ ઴୨
௣
௝ୀଵ શܑିܒ  with શ૙  being the identity matrix; શ଴ ൌ ۷ே  and શ୧ ൌ 0 for ݅ ൏ 0. The 

moving average representation is key for understanding the dynamics of the system as 
it allows the computation of variance decompositions. These in turn allow the 
decomposition of the forecast error variances of each variable in the system into parts, 
which are attributable to various system shocks. Diebold and Yilmaz (2012) build the 
spillover index on the idea of assessing the fraction of the ܪ-step-ahead error variance 
in forecasting the ݅th variable that is due to shocks to the ݆th variable for ݆ ് ݅, for each 
݅. In order to obtain variance decompositions, which are invariant to variable ordering in 
the VAR system, Diebold and Yilmaz (2012) use the framework of the generalized VAR 
of Koop, Pesaren, and Potter (1996) and Pesaran and Shin (1998). The framework 
allows for correlated shocks but accounts for them by using the observed distribution of 
the errors, under a normality assumption. In this way, the shocks to each variable are 
not orthogonalized. Hence, the resulting sum of the contributions to the variance of the 
forecast error may not necessarily equal one. 
 
(i) Total spillovers 
To define the total spillover index, Diebold and Yilmaz (2012) consider: (i) the assets' 
own variance shares as the fractions of the ܪ-step-ahead error variances in forecasting 
the ݅ th variable that are due to assets' own shocks to ݅  for ݅ ൌ 1,… , ݊  and (ii) cross 
variance shares, or spillovers, as the fractions of the ܪ-step-ahead error variances in 
forecasting the ݅th variable that are due to shocks to the ݆th variable, for ݅, ݆ ൌ 1,… ,ܰ, 
such that ݅ ് ݆. The ܪ-step-ahead generalized forecast error variance decomposition 
matrix ࢹ has the following elements for ܪ ൌ 1,2,…: 

 ߱௜௝
ு ൌ

ఙೕೕ
షభ ∑ ሺ܍౟

ᇲશ౞઱ಣ܍ౠሻమ
ಹషభ
೓సబ

∑ ሺ܍౟
ᇲશ౞઱ಣશ౞

ᇲ܍౟ሻ
ಹషభ
೓సబ

,		 	 	 	 	 		 	 	 ሺ8) 

where ઱஫ is the variance matrix for the error vector, ߳௧, ߪ௝௝ is the standard deviation of 

the error term for the ݆th equation, ܍୧ is the selection vector, with one as the ݅th element 
and zero otherwise, and શ୦ are moving average coefficients from the forecast at time ݐ. 
The sum of the elements in each row of the variance decomposition table is not equal to 
one, ∑ ߱௜௝

ுே
௝ୀଵ 	് 1 , as the shocks are not necessarily orthogonal in this framework. 

Hence, we need to normalize each element by the row sum as: 

 ෥߱௜௝
ு ൌ

ఠ೔ೕ
ಹ

∑ ఠ೔ೕ
ಹಿ

ೕసభ
.		 	 	 	 	 		 	 	 	 	 ሺ9) 

Using the contributions from the variance decomposition, Diebold and Yilmaz 
(2012) then define the total spillover index, which measures the contribution of 
spillovers from volatility shocks across variables in the system to the total forecast error 
variance as 

 ܵு ൌ 100 ൈ ଵ

ே
∑ ෥߱௜௝

ுே
௜,௝ୀଵ
௜ஷ௝

.		 	 	 	 	 		 	 	 ሺ10) 
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Note that by construction, ∑ ෥߱௜௝
ு ൌ 1ே

௝ୀଵ  and ∑ ෥߱௜௝
ு ൌ ܰே

௜,௝ୀଵ , thus the contributions 

of spillovers from volatility shocks are normalized by the total forecast error variance. 
 
(ii) Directional spillovers 
The total spillover index as defined by equation (10) helps us understand how much of 
the shocks to volatility spills over across the studied assets. However, the main 
advantage of the generalized VAR framework is its ability to identify directional 
spillovers using the normalized elements of the generalized variance decomposition 
matrix. Directional spillovers allow us to further uncover the transmission mechanism, 
as we can decompose the total spillovers to those coming from, or to, a particular asset 
in the system. 

Diebold and Yilmaz (2012) propose to measure the directional spillovers received 
by asset ݅ from all other assets ݆ as: 

 ௜ܵ←⦁
ு ൌ 100 ൈ ଵ

ே
∑ ෥߱௜௝

ுே
௜,௝ୀଵ
௜ஷ௝

.		 	 	 	 	 		 	 	 ሺ11) 

In a similar fashion, the directional spillovers transmitted by asset ݅ to all other 
assets ݆ can be measured as: 

 ௜ܵ→⦁
ு ൌ 100 ൈ ଵ

ே
∑ ෥߱௝௜

ுே
௜,௝ୀଵ
௜ஷ௝

.		 	 	 	 	 		 	 	 ሺ12) 

 (iii) Net spillovers and net pairwise spillovers 
Directional spillovers can also be used to obtain the net volatility spillover from asset ݅ to 
all other assets ݆ . The directional spillover is then defined as the simple difference 
between gross volatility shocks transmitted to and received from all other assets: 
 ௜ܵ௝

ு ൌ ௜ܵ→⦁
ு െ ௜ܵ←⦁

ு .		 	 	 	 	 		 	 	 	 ሺ13) 

The net volatility spillover tells us how much each asset contributes to the 
volatility in other assets in net terms.  

Finally, the pairwise volatility spillover between asset ݅  and ݆  can be simply 
defined as the difference between the gross shocks transmitted from asset ݅ to asset ݆ 
and those transmitted from ݆ to ݅: 

 ௜ܵ௝
ு ൌ 100 ൈ ଵ

ே
∑ ሺ ෥߱௝௜

ு െே
௜,௝ୀଵ
௜ஷ௝

෥߱௜௝
ுሻ         (14) 

Measuring asymmetric spillovers 
We now describe how to capture and measure asymmetries in volatility spillovers. 
Specifically, we are able to account for spillovers from volatility due to negative returns 
ሺܵିሻ and positive returns ሺܵାሻ as well as directional spillovers from volatility due to 
negative returns ሺ ௜ܵ←⦁

ି , ௜ܵ→⦁
ି ሻ  and positive returns ሺ ௜ܵ←⦁

ା , ௜ܵ→⦁
ା ሻ . Based on the previous 

exposition, to isolate asymmetric volatility spillovers we need to replace the vector of 
volatilities ܜ܄܀ ൌ ሺܴ ଵܸ௧, … , ܴ ௡ܸ௧ሻ′  defined in equation (6) with the vector of negative 
semivariances ି࢚܁܀ ൌ ሺܴ ଵܵ௧

ି , … , ܴܵ௡௧ି ሻ′   or the vector of positive semivariances ࢚܁܀
ା ൌ
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ሺܴ ଵܵ௧
ା , … , ܴܵ௡௧

ା ሻ′ . Note that in the above definitions we dropped the ܪ index to ease the 
notational burden, but it remains a valid parameter for the estimation of spillover indices. 

For ease of exposition we might also call the spillovers from bad and good 
volatility as negative and positive spillovers. Their quantification now enables testing 
several hypotheses. A comparison of the spillover values introduces the following 
possibilities. If the contributions of ܴܵି and ܴܵା	are equal, the spillovers are symmetric, 
and we expect the spillovers to be of the same magnitude as spillovers from ܴܸ. On the 
other hand, the differences in the realized semivariances result in asymmetric spillovers. 
These properties enable us to test the following hypotheses. 

࣢଴
ଵ:					ܵି ൌ ܵା							against	࣢஺

ଵ:				ܵି ് ܵା.	
࣢଴

ଶ:			 ௜ܵ←⦁
ି ൌ ௜ܵ←⦁

ା 				against	࣢஺
ଶ:				 ௜ܵ←⦁

ି ് ௜ܵ←⦁
ା .	

࣢଴
ଷ:			 ௜ܵ→⦁

ି ൌ ௜ܵ→⦁
ା 				against	࣢஺

ଷ:				 ௜ܵ→⦁
ି ് ௜ܵ→⦁

ା .	
Rejecting a null hypothesis means that bad and good volatility does matter for 

spillover transmission in terms of magnitude as well as direction. Moreover, we assume 
that the values of the volatility spillover indices differ over time. To capture the time-
varying nature, the indices are computed using a 200-day moving window that runs 
from point ݐ െ 199 to point ݐ; more details are provided in Baruník, Kočenda, and Vácha 
(2016). 
 
(i) Spillover asymmetry measure 
In order to better quantify the extent of volatility spillovers, we introduce a spillover 
asymmetry measure. In case the negative and positive realized semivariance contribute 
to the total variation of returns in the same magnitudes, the spillovers from volatility due 
to negative returns ሺܵିሻ and positive returns ሺܵାሻ will be equal to the spillovers from ܴܸ, 
and the null hypothesis ࣢଴

ଵ:	ܵି ൌ ܵା would not be rejected. This motivates a definition 
of the spillover asymmetry measure ሺܵܯܣሻ simply as the difference between negative 
and positive spillovers: 
ܯܣܵ  ൌ	ܵା െ	ܵି           (15) 
where ܵା  and ܵି  are volatility spillover indices due to negative and positive 
semivariances, ܴܵା  and ܴܵି , respectively, with an ܪ -step-ahead forecast at time ݐ . 
 ,defines and illustrates the extent of asymmetry in spillovers due to ܴܵି and ܴܵା ܯܣܵ
When ܵܯܣ  takes the value of zero, spillovers coming from ܴܵି  and ܴܵା  are equal. 
When ܵܯܣ is positive, spillovers coming from ܴܵା are larger than those from ܴܵି and 
the opposite is true when ܵܯܣ is negative. 
 
(ii) Directional Spillover Asymmetry Measure 
While the spillover asymmetry measure ܵܯܣ defined by equation (15) measures to what 
extent the spillovers from volatility are asymmetric, we can decompose this measure 
and study the source of asymmetry among the studied assets. We define the 
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asymmetry measure for directional spillovers received by asset ݅ from all other assets ݆ 
as 
⦁←௜ܯܣܵ  ൌ ௜ܵ←⦁

ା െ ௜ܵ←⦁
ି .           (16) 

In a similar fashion, we can measure the degree of asymmetry in directional spillovers 
transmitted by asset ݅ to all other assets ݆: 
⦁→௜ܯܣܵ  ൌ ௜ܵ→⦁

ା െ ௜ܵ→⦁
ି .           (17) 

 ௜→⦁ allow us to identify the extent to which volatility from (or to)ܯܣܵ ௜←⦁ andܯܣܵ
the ݅th asset spills over to (or from) other assets symmetrically. For example, if bad 
volatility spillover from one asset in the system is larger than a positive spillover, then 
 ௜→⦁ will be different from zero, and we expect it to be negative. The original Dieboldܯܣܵ
and Yilmaz (2012) framework is not able to capture asymmetries in volatility spillovers 
while our methodology contribution does so for the total as well as directional volatility 
spillovers. 
 
Empirical contribution to identifying and measuring asymmetries in volatility 
spillovers 
Based on two recent advances in the literature, we outlined a way to capture volatility 
spillovers that are due to bad and good volatility (proxied by negative and positive 
returns). Specifically, we suggested computing the volatility spillover index from Diebold 
and Yilmaz (2012) when negative and positive changes in returns are considered 
separately via the realized semivariances from Barndorff-Nielsen, Kinnebrock, and 
Shepard (2010). As a result, we computed volatility spillover indices robust to ordering 
in VAR that captured asymmetries in volatility spillovers. 

We empirically showed the versatility of the above set-up by applying it on daily 
data covering 21 U.S. stocks divided into seven sectors defined in accordance with the 
Global Industry Specification Standard. We provided ample evidence showing the 
asymmetric connectedness of markets at the disaggregate sectoral level, which is in 
contrast to the symmetric volatility transmission mechanism at the aggregate level. The 
result can be attributed to large sector-level heterogeneity. While there was no clear 
pattern that would hold for all seven sectors, we were able to reject symmetric 
connectedness in all of them. Further, we found that negative and positive spillovers 
transmitted at different magnitudes in all sectors: the consumer, telecommunications, 
and health sectors exhibited visibly larger asymmetries in spillovers than the financial, 
information technology, and energy sectors. Finally, we also provided detailed results 
how asymmetries in spillovers propagated between specific assets and within sectoral 
portfolios. 

Asymmetries in volatility spillovers have been conclusively detected across the 
U.S. stock market. While negative asymmetries in spillovers are often of substantial 
magnitude, they are not strictly dominant. Spillovers due to good volatility materialize 
quite frequently and their magnitudes are only rarely dwarfed by negative ones. Hence, 
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in terms of volatility spillovers, market perception is not attuned to negative signals only. 
Thus, among many detailed inferences, we showed that the stock market might be a 
less dismal place than generally believed. 

Further, we detected and quantified asymmetries in the volatility spillovers of 
petroleum commodities: crude oil, gasoline, and heating oil. The increase in volatility 
spillovers after 2001 correlated with the progressive financialization of the commodities. 
Further, the increasing spillovers from volatility among petroleum commodities 
substantially changed their pattern after 2008 (the financial crisis and the advent of tight 
oil production). After 2008, asymmetries in spillovers markedly declined in terms of total 
as well as directional spillovers and the decline in asymmetries in volatility spillovers 
after 2008 correlated with the ongoing financialization of commodities and the advent of 
tight oil exploration and production in the U.S. Also, our findings defied a common belief 
that the financial crisis should prompt spillovers to be more volatile. We provided 
evidence of just the opposite: spillovers from price developments in 2008 and later are 
less volatile than before the 2007–2008 financial crisis. In terms of asymmetries, we 
also showed that overall volatility spillovers due to negative (price) returns materialize to 
a greater degree than volatility spillovers due to positive returns. The occurrence of 
negative volatility spillovers correlate with low levels of crude oil inventories in the U.S. 
and often with world events that hamper crude oil supply. Negative spillovers frequently 
indicate the extent of real or potential crude oil unavailability. An analysis of directional 
spillovers reveals that no petroleum commodity dominates other commodities in terms 
of general spillover transmission. 
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