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Let � ∈ N and p ∈ (1, ∞]. In this article, the authors prove that the sequence 
{f − B�,2−kf}k∈Z consisting of the differences between f and the ball average 
B�,2−kf characterizes the Besov space Ḃα

p,q(Rn) with q ∈ (0, ∞] and the Triebel–
Lizorkin space Ḟα

p,q(Rn) with q ∈ (1, ∞] when the smoothness order α ∈ (0, 2�). More 
precisely, it is proved that f − B�,2−kf plays the same role as the approximation 
to the identity ϕ2−k ∗ f appearing in the definitions of Ḃα

p,q(Rn) and Ḟα
p,q(Rn). The 

corresponding results for inhomogeneous Besov and Triebel–Lizorkin spaces are also 
obtained. These results, for the first time, give a way to introduce Besov and Triebel–
Lizorkin spaces with any smoothness order in (0, 2�) on spaces of homogeneous type, 
where � ∈ N.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the theory of function spaces with smoothness is a central topic of the analysis on 
spaces of homogeneous type in the sense of Coifman and Weiss [3,4]. Recall that the first order Sobolev space 
on spaces of homogeneous type was originally introduced by Hajłasz in [15] and later Shanmugalingam [21]
introduced another kind of a first order Sobolev space which has strong locality and hence is more suitable 
for problems related to partial differential equations on spaces of homogeneous type. Recently, Alabern et al. 
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[1] gave a way to introduce Sobolev spaces of any order bigger than 1 on spaces of homogeneous type in 
spirit closer to the square function and Dai et al. [6] gave several other ways, different from [1], to introduce 
Sobolev spaces of order 2� on spaces of homogeneous type in spirit closer to the pointwise characterization 
as in [15], where � ∈ N := {1, 2, . . .}. Later, motivated by [1], Yang et al. [32] gave a way to introduce Besov 
and Triebel–Lizorkin spaces with smoothness order in (0, 2) on spaces of homogeneous type. It is still an 
open question how to introduce Besov and Triebel–Lizorkin spaces with smoothness order not less than 2
on spaces of homogeneous type.

In this article, we establish a characterization of Besov and Triebel–Lizorkin spaces which can have any 
positive smoothness order on Rn via the difference between functions themselves and their ball averages. 
Since the average operator used in this article is also well defined on spaces of homogeneous type, this 
characterization can be used to introduce Besov and Triebel–Lizorkin spaces with any positive smooth-
ness order on any space of homogeneous type and hence our results give an answer to the above open 
question.

Let us now give a detailed description of the main ideas used in this article. It is well known that a locally 
integrable function f belongs to the Sobolev space Wα,p(Rn), with α ∈ (0, 1) and p ∈ (1, ∞), if and only if 
f ∈ Lp(Rn) and

sα(f) :=

⎧⎪⎨⎪⎩
∞∫
0

⎡⎢⎣ −
∫

B(·, t)

|f(·) − f(y)| dy

⎤⎥⎦
2

dt

t1+2α

⎫⎪⎬⎪⎭
1/2

∈ Lp(Rn)

(see, for example, [30,23,25,31]). Here and hereafter, B(x, t) denotes an open ball with center at x ∈ R
n and 

radius t ∈ (0, ∞), and −
∫
B(x,t) f(y) dy denotes the integral average of f ∈ L1

loc(Rn) on the ball B(x, t) ⊂ R
n, 

namely,

−
∫

B(x,t)

f(y) dy := 1
|B(x, t)|

∫
B(x,t)

f(y) dy =: Btf(x). (1.1)

However, when α ∈ [1, ∞), sα(f) is not able to characterize Wα,p(Rn), since, in this case, f ∈ L1
loc(Rn) and 

‖sα(f)‖Lp(Rn) < ∞ imply that f must be a constant function (see [13, Section 4] for more details).
Recently, Alabern et al. [1] established a remarkable characterization of Sobolev spaces of smooth order 

bigger than 1 and they proved that a function f ∈ Wα,p(Rn), with α ∈ (0, 2) and p ∈ (1, ∞), if and only if 
f ∈ Lp(Rn) and the square function Sα(f) ∈ Lp(Rn), where

Sα(f)(·) :=

⎧⎪⎨⎪⎩
∞∫
0

∣∣∣∣∣∣∣ −
∫

B(·, t)

[f(·) − f(y)] dy

∣∣∣∣∣∣∣
2

dt

t1+2α

⎫⎪⎬⎪⎭
1/2

, f ∈ L1
loc(Rn)

(see [1, Theorem 1 and p. 591]). Comparing Sα and sα, we see that the only difference exists in that the 
absolute value |f(·) −f(y)| in sα(f) is replaced by f(·) −f(y) in Sα(f). However, this slight change induces a 
quite different behavior between sα(f) and Sα when characterizing Sobolev spaces. The former characterizes 
Sobolev spaces only with smoothness order less than 1, while the later characterizes Sobolev spaces with 
smoothness order less than 2. Such a difference follows from the following observation: for all f ∈ C2(Rn)
and t ∈ (0, 1),

−
∫

[f(x) − f(y)] dy = O(t2), x ∈ R
n, (1.2)
B(x, t)
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which follows from the Taylor expansion of f up to order 2:

f(y) = f(x) + ∇f(x) · (y − x) + O(|y − x|2), x, y ∈ R
n;

in other words, the Sα-function provides smoothness up to order 2. We point out that this phenomenon was 
first observed by Wheeden in [29] (see also [30]), and later independently by Alabern, Mateu and Verdera [1].

By means of the fact (1.2), Alabern et al. [1, Theorems 2 and 3] also characterized Sobolev spaces of 
higher smoothness order and showed that f ∈ Wα,p(Rn), with α ∈ [2N, 2N + 2), N ∈ N and p ∈ (1, ∞), if 
and only if f ∈ Lp(Rn) and there exist functions g1, . . . , gN ∈ Lp(Rn) such that Sα(f, g1, . . . , gN ) ∈ Lp(Rn), 
where

Sα(f, g1, . . . , gN )(·) :=

⎧⎪⎨⎪⎩
∞∫
0

∣∣∣∣∣∣∣ −
∫

B(·,t)

t−αRN (y, ·) dy

∣∣∣∣∣∣∣
2

dt

t

⎫⎪⎬⎪⎭
1/2

with

RN (y; ·) := f(y) − f(·) −
N∑
j=1

gj(·)|y − ·|2j (1.3)

when α ∈ (2N, 2N + 2), and

RN (y; ·) := f(y) − f(·) −
N−1∑
j=1

gj(·)|y − ·|2j −BtgN (·)|y − ·|2N (1.4)

when α = 2N . Indeed, the function gj was proved in [1, Theorems 2 and 3] to equal to 1
Lj

Δjf almost 
everywhere, where Lj := Δj |x|2j for j ∈ {1, . . . , N}. As the corresponding results for Triebel–Lizorkin 
spaces, Yang et al. [32, Theorems 1.1, 1.3 and 4.1] further proved that, for all α ∈ (2N, 2N + 2), N ∈ N

and p ∈ (1, ∞], the Besov space Ḃα
p,q(Rn) with q ∈ (0, ∞] and the Triebel–Lizorkin space Ḟα

p,q(Rn) with 
q ∈ (1, ∞] can be characterized via the function

Sα, q(f)(x) :=

⎧⎪⎨⎪⎩
∑
k∈Z

2kαq

∣∣∣∣∣∣∣ −
∫

B(x, 2−k)

R̃N (y; x) dy

∣∣∣∣∣∣∣
q⎫⎪⎬⎪⎭

1/q

, x ∈ R
n, (1.5)

where, for all x, y ∈ R
n and k ∈ Z,

R̃N (y; x) := f(y) − f(x) −
N∑
j=1

1
Lj

Δjf(x)|y − x|2j . (1.6)

It is an open question, posed in [32, Remark 4.1], whether there exists a corresponding characterization 
for Ḃα

p,q(Rn) and Ḟα
p,q(Rn) when α = 2N with N ∈ N. Moreover, only when α ∈ (0, 2), [32, Theorems 1.1 

and 4.1] provide a way to introduce Besov and Triebel–Lizorkin spaces with smoothness order α on spaces 
of homogeneous type.

Via higher order differences, Triebel [27,28] and Haroske and Triebel [17,18] obtained another charac-
terization of Sobolev spaces with order bigger than 1 on Rn without involving derivatives. Recall that, for 
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� ∈ N, the �-th order (forward) difference operator Δ̃�
h with h ∈ R

n is defined by setting, for all functions f
and x ∈ R

n,

Δ̃1
hf(x) := f(x + h) − f(x), Δ̃�

h := Δ̃1
hΔ̃�−1

h , � ≥ 2.

By means of Δ̃�
hf , Triebel [27,28] and Haroske and Triebel [17,18] proved that the Sobolev space W �,p(Rn)

with � ∈ N and p ∈ (1, ∞) can be characterized by a pointwise inequality in the spirit of Hajłasz [14]
(see also Hu [15] and Yang [31]). Recall that the difference Δ̃�

hf can also be used to characterize Besov 
spaces and Triebel–Lizorkin spaces with smoothness order no more than �. We refer the reader to Triebel’s 
monograph [26, Section 3.4] for these difference characterizations of Besov and Triebel–Lizorkin spaces; see 
also [20, Section 3.1]. However, it is still unclear how to define higher than 1 order differences on spaces of 
homogeneous type.

On the other hand, recall that the averages of a function f can be used to approximate f itself in 
some function spaces; see, for example, [8,2]. Motivated by (1.2) and the pointwise characterization of 
Sobolev spaces with smoothness order no more than 1 (see Hajłasz [14], Hu [15] and Yang [31]), the authors 
established in [6] some pointwise characterizations of Sobolev spaces with smoothness order 2� on Rn via 
ball averages of f , where � ∈ N. To be precise, as the higher order variants of Bt in (1.1), for all � ∈ N, 
t ∈ (0, ∞) and x ∈ R

n, we define the 2�-th order average operator B�,t by setting, for all f ∈ L1
loc(Rn) and 

x ∈ R
n,

B�,tf(x) := − 2(2�
�

) �∑
j=1

(−1)j
(

2�
�− j

)
Bjtf(x), (1.7)

here and hereafter, 
( 2�
�−j

)
denotes the binomial coefficients. Obviously, B1,tf = Btf . Moreover, it was 

observed in [6] that f − B�,tf is a 2�-th order central difference of the function t �→ Btf(x) with step t at 
the origin, namely, for all � ∈ N, t ∈ (0, ∞), f ∈ L1

loc(Rn) and x ∈ R
n,

f(x) −B�,tf(x) = (−1)�(2�
�

) 
2�
t g(0) (1.8)

with

g(t) :=

⎧⎪⎪⎨⎪⎪⎩
Btf(x), t ∈ (0,∞);
f(x), t = 0;
B−tf(x), t ∈ (−∞, 0).

(1.9)

Here and hereafter, for all functions h on R and θ, t ∈ R, let Tθh(t) := h(t + θ), and the central difference 
operators 
r

t are defined by setting


1
θh(t) := 
θh(t) := h

(
t + θ

2

)
− h

(
t− θ

2

)
=
(
Tθ/2 − T−θ/2

)
h(t),


r
θh(t) := 
θ(
r−1

θ h)(t) =
r∑

j=0

(
r

j

)
(−1)jh

(
t + rθ

2 − jθ

)
, r ∈ {2, 3, . . .}.

The authors proved in [6] that f ∈ W 2�,p(Rn), with � ∈ N and p ∈ (1, ∞), if and only if f ∈ Lp(Rn) and 
there exist a non-negative g ∈ Lp(Rn) and a positive constant C such that |f(x) − B�,tf(x)| ≤ Ct2� g(x)
for all t ∈ (0, ∞) and almost every x ∈ R

n. Various variants of this pointwise characterization were also 
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presented in [6]. Recall that centered averages or their combinations were used to measure the smoothness 
and to characterize the K-functionals in [5,9,7].

Comparing the difference f − B�,tf with the usual difference Δ̃2�
h f , we find that the former has an 

advantage that it involves only averages of f over balls, and hence can be easily generalized to any space 
of homogeneous type, whereas the difference operator Δ̃2�

h f cannot. We can also see their difference via 
(1.8). Indeed, it follows from (1.8) that f −B�,tf is a 2�-th order central difference of a function g and the 
parameter related to such a difference is the radius t ∈ (0, ∞) of the ball B(x, t) with x ∈ R

n, while the 
parameter related to Δ̃2�

h f is h ∈ R
n, which also curbs the extension of Δ̃2�

h f to spaces of homogeneous 
type.

Although there exist differences between f − B�,tf and the usual difference Δ̃2�
h f , the characterizations 

of W 2�,p(Rn) via f − B�,tf obtained in [6] imply that, in some sense, f − B�,tf also plays the role of 
2�-order derivatives. Therefore, it is natural to ask whether we can use f −B�,tf to characterize Besov and 
Triebel–Lizorkin spaces with smoothness order less than 2� or not.

The main purpose of this article is to answer this question. To this end, we first recall some basic notions. 
Let Z+ := N ∪ {0} and S(Rn) denote the collection of all Schwartz functions on Rn, endowed with the 
usual topology, and S ′(Rn) its topological dual, namely, the collection of all bounded linear functionals on 
S(Rn) endowed with the weak ∗-topology. Let S∞(Rn) be the set of all Schwartz functions ϕ such that ∫
Rn xγϕ(x) dx = 0 for all γ ∈ Z

n
+, and S ′

∞(Rn) its topological dual. For all α ∈ Z
n
+, m ∈ Z+ and ϕ ∈ S(Rn), 

let

‖ϕ‖α,m := sup
x∈Rn, |β|≤|α|

(1 + |x|)m|∂βϕ(x)|.

For all ϕ ∈ S ′
∞(Rn), we use ϕ̂ to denote its Fourier transform. For any ϕ ∈ S(Rn) and t ∈ (0, ∞), we let 

ϕt(·) := t−nϕ(·/t).
For all a ∈ R, �a� denotes the maximal integer no more than a. For any E ⊂ R

n, let χE be its characteristic 
function.

We now recall the notions of Besov and Triebel–Lizorkin spaces; see [25,26,11,34].

Definition 1.1. Let α ∈ (0, ∞), p, q ∈ (0, ∞] and ϕ ∈ S(Rn) satisfy that

supp ϕ̂ ⊂ {ξ ∈ R
n : 1/2 ≤ |ξ| ≤ 2} and |ϕ̂(ξ)| ≥ constant > 0 if 3/5 ≤ |ξ| ≤ 5/3. (1.10)

(i) The homogeneous Besov space Ḃα
p, q(Rn) is defined as the collection of all f ∈ S ′

∞(Rn) such that 
‖f‖Ḃα

p, q(Rn) < ∞, where

‖f‖Ḃα
p, q(Rn) :=

[∑
k∈Z

2kαq‖ϕ2−k ∗ f‖qLp(Rn)

]1/q

with the usual modifications made when p = ∞ or q = ∞.
(ii) The homogeneous Triebel–Lizorkin space Ḟα

p, q(Rn) is defined as the collection of all f ∈ S ′
∞(Rn) such 

that ‖f‖Ḟα
p, q(Rn) < ∞, where, when p ∈ (0, ∞),

‖f‖Ḟα
p, q(Rn) :=

∥∥∥∥∥∥
[∑

k∈Z

2kαq|ϕ2−k ∗ f |q
]1/q

∥∥∥∥∥∥
Lp(Rn)

with the usual modification made when q = ∞, and
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‖f‖Ḟα
∞, q(Rn) := sup

x∈Rn

sup
m∈Z

⎧⎪⎨⎪⎩ −
∫

B(x, 2−m)

∞∑
k=m

2kαq|ϕ2−k ∗ f(y)|q dy

⎫⎪⎬⎪⎭
1/q

with the usual modification made when q = ∞.

It is well known that the spaces Ḃα
p, q(Rn) and Ḟα

p, q(Rn) are independent of the choice of functions ϕ
satisfying (1.10); see, for example, [12].

We also recall the corresponding inhomogeneous spaces.

Definition 1.2. Let α ∈ (0, ∞), p, q ∈ (0, ∞], ϕ ∈ S(Rn) satisfy (1.10) and Φ ∈ S(Rn) satisfy that

supp Φ̂ ⊂ {ξ ∈ R
n : |ξ| ≤ 2} and |Φ̂(ξ)| ≥ constant > 0 if |ξ| ≤ 5/3. (1.11)

(i) The inhomogeneous Besov space Bα
p, q(Rn) is defined as the collection of all f ∈ S ′(Rn) such that 

‖f‖Bα
p, q(Rn) < ∞, where

‖f‖Bα
p, q(Rn) :=

⎡⎣ ∑
k∈Z+

2kαq‖ϕ2−k ∗ f‖qLp(Rn)

⎤⎦1/q

with the usual modifications made when p = ∞ or q = ∞, where, when k = 0, ϕ2−k is replaced by Φ.
(ii) The inhomogeneous Triebel–Lizorkin space Fα

p, q(Rn) is defined as the collection of all f ∈ S ′(Rn)
such that ‖f‖Fα

p, q(Rn) < ∞, where, when p ∈ (0, ∞),

‖f‖Fα
p, q(Rn) :=

∥∥∥∥∥∥∥
⎡⎣ ∑

k∈Z+

2kαq|ϕ2−k ∗ f |q
⎤⎦1/q

∥∥∥∥∥∥∥
Lp(Rn)

with the usual modification made when q = ∞, and

‖f‖Fα
∞, q(Rn) := sup

x∈Rn

sup
m∈Z+

⎧⎪⎨⎪⎩ −
∫

B(x, 2−m)

∞∑
k=m

2kαq|ϕ2−k ∗ f(y)|q dy

⎫⎪⎬⎪⎭
1/q

with the usual modification made when q = ∞, where, when k = 0, ϕ2−k is replaced by Φ.

It is also well known that the spaces Bα
p, q(Rn) and Fα

p, q(Rn) are independent of the choice of functions 
ϕ and Φ satisfying (1.10) and (1.11), respectively; see, for example, [25].

As the main result of this article, we prove that the difference f − B�,2−kf with k ∈ Z plays the same 
role of the approximation to the identity ϕ2−k ∗ f in the definitions of Besov and Triebel–Lizorkin spaces in 
the following sense.

Theorem 1.3. Let � ∈ N and α ∈ (0, 2�).
(i) Let p ∈ (1, ∞] and q ∈ (0, ∞]. If f ∈ Ḃα

p,q(Rn), then there exists g ∈ L1
loc(Rn) ∩ S ′

∞(Rn) such that 
g = f in S ′

∞(Rn) and |||g|||Ḃα
p,q(Rn) ≤ C‖f‖Ḃα

p,q(Rn) for some positive constant C independent of f , where

|||g|||Ḃα
p,q(Rn) :=

{∑
2kαq‖g −B�,2−kg‖qLp(Rn)

}1/q

.

k∈Z
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Conversely, if f ∈ L1
loc(Rn) ∩ S ′

∞(Rn) and |||f |||Ḃα
p,q(Rn) < ∞, then f ∈ Ḃα

p,q(Rn) and ‖f‖Ḃα
p,q(Rn) ≤

C|||f |||Ḃα
p,q(Rn) for some positive constant C independent of f .

(ii) Let p ∈ (1, ∞] and q ∈ (1, ∞]. If f ∈ Ḟα
p,q(Rn), then there exists g ∈ L1

loc(Rn) ∩ S ′
∞(Rn) such that 

g = f in S ′
∞(Rn) and |||g|||Ḟα

p,q(Rn) ≤ C‖f‖Ḟα
p,q(Rn) for some positive constant C independent of f , where, 

when p ∈ (1, ∞),

|||g|||Ḟα
p,q(Rn) :=

∥∥∥∥∥∥
{∑

k∈Z

2kαq|g −B�,2−kg|q
}1/q

∥∥∥∥∥∥
Lp(Rn)

and, when p = ∞,

|||g|||Ḟα
∞,q(Rn) := sup

x∈Rn

sup
m∈Z

⎧⎪⎨⎪⎩ −
∫

B(x, 2−m)

∞∑
k=m

2kαq|g(y) −B�,2−kg(y)|q dy

⎫⎪⎬⎪⎭
1/q

.

Conversely, if f ∈ L1
loc(Rn) ∩ S ′

∞(Rn) and |||f |||Ḟα
p,q(Rn) < ∞, then f ∈ Ḟα

p,q(Rn) and ‖f‖Ḟα
p,q(Rn) ≤

C|||f |||Ḟα
p,q(Rn) for some positive constants C independent of f .

Remark 1.4. (i) Notice that f −B�,2−kf can be easily defined on any space of homogeneous type. Thus, the 
characterizations of Ḃα

p,q(Rn) and Ḟα
p,q(Rn) obtained in Theorem 1.3 provide a possible way to introduce 

Besov and Triebel–Lizorkin spaces with arbitrary positive smoothness order on spaces of homogeneous type, 
while the characterizations of Besov and Triebel–Lizorkin spaces via the usual differences cannot.

(ii) Observing that f − B1,tf = f − Btf , we see that, when α ∈ (0, 2), Theorem 1.3 just coincides with 
[32, Theorems 1.1 and 4.1]. When α ∈ (2, ∞), comparing with Theorem 1.3 and [32, Theorems 1.2 and 4.1], 
we find that the former provides a way to introduce Besov and Triebel–Lizorkin spaces with smoothness 
order no less than 2 on spaces of homogeneous type, while the later has a restriction that α cannot be any 
even positive integer and also cannot be generalized to any space of homogeneous type, due to the lack of 
derivatives on spaces of homogeneous type.

(iii) In [16], a concept of RD-spaces was introduced, namely, a space of homogeneous type whose measure 
also satisfies the inverse doubling condition is called an RD-space (see also [16,33] for several equivalent 
definitions of RD-spaces). Via approximations to the identity, a theory of Besov and Triebel–Lizorkin spaces 
with smoothness order in (−1, 1) on RD-spaces was also systematically developed in [16]. Then, a natural 
and interesting question is: on RD-spaces, whether the Besov and Triebel–Lizorkin spaces with smoothness 
order in (0, 1) defined in [16] coincide with those defined via f − B1,2−kf in spirit of Theorem 1.3 or not. 
We will not seek an answer of this question in this article.

Theorem 1.3 is proved in Section 2. Comparing with those proofs for various pointwise characterizations 
of Sobolev spaces W 2�,p(Rn) via f − B�,tf in [6], the proof of Theorem 1.3 is much more complicated. 
Indeed, the main idea of the proof for Theorem 1.3 is to write f −B�,2−kf as a convolution operator, then 
control f −B�,2−kf by certain maximal functions via calculating pointwise estimates of the related operator 
kernel and finally apply the vector-valued maximal inequality of Fefferman and Stein in [10]. The Calderón 
reproducing formula on Rn (see, for example, [12]) also plays a key role in this proof.

In Section 3, we further show that the inhomogeneous variant of Theorem 1.3 also holds true (see 
Theorem 3.1 below). We also show that Theorems 1.3 and 3.1 still hold true on Euclidean spaces with 
non-Euclidean metrics.

Finally, we make some conventions on notation. The symbol C denotes a positive constant which depends 
only on the fixed parameters n, α, p, q and possibly on auxiliary functions, unless otherwise stated; its value 
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may vary from line to line. We use the symbol A � B to denote that there exists a positive constant C such 
that A ≤ C B. The symbol A ∼ B is used as an abbreviation of A � B � A. We also use the symbol �s�
for any s ∈ R to denote the maximal integer not more than s.

2. Proof of Theorem 1.3

To prove Theorem 1.3, we need some technical lemmas. Let, for all t ∈ (0, ∞) and x ∈ R
n, I(x) :=

1
|B(0,1)|χB(0,1)(x) and It(x) := t−nI(x/t). Then

(B�,tf)(x) = −2(2�
�

) �∑
j=1

(−1)j
(

2�
�− j

)
(f ∗ Ijt)(x), x ∈ R

n, t ∈ (0,∞),

and hence

(B�,tf)∧(ξ) = m�(tξ)f̂(ξ), ξ ∈ R
n, (2.1)

where

m�(x) := −2(2�
�

) �∑
j=1

(−1)j
(

2�
�− j

)
Î(jx), x ∈ R

n. (2.2)

A straightforward calculation shows that

Î(x) = γn

1∫
0

cos(u|x|)(1 − u2)
n−1

2 du, x ∈ R
n, (2.3)

with γn := [
∫ 1
0 (1 − u2)n−1

2 du]−1 (see also Stein’s book [24, p. 430, Section 6.19]).

Lemma 2.1. For all � ∈ N and x ∈ R
n,

m�(x) = 1 −A�(|x|), (2.4)

where

A�(s) := γn
4�(2�
�

) 1∫
0

(1 − u2)
n−1

2

(
sin us

2

)2�
du, s ∈ R. (2.5)

Furthermore, s−2�A�(s) is a smooth function on R satisfying that there exist positive constants c1 and c2
such that

0 < c1 ≤ A�(s)
s2� ≤ c2, s ∈ (0, 4] (2.6)

and

sup
s∈R

∣∣∣∣∣
(

d

ds

)i(
A�(s)
s2�

)∣∣∣∣∣ < ∞, i ∈ N.
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Proof. Combining (2.2) with (2.3), we obtain

m�(x) = −2γn(2�
�

) 1∫
0

⎡⎣ �∑
j=1

(−1)j
(

2�
�− j

)
cos(ju|x|)

⎤⎦ (1 − u2)
n−1

2 du, x ∈ R
n. (2.7)

However, a straightforward calculation shows that, for all s ∈ R,

4�
(
sin s

2

)2�
=
(

2�
�

)
+ 2

�∑
j=1

(−1)j
(

2�
�− j

)
cos js.

This, together with (2.7), implies (2.4).
Next we show (2.6). By the mean value theorem, we know that, for all u ∈ (0, 1) and s ∈ R, there exists 

θ ∈ (0, 1) such that

(
sin us

2

)2�
=
(

1
2us
)2�(

cos usθ2

)2�

.

From this and (2.5), we deduce that, for all s ∈ (0, 4],

A�(s)
s2� ≤ γn

4�

2
(2�
�

) 1∫
0

(1 − u2)
n−1

2 u2� du =: c2 < ∞

and

A�(s)
s2� ≥ γn

4�

2
(2�
�

) min{1, 2π3s }∫
0

(1 − u2)
n−1

2 u2�
(

cos usθ2

)2�

du

≥ γn
1

2
(2�
�

) min{1, 2π3s }∫
0

(1 − u2)
n−1

2 u2� du

≥ γn
1

2
(2�
�

)
π
6∫

0

(1 − u2)
n−1

2 u2� du =: c1 > 0.

These prove (2.6).
Finally, by the mean value theorem again, an argument similar to the above also implies that

sup
s∈R

∣∣∣∣∣
(

d

ds

)i(
A�(s)
s2�

)∣∣∣∣∣ < ∞

for all i ∈ N. This finishes the proof of Lemma 2.1. �
Recall that the Hardy–Littlewood maximal operator M is defined by setting, for all f ∈ L1

loc(Rn),

Mf(x) := sup
B⊂Rn

−
∫
B

|f(y)| dy, x ∈ R
n,

where the supremum is taken over all balls B in Rn containing x. The following two lemmas can be verified 
straightforwardly.
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Lemma 2.2. Let {Tt}t∈(0,∞) be a family of multiplier operators given by setting, for all f ∈ L2(Rn),

(Ttf)∧(ξ) := m(tξ)f̂(ξ), ξ ∈ R
n, t ∈ (0,∞)

for some m ∈ L∞(Rn). If

‖∇n+1m‖L1(Rn) + ‖m‖L1(Rn) ≤ C1 < ∞,

then there exists a positive constant C such that, for all f ∈ L2(Rn) and x ∈ R
n,

sup
t∈(0,∞)

|Ttf(x)| ≤ CC1 Mf(x).

Proof. For all t ∈ (0, ∞), f ∈ L2(Rn) and x ∈ R
n, by the Fubini theorem, we see that

|Ttf(x)| =

∣∣∣∣∣∣
∫
Rn

m(tξ)f̂(ξ)eix·ξ dξ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Rn

f(y)
∫
Rn

m(tξ)ei(x−y)·ξ dξ dy

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫

|x−y|<t

f(y)
∫
Rn

m(tξ)ei(x−y)·ξ dξ dy

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫

|x−y|≥t

· · ·

∣∣∣∣∣∣∣ =: I + II.

It is easy to see that I � ‖m‖L1(Rn)Mf(x).
For II, via the Fubini theorem and the integration by parts, we also have

II �
∫

|x−y|≥t

|f(y)|
|x− y|n+1

∫
Rn

tn+1|∇n+1m(tξ)| dξ dy

� ‖∇n+1m‖L1(Rn)

∞∑
j=1

t

∫
2jt≤|x−y|<2j+1t

|f(y)|
|x− y|n+1 dy

� ‖∇n+1m‖L1(Rn)

∞∑
j=1

2−jMf(x) � ‖∇n+1m‖L1(Rn)Mf(x),

which completes the proof of Lemma 2.2. �
Remark 2.3. (i) The above proof of Lemma 2.2 actually yields the following more subtle estimate, which 
is also needed in the proof of Theorem 1.3: Assume that f ∈ L2(Rn), x ∈ B(z, s) for some z ∈ R

n

and s ∈ (0, ∞). Then there exists a positive constant C, independent of t, s, f and x, such that, for all 
l ∈ N ∩ (n, ∞) and t ∈ (0, ∞),

|Ttf(x)| ≤ C[‖m‖L1(Rn) + ‖∇lm‖L1(Rn)]
∞∑

2−i(l−n)M(fχB(z,2it+s))(x).

i=0
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Indeed, notice that x ∈ B(z, s), y ∈ B(x, t) and t ∈ (0, ∞) imply that y ∈ B(z, t + s). Thus, by the Fubini 
theorem, we find that

I ≤

∣∣∣∣∣∣∣
∫

|x−y|<t

f(y)χB(z,t+s)(y)
∫
Rn

m(tξ)ei(x−y)·ξ dξ dy

∣∣∣∣∣∣∣ � ‖m‖L1(Rn)M(fχB(z,t+s))(x).

Similarly, by the Fubini theorem and the integration by parts, together with � ∈ N ∩ (n, ∞), we know that

II �
∫

|x−y|≥t

|f(y)|
|x− y|l

∫
Rn

tl|∇lm(tξ)| dξ dy

� ‖∇lm‖L1(Rn)

∫
|x−y|≥t

tl−n|f(y)|
|x− y|l dy

� ‖∇lm‖L1(Rn)

∞∑
i=1

(2it)−ltl−n

∫
|x−y|∼2it

|f(y)|χB(z,2it+s)(y) dy

� ‖∇n+1m‖L1(Rn)

∞∑
i=1

2−i(l−n)M(fχB(z,2it+s))(x),

where |x − y| ∼ 2it means 2i−1t ≤ |x − y| < 2it. This finishes the proof of the above claim.
(ii) We also point out that the conclusions of Lemma 2.2 and (i) of this remark remain true for all 

f ∈ Lp(Rn) with p ∈ (1, ∞) and m ∈ S(Rn).

From the Hölder inequality when q ∈ [1, ∞] and the monotonicity of lq when q ∈ (0, 1), we immediately 
deduce the following conclusions, the details being omitted.

Lemma 2.4. Let {aj}j∈Z ⊂ C, q ∈ (0, ∞] and β ∈ (0, ∞). Then there exists a positive constant C, indepen-
dent of {aj}j∈Z, such that

⎡⎣∑
k∈Z

2kβq
⎛⎝ ∞∑

j=k

|aj |

⎞⎠q⎤⎦1/q

≤ C

(∑
k∈Z

2kβq|ak|q
)1/q

and ⎡⎣∑
k∈Z

2−kβq

⎛⎝ k∑
j=−∞

|aj |

⎞⎠q⎤⎦1/q

≤ C

(∑
k∈Z

2−kβq|ak|q
)1/q

.

Now we prove Theorem 1.3.

Proof of Theorem 1.3. We only prove (ii), the proof of (i) being similar and easier.
To show (ii), let ϕ ∈ S(Rn) satisfy (1.10) and 

∑
j∈Z

ϕ̂j ≡ 1 on Rn \{0}. Assume first that α ∈ (0, 2�), p ∈
(1, ∞) and q ∈ (1, ∞]. Let f ∈ Ḟα

p, q(Rn). We know that Ḟα
p, q(Rn) ↪→ L1

loc(Rn) in the sense of distributions; 
see, for example, [19, Proposition 4.2], [33, Proposition 5.1] or [34, Proposition 8.2] for a proof. Indeed, it 
was proved therein that there exists a sequence {Pj}j∈Z of polynomials of degree not more than �α− n/p�
such that the summation 

∑
(ϕj ∗ f +Pj) converges in L1

loc(Rn) and S ′
∞(Rn) to a function g ∈ L1

loc(Rn), 
j∈Z
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which is known to be the Calderón reproducing formula (see, for example, [11,12]). The function g serves 
as a representative of f . Thus, in the below proof, we identify f with g. Then g ∈ L1

loc(Rn) ∩S ′
∞(Rn). Now 

we show |||g|||Ḟα
p,q(Rn) � ‖f‖Ḟα

p,q(Rn), namely,

∥∥∥∥∥∥
{∑

k∈Z

2kαq|g −B�,2−kg|q
}1/q

∥∥∥∥∥∥
Lp(Rn)

� ‖f‖Ḟα
p,q(Rn). (2.8)

To this end, for all k, j ∈ Z and ξ ∈ R
n \ {0}, define Tk,j as

(Tk,jf)∧(ξ) := ϕ̂(2−jξ)A�(2−k|ξ|)f̂(ξ), ξ ∈ R
n. (2.9)

Noticing that the degree of each Pj is not more than �α−n/p� < 2� and P−B�,2−kP = 0 for all polynomials 
P of degree less than 2�, we then find that

g −B�,2−kg =
∑
j∈Z

Tk,jf. (2.10)

We split the sum 
∑

j∈Z
in this last equation into two parts 

∑
j≥k and 

∑
j<k. The first part is relatively 

easy to deal with. Indeed, for j ≥ k, by (2.9), we see that, for all x ∈ R
n,

|Tk,jf(x)| = |(I −B�,2−k)(f ∗ ϕ2−j )(x)|

≤ |f ∗ ϕ2−j (x)| + C�

�∑
i=1

|Bi2−k(f ∗ ϕ2−j )(x)|

� M(f ∗ ϕ2−j )(x). (2.11)

From this and Lemma 2.4, it follows that

∑
k∈Z

2kαq
∣∣∣∣∣∣
∑
j≥k

Tk,jf

∣∣∣∣∣∣
q

�
∑
k∈Z

2kαq
⎡⎣∑

j≥k

M(f ∗ ϕ2−j )

⎤⎦q

�
∑
j∈Z

2jqα[M(f ∗ ϕ2−j )]q. (2.12)

Now we handle the sum 
∑

j<k. Since ϕ satisfies (1.10), by [12, Lemma (6.9)], there exists ψ ∈ S(Rn)
satisfying (1.10) such that ∑

j∈Z

ϕ̂(2−jξ)ψ̂(2−jξ) = 1, ξ ∈ R
n \ {0}.

Thus, for all ξ ∈ R
n \ {0},

(Tk,jf)∧(ξ) = ϕ̂(2−jξ)A�(2−k|ξ|)f̂j(ξ) = mk,j(ξ)f̂j(ξ),

where fj :=
∑1

i=−1 f ∗ ψ2i−j and

mk,j(ξ) := ϕ̂(2−jξ)A�(2−k|ξ|)
−k 2� (2−k|ξ|)2�, ξ ∈ R

n \ {0}.
(2 |ξ|)
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Write m̃k,j(ξ) := mk,j(2jξ). From Lemma 2.1, it follows that, for all j < k and ξ ∈ R
n \ {0},

|∂βm̃k,j(ξ)| � 22�(j−k)χB(0,2)\B(0,1/2)(ξ), β ∈ Z
d
+, (2.13)

and hence ‖m̃k,j‖L1(Rn) + ‖∇n+1m̃k,j‖L1(Rn) � 22�(j−k), which, together with Lemma 2.2, implies that

|Tk,jf(x)| � 22�(j−k)Mfj(x), x ∈ R
n.

Thus, by Lemma 2.4, for α ∈ (0, 2�), we have

∑
k∈Z

2kαq
∣∣∣∣∣∣

k∑
j=−∞

Tk,jf

∣∣∣∣∣∣
q

�
∑
k∈Z

2k(α−2�)q

⎛⎝ k∑
j=−∞

22�jMfj

⎞⎠q

�
∑
j∈Z

2jαq[Mfj ]q. (2.14)

Combining (2.12) and (2.14) with (2.10), and using the Fefferman–Stein vector-valued maximal inequality 
(see [10] or [24]), we see that∥∥∥∥∥∥

{∑
k∈Z

2kαq|g −B�,2−kg|q
}1/q

∥∥∥∥∥∥
Lp(Rn)

�

∥∥∥∥∥∥
{∑

k∈Z

2kαq[M(f ∗ ϕ2−k)]q
}1/q

∥∥∥∥∥∥
Lp(Rn)

� ‖f‖Ḟα
p,q(Rn).

This proves (2.8) and hence finishes the proof of the first part of Theorem 1.3(ii).
To see the inverse conclusion, we only need to prove

‖f‖Ḟα
p,q(Rn) �

∥∥∥∥∥∥
{∑

k∈Z

2kαq|f −B�,2−kf |q
}1/q

∥∥∥∥∥∥
Lp(Rn)

(2.15)

whenever f ∈ L1
loc(Rn) ∩S ′

∞(Rn) and the right-hand side of (2.15) is finite. To this end, we first claim that

|f ∗ ϕ2−j (x)| � M(f −B�,2−jf)(x), j ∈ Z, x ∈ R
n. (2.16)

Indeed, we see that, for all j ∈ Z and ξ ∈ R
n \ {0},

(f ∗ ϕ2−j )∧(ξ) = ϕ̂(2−jξ)
A�(2−j |ξ|) (f −B�,2−jf)∧(ξ) =: η(2−jξ)(f −B�,2−jf)∧(ξ),

where η(ξ) := ϕ̂(ξ)
A�(|ξ|) for all ξ ∈ R

n \ {0}, which is well defined due to (2.6). By Lemma 2.1, we know that 
η ∈ C∞

c (Rn) and supp η ⊂ {ξ ∈ R
n : 1

2 ≤ |ξ| ≤ 2}. The claim (2.16) then follows from Lemma 2.2.
Now, using the claim (2.16) and the Fefferman–Stein vector-valued maximal inequality (see [10] or [24]), 

we find that

‖f‖Ḟα
p,q(Rn) �

∥∥∥∥∥∥∥
⎧⎨⎩∑

j∈Z

2jαq
[
M(f −B�,2−jf)

]q⎫⎬⎭
1/q
∥∥∥∥∥∥∥

Lp(Rn)
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�

∥∥∥∥∥∥∥
⎡⎣∑

j∈Z

2jαq|f −B�,2−jf |q
⎤⎦ 1

q

∥∥∥∥∥∥∥
Lp(Rn)

∼ |||f |||Ḟα
p,q(Rn).

This proves the desired conclusion when α ∈ (0, 2�), p ∈ (1, ∞) and q ∈ (1, ∞].
It remains to consider the case that α ∈ (0, 2�), p = ∞ and q ∈ (1, ∞]. The proof is similar to that of the 

case p ∈ (1, ∞) but more subtle. Assume first that f ∈ Ḟα
∞,q(Rn). By an argument similar to the above, in 

this case, we need to show

sup
x∈Rn

sup
m∈Z

⎧⎪⎨⎪⎩ −
∫

B(x, 2−m)

∞∑
k=m

2kαq|g(y) −B�,2−kg(y)|q dy

⎫⎪⎬⎪⎭
1/q

� ‖f‖Ḟα
∞,q(Rn). (2.17)

Notice that, if y ∈ B(x, 2−m) and z ∈ B(y, i2−k) with k ≥ m and i ∈ {1, . . . , �}, then z ∈ B(x, (� + 1)2−m). 
Then, similar to (2.11), we know that, for j ≥ k and y ∈ B(x, 2−m),

|Tk,jf(y)| = |(I −B�,2−k)(f ∗ ϕ2−j )(y)|

≤ |f ∗ ϕ2−j (y)| + C�

�∑
i=1

|Bi2−k(f ∗ ϕ2−j )(y)|

� M(|f ∗ ϕ2−j |χB(x,(�+1)2−m))(y),

which, together with (2.10) and Lemma 2.4, implies that

∑
k≥m

2kαq
∣∣∣∣∣∣
∑
j≥k

Tk,jf(y)

∣∣∣∣∣∣
q

�
∑
k≥m

2kαq
⎡⎣∑

j≥k

M(|f ∗ ϕ2−j |χB(x,(�+1)2−m))(y)

⎤⎦q

�
∑
j≥m

2jαq[M(|f ∗ ϕ2−j |χB(x,(�+1)2−m))(y)]q. (2.18)

When m ≤ j < k, by (2.13), and using Remark 2.3(i) instead of Lemma 2.2, we find that, for all k ≥ m, 
integer l ≥ n + 1 and y ∈ B(x, 2−m),

|Tk,jf(y)| � 22�(j−k)
∞∑
i=0

2−i(l−n)M(fjχB(x,2i−j+2−m))(y)

and hence, by Lemma 2.4 and the Minkowski inequality, we see that

⎧⎨⎩∑
k≥m

2kαq
∣∣∣∣∣∣

k∑
j=m

Tk,jf(y)

∣∣∣∣∣∣
q⎫⎬⎭

1/q

�
∞∑
i=0

2−i(l−n)

⎧⎨⎩∑
k≥m

2k(α−2�)q

⎡⎣ k∑
j=m

22�jM(fjχB(x,(2i+1)2−m)(y)

⎤⎦q⎫⎬⎭
1/q

�
∞∑

2−i(l−n)

⎧⎨⎩
∞∑

2jαq[M(fjχB(x,(2i+1)2−m)(y)]q
⎫⎬⎭

1/q

. (2.19)

i=0 j=m
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When j < m ≤ k, we invoke (2.13) and the proof of Remark 2.3(i) to find that, for all y ∈ R
n,

|Tk,jf(y)| ≤

∣∣∣∣∣∣∣
∫

|z−y|<2−j

fj(z)
∫
Rn

m̃k,j(2−jξ)ei(x−y)·ξ dξ dz

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

∫
|z−y|≥2−j

· · ·

∣∣∣∣∣∣∣
� 22�(j−k) −

∫
|z−y|<2−j

|fj(z)| dz

+
∫

|z−y|≥2−j

|fj(z)|
|z − y|l

∫
Rn

2−jl|∇lm̃k,j(2−jξ)| dξ dz

� 22�(j−k)
∞∑
i=0

2−i(l−n) −
∫

|z−y|∼2i−j

|fj(z)| dz

� 22�(j−k)
∞∑
i=0

2−i(l−n)2−jα‖f‖Ḟα
∞,q(Rn)

� 22�(j−k)2−jα‖f‖Ḟα
∞,q(Rn), (2.20)

where |z − y| ∼ 2i−j means that 2i−j−1 ≤ |z − y| < 2i−j and we chose l > n.
Combining (2.10), (2.18), (2.19) and (2.20), and applying the Minkowski inequality and the boundedness 

of M on Lq(Rn) with q ∈ (1, ∞], we know that, for all m ∈ Z and x ∈ R
n,

⎧⎪⎨⎪⎩ −
∫

B(x, 2−m)

∞∑
k=m

2kαq|g(y) −B�,2−kg(y)|q dy

⎫⎪⎬⎪⎭
1/q

�

⎧⎪⎨⎪⎩ −
∫

B(x, 2−m)

∑
j≥m

2jαq[M(|f ∗ ϕ2−j |χB(x,(�+1)2−m))(y)]q dy

⎫⎪⎬⎪⎭
1/q

+
∞∑
i=0

2−i(l−n)

⎧⎪⎨⎪⎩ −
∫

B(x, 2−m)

∑
j≥m

2jαq[M(fjχB(x,(2i+1)2−m))(y)]q dy

⎫⎪⎬⎪⎭
1/q

+

⎧⎪⎨⎪⎩ −
∫

B(x, 2−m)

∑
k≥m

2kαq
⎡⎣ ∑

j≤m−1
22�(j−k)2−jα

⎤⎦q

dy

⎫⎪⎬⎪⎭
1/q

‖f‖Ḟα
∞,q(Rn)

�

⎧⎪⎨⎪⎩ −
∫

B(x, (�+1)2−m)

∑
j≥m

2jαq|f ∗ ϕ2−j (y)| dy

⎫⎪⎬⎪⎭
1/q

+
∞∑
i=0

2−i(l−n)2in/q

⎧⎪⎨⎪⎩ −
∫

B(x,(2i+1)2−m)

∑
j≥m

2jαq|fj(y)|q dy

⎫⎪⎬⎪⎭
1/q

+ ‖f‖Ḟα
∞,q(Rn)

� ‖f‖Ḟα
∞,q(Rn),

where we took l > n(1 + 1/q). This proves (2.17).
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Finally, the inverse estimate of (2.17) is deduced from an argument similar to that used in the above 
proof for (2.17), with m̃k,j and fj therein replaced by η := ϕ̂

A�(|·|) and f−B�,2−jf , respectively. This finishes 
the proof for the case α ∈ (0, 2�), p = ∞ and q ∈ (1, ∞], and hence Theorem 1.3. �
3. Inhomogeneous spaces and further remarks

In this section, we first present the inhomogeneous version of Theorem 1.3. As a further generalization, 
we show that the conclusions of Theorems 1.3 and 3.1 remain valid on Euclidean spaces with non-Euclidean 
metrics.

It is known that, when p ∈ (1, ∞) and α ∈ (0, ∞), then Bα
p, q(Rn) ∪Fα

p, q(Rn) ⊂ Lp(Rn), while when p = ∞
and α ∈ (0, ∞), then Bα

∞, q(Rn) ∪ Fα
∞, q(Rn) ⊂ C(Rn), where C(Rn) denotes the set of all complex-valued 

uniformly continuous functions on Rn equipped with the sup-norm; see, for example, [22, Theorem 3.3.1]
and [20, Chapter 2.4, Corollary 2].

Theorem 3.1. Let � ∈ N and α ∈ (0, 2�).
(i) Let q ∈ (0, ∞]. Then f ∈ Bα

p,q(Rn) if and only if f ∈ Lp(Rn) when p ∈ (1, ∞) or f ∈ C(Rn) when 
p = ∞, and

|||f |||Bα
p,q(Rn) := ‖f‖Lp(Rn) +

{ ∞∑
k=1

2kαq‖f −B�,2−kf‖qLp(Rn)

}1/q

< ∞.

Moreover, ||| · |||Bα
p,q(Rn) is equivalent to ‖f‖Bα

p,q(Rn).
(ii) Let p ∈ (1, ∞] and q ∈ (1, ∞]. Then f ∈ Fα

p,q(Rn) if and only if f ∈ Lp(Rn) when p ∈ (1, ∞) or 
f ∈ C(Rn) when p = ∞, and |||f |||Fα

p,q(Rn) < ∞, where, when p ∈ (1, ∞),

|||f |||Fα
p,q(Rn) := ‖f‖Lp(Rn) +

∥∥∥∥∥∥
{ ∞∑

k=1

2kαq|f −B�,2−kf |q
}1/q

∥∥∥∥∥∥
Lp(Rn)

and, when p = ∞,

|||f |||Fα
∞,q(Rn) := ‖f‖L∞(Rn) + sup

x∈Rn

sup
m≥1

⎧⎪⎨⎪⎩ −
∫

B(x, 2−m)

∞∑
k=m

2kαq|f(y) −B�,2−kf(y)|q dy

⎫⎪⎬⎪⎭
1/q

.

Moreover, ||| · |||Fα
p,q(Rn) is equivalent to ‖ · ‖Fα

p,q(Rn).

Proof. By similarity, we only consider (ii). The proof is similar to that of Theorem 1.3, and we mainly 
describe the difference. We need to use the following well-known result: when α ∈ (0, ∞) and p, q ∈ (1, ∞], 
then, for all f ∈ Fα

p,q(Rn),

‖f‖Fα
p,q(Rn) ∼ ‖f‖Lp(Rn) + ‖̃f‖Fα

p,q(Rn), (3.1)

where ‖̃f‖Fα
p,q(Rn) is defined as ‖f‖Fα

p,q(Rn) in Definition 1.2 with k ∈ Z+ and m ∈ Z+ therein replaced, 
respectively, by k ∈ N and m ∈ N (which can be easily seen from [22, Theorem 3.3.1] and [20, Chapter 2.4, 
Corollary 2]).

Assume first that f ∈ Fα
p,q(Rn). By [22, Theorem 3.3.1] and [20, Chapter 2.4, Corollary 2], we know 

that f ∈ Lp(Rn) when p ∈ (1, ∞) or f ∈ C(Rn) when p = ∞. On the other hand, repeating the proof of 
Theorem 1.3, we see that, when p ∈ (1, ∞),
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∥∥∥∥∥∥
{ ∞∑

k=1

2kαq|f −B�,2−kf |q
}1/q

∥∥∥∥∥∥
Lp(Rn)

� ‖f‖Fα
p,q(Rn)

and, when p = ∞,

sup
x∈Rn

sup
m≥1

⎧⎪⎨⎪⎩ −
∫

B(x, 2−m)

∞∑
k=m

2kαq|f(y) −B�,2−kf(y)|q dy

⎫⎪⎬⎪⎭
1/q

� ‖f‖Fα
∞,q(Rn)

which show |||f |||Fα
p,q(Rn) � ‖f‖Fα

p,q(Rn).
Conversely, assume that f ∈ Lp(Rn) when p ∈ (1, ∞) or f ∈ C(Rn) when p = ∞, and |||f |||Fα

p,q(Rn) < ∞. 
Again the proof of Theorem 1.3 shows that, when p ∈ (1, ∞),

‖̃f‖Fα
p,q(Rn) �

∥∥∥∥∥∥
{ ∞∑

k=1

2kαq|f −B�,2−kf |q
}1/q

∥∥∥∥∥∥
Lp(Rn)

and, when p = ∞,

‖̃f‖Fα
∞,q(Rn) � sup

x∈Rn

sup
m≥1

⎧⎪⎨⎪⎩ −
∫

B(x, 2−m)

∞∑
k=m

2kαq|f(y) −B�,2−kf(y)|q dy

⎫⎪⎬⎪⎭
1/q

� ‖f‖Fα
∞,q(Rn).

This, together with (3.1), further implies that ‖f‖Fα
∞,q(Rn) � |||f |||Fα

∞,q(Rn), and hence finishes the proof of 
Theorem 3.1. �

Finally, we point out that the conclusions of Theorems 1.3 and 3.1 are independent of the choice of the 
metric in Rn. To be precise, let ‖ · ‖ be a norm in Rn, which is not necessarily the usual Euclidean norm. 
Then (Rn, ‖ · ‖) is a finite dimensional normed vector space with the unit ball

K := {x ∈ R
n : ‖x‖ ≤ 1}.

Clearly, K is a compact and symmetric convex set in Rn satisfying that −K = K and B(0, δ1) ⊂ K ⊂
B(0, δ2) for some δ1, δ2 ∈ (0, ∞).

For all � ∈ N, f ∈ L1
loc(Rn) and x ∈ R

n, define

B�,t,Kf(x) := −2(2�
�

) �∑
j=1

(−1)j
(

2�
�− j

)
Bjt,Kf(x).

Then we have the following conclusion.

Theorem 3.2. The conclusions of Theorems 1.3 and 3.1 remain valid with B�,t therein replaced by B�,t,K.

Since the proof of Theorem 3.2 is essentially similar to the proofs of Theorems 1.3 and 3.1, we only 
describe the main differences, the other details being omitted.

We first observe that

(B�,t,Kf)∧(ξ) := m�,K(tξ)f̂(ξ), ξ ∈ R
n,
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where

m�,K(x) := −2(2�
�

) �∑
j=1

(−1)j
(

2�
�− j

)
ÎK(jx), x ∈ R

n.

Similar to the proof of Lemma 2.1, by means of the symmetry property of K, a straightforward calculation 
shows that, for all x ∈ R

n,

m�,K(x) = −
∫
K

−2(2�
�

) �∑
j=1

(−1)j
(

2�
�− j

)
cos(jx · y) dy =: 1 −A�,K(x),

where

A�,K(x) := 4�(2�
�

) −
∫
K

(
sin x · u

2

)2�
du.

Furthermore, we have the following estimates: for all x ∈ R
n with |x| ≤ 4,

0 < C1 ≤ A�,K(x)
|x|2� ≤ C2 (3.2)

and

|∇iA�,K(x)| ≤ C min{|x|2�−i, 1}, i ∈ N, (3.3)

where C1, C2 and C are positive constants independent of x. Similar to the proof of Lemma 2.2, by (3.2)
and (3.3), we observe that

sup
t∈(0,∞)

−
∫
K

|f(x + ty)| dy � Mf(x)

for all f ∈ L1
loc(Rn) and x ∈ R

n.
Finally, notice that, by the equivalence of norms on finite-dimensional vector spaces, the spaces Ḃα

p,q(Rn), 
Ḟα
p,q(Rn) and their inhomogeneous counterparts are essentially independent of the choice of the norm of the 

underlying space Rn. By means of this observation and using (3.2), (3.3) in place of Lemma 2.1, we obtain 
Theorem 3.2 via some arguments similar to those used in the proofs of Theorems 1.3 and 3.1, the details 
being omitted.
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