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Abstract

Let sn(T ) denote the nth approximation, isomorphism, Gelfand, Kolmogorov or Bernstein number of
the Hardy-type integral operator T given by

T f (x) = v(x)
 x

a
u(t) f (t)dt, x ∈ (a, b) (−∞ < a < b < +∞)

and mapping a Banach function space E to itself. We investigate some geometrical properties of E for
which

C1

 b

a
u(x)v(x)dx ≤ lim inf

n→∞
nsn(T ) ≤ lim sup

n→∞

nsn(T ) ≤ C2

 b

a
u(x)v(x)dx

under appropriate conditions on u and v. The constants C1,C2 > 0 depend only on the space E .
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1. Introduction

The s-numbers such as approximation, isomorphism, Bernstein, Gelfand and Kolmogorov
numbers sn(T ) of a compact linear map T acting between Banach spaces have proved to give
a very useful measure of how compact the map is. For a fine survey of these numbers and their
interactions with various parts of mathematics we refer to the monumental book [23] by Pietsch.
The wealth of applications of these ideas has naturally led to the detailed study of s-numbers of
particular maps, prominent among which are the weighted Hardy-type operators T , for which
sharp upper and lower estimates of the approximation numbers in L p spaces, (1 ≤ p ≤ ∞)

are investigated in [5–7,14,15,22]. The problem of the estimates of approximation numbers of a
two-weighted Hardy-type operator T : L p

[a, b] → Lq
[a, b] was studied in the paper [20].

For various other s-numbers see [10,11] and the recent book [19]. When v = u = 1 (i.e. the
non-weighted case) the problem of the estimation of approximation numbers for the Hardy
operator acting between variable exponent Lebesgue spaces L p(·)(a, b) was considered in [13]:
see the recent books [19,12]. In Banach function spaces, estimates of approximation numbers
were considered in [21].

Our purpose in this paper is to study s-numbers for a weighted Hardy-type operator T acting
in a Banach function space E . Under some geometrical assumptions on E , and on the weights
u, v, we obtain two-sided estimates for its approximation, isomorphism, Bernstein, Gelfand and
Kolmogorov numbers. Our methods of proof are similar to those of [19] and are based on the
extension of the estimates of the function A (see Section 4) to Banach function spaces under
certain geometrical assumptions.

The paper is organized as follows. Section 2 contains notation, preliminaries and formulation
of the main results, while in Section 3 we present an application to Lebesgue spaces with variable
exponent and in Section 4 properties of the function A are established. Estimates of s-numbers
of the operator are given in Section 5. Finally, asymptotic estimates and the proof of the main
result are given in Section 6.

2. Notation, definitions and preliminaries

Let L(I ) be the space of all Lebesgue-measurable real functions on I = (a, b), where
−∞ < a < b < +∞. A Banach subspace E of L(I ) is said to be a Banach function space
(BFS) if:

(1) the norm ∥ f ∥E is defined for every measurable function f and f ∈ E if and only if
∥ f ∥E < ∞ : ∥ f ∥E = 0 if and only if f = 0 a.e.;

(2) ||| f |||E = ∥ f ∥E for all f ∈ E ;
(3) if 0 ≤ f ≤ g a.e., then ∥ f ∥E ≤ ∥g∥E ;
(4) if 0 ≤ fn ↑ f a.e., then ∥ fn∥E ↑ ∥ f ∥E ;
(5) L∞(I ) ⊂ E ⊂ L1(I ).
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Let J be an arbitrary interval of I . By E(J ) we denote the “restriction” of the space E to
J ; E(J ) = { f χJ : f ∈ E}, with the norm ∥ f ∥E(J ) = ∥ f χJ ∥E .

Given a Banach function space E , its associate space E ′ consists of those g ∈ S such that
f · g ∈ L1 for every f ∈ E with norm ∥g∥E ′ = sup


∥ f · g∥L1 : ∥ f ∥E ≤ 1


. E ′ is a BFS on I

and a closed norm fundamental subspace of the conjugate space E∗ (see [1, Theorem I.2.9]).
We say that the space E has absolutely continuous norm (AC-norm) if for all f ∈ E ,

∥ f χXn ∥E → 0 for every sequence of measurable sets {Xn} ⊂ I such that χXn → 0 a.e. Note
that the Hölder inequality

I
f (x)g(x)dx ≤ ∥ f ∥E∥g∥E ′

holds for all f ∈ E and g ∈ E ′ and is sharp (for more details we refer to [1]). Note that BFS E is
reflexive if and only if both E and its associate space E ′ have AC-norm (see [1, Theorem I.4.4]).

Let E be a Banach space with dual E∗; the value of x∗ at x ∈ E is denoted by (x, x∗)E or
(x, x∗).

We recall that E is said to be strictly convex if whenever x, y ∈ E are such that x ≠ y and
∥x∥ = ∥y∥ = 1, and λ ∈ (0, 1), then ∥λx + (1 − λ)y∥ < 1. This simply means that the unit
sphere in E does not contain any line segment.

By Π we denote the family of all sequences Q = {Ii } of disjoint intervals in I such that
I = ∪Ii ∈Q Ii . We ignore the difference in notation caused by a null set.

Everywhere in the sequel by lQ, (Q ∈ Π ) we denote a Banach sequence space (BSS)
(indexed by a partition Q = {Ii } of I ), meaning that axioms (1)–(4) are satisfied with respect to
the counting measure, and let {eIi } denote the standard unit vectors in lQ.

Throughout the paper we denote by C,C1,C2 various positive constants independent of
appropriate quantities and not necessarily the same at each occurrence. By A ≈ B we mean
that 0 < C1 ≤ A/B ≤ C2 < ∞ for some C1,C2.

Definition 2.1. Let l = {lQ}Q∈Π be a family of BSSs. A BFS E is said to satisfy a uniform
upper (lower) l-estimate if there exists a constant C > 0 such that for every f ∈ E and Q ∈ Π
we have

∥ f ∥E ≤ C


Ii ∈Q

 f χIi ∥E ·eIi ∥lQ


Ii ∈Q

 f χIi ∥E ·eIi ∥lQ ≤ C∥ f ∥E


.

Definition 2.1 was introduced in [16]. The idea behind it is simply to generalize the following
property of the Lebesgue norm:

∥ f ∥
p
L p =


i

∥ f χΩi ∥
p
L p

for a partition of Rn into measurable sets Ωi . The notions of uniform upper (lower) l-estimates,
when lQ1 = lQ2 for all Q1,Q2 ∈ Π , were introduced by Berezhnoi in [2].

Theorem 2.2 ([16]). Let E be a BFS. Then the following assertions are equivalent:

(1) There is a family l = {lQ}Q∈Π of BSSs such that E satisfies simultaneously upper and lower
l = {lQ}Q∈Π estimates.



D. Edmunds et al. / Journal of Approximation Theory 207 (2016) 76–97 79

(2) There exists a constant C > 0 such that for any f ∈ E and Q ∈ Π ,

1
C

∥ f ∥E ≤


Ii ∈Q

∥ f χIi ∥E

∥χIi ∥E
· χIi


E

≤ C∥ f ∥E . (2.1)

(3) There exists a constant C1 > 0 such that
Ii ∈Q

∥ f χIi ∥E∥gχIi ∥E ′ ≤ C1∥ f ∥E∥g∥E ′ (2.2)

for any Q ∈ Π and every f ∈ E, g ∈ E ′.

Note also that if E simultaneously satisfies upper and lower l = {lQ}Q∈Π estimates then E ′

simultaneously satisfies upper and lower l ′ = {l ′Q}Q∈Π estimates (see [16]).
We investigate properties of the Hardy-type operator of the form

T f (x) = Ta,I,u,v f (x) = v(x)
 x

a
f (t)u(t)dt,

where u and v are given real valued nonnegative functions with |{x : u(x) = 0}| = |{x : v(x) =

0}| = 0 as a mapping between BFS (by | · | we denote Lebesgue measure). This operator appears
naturally in the theory of differential equations and it is important to establish when operators of
this kind have properties such as boundedness, compactness, and to estimate their eigenvalues,
or their approximation numbers. We shall assume that

uχ(a,x) ∈ E ′ (2.3)

and

vχ(x,b) ∈ E (2.4)

whenever a < x < b.
In [16] the following was proved.

Theorem 2.3. Let E and F be BFSs with the following property: there exists a family of BSS
l = {lQ}Q∈Π such that E satisfies a uniform lower l-estimate and F a uniform upper l-estimate.
Suppose that (2.3) and (2.4) hold. Then T is a bounded operator from E into F if and only if

sup
a<t<b

A(t) = sup
a<t<b

∥vχ(t,b)∥F∥uχ(a,t)∥E ′ < ∞.

We observe that similar results hold when we replace v and u by vχJ and uχJ respectively,
where J is any subinterval of I . Note that in [16] the verification of the above conditions is carried
out only for I . However, the methods of proof work equally well for arbitrary intervals J ⊂ I.

Theorem 2.4. Let J = (c, d) be any interval of I ; let E and F be BFS for which there exists
a family of BSS l = {lQ}Q∈Π such that E satisfies a uniform lower l-estimate and F a uniform
upper l-estimate. Then the operator

TJ f (x) = v(x)χJ (x)
 x

a
u(t)χJ (t) f (t)dt

is bounded from E into F if and only if

AJ = sup
t∈J

AJ (t) = sup
t∈J

∥vχJχ(t,d)∥F∥uχJχ(c,t)∥E ′ < ∞.

Moreover AJ ≤ ∥TJ ∥ ≤ K · AJ , where K ≥ 1 is a constant independent of J.
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In [8] the authors establish a general criterion for T to be compact from E to F when
T : E → F is bounded. Indeed the following theorem is valid.

Theorem 2.5. Let T : E → F be bounded, where E, F are BFS with AC-norms. Then T is
compact from E to F if and only if the following two statements are satisfied:

lim
x→a+

sup
a<r<x

∥vχ(r,x)∥F∥uχ(a,r)∥E ′ = 0,

and

lim
x→b−

sup
x<r<b

∥vχ(r,b)∥F∥uχ(x,r)∥E ′ = 0.

Note that if E and F have AC-norms and u ∈ E ′, v ∈ F then T : E → F is compact.
More detailed information about the compactness properties of T is provided by the

approximation, isomorphism, Bernstein, Gelfand and Kolmogorov numbers and we next recall
the definition of those quantities.

B(E, F) will denote the space of all bounded linear maps of E to F . Given a closed linear
subspace M of E , the embedding map of M into E will be denoted by J E

M and the canonical map
of E onto the quotient space E/M by QE

M . Let S ∈ B(E, E). Then the modulus of injectivity of
T is

j (S) = sup{ρ ≥ 0 : ∥Sx∥E ≥ ρ∥x∥E for all x ∈ E}.

Definition 2.6. Let S ∈ B(E, E) and n ∈ N. Then the nth approximation, isomorphism,
Gelfand, Bernstein and Kolmogorov numbers of S are defined by

an(S) = inf{∥S − P∥ : P ∈ B(E, E), rank(P) < n};

in(S) = sup{∥A∥
−1

∥B∥
−1

},

where the supremum is taken over all possible Banach spaces G with dim G ≥ n and maps
A ∈ B(E,G), B ∈ B(G, E) such that ASB is the identity on G;

cn(S) = inf{∥S J E
M∥ : codim(M) < n};

bn(S) = sup{ j (S J E
M ); dim(M) ≥ n};

dn(S) = inf{∥QE
M S∥ : dim(M) < n},

respectively.

Below sn(S) denotes any of the nth approximation, isomorphism, Gelfand, Kolmogorov or
Bernstein numbers of the operator S. We summarize some of the facts concerning the numbers
sn(S) in the following theorem (see [19]):

Theorem 2.7. Let S ∈ B(E, E) and n ∈ N. Then

an(S) ≥ cn(S) ≥ bn(S) ≥ in(S)

and

an(S) ≥ dn(S) ≥ bn(S) ≥ in(S).

The behavior of the s-numbers of the Hardy-type operator T is reasonably well understood in
case E = F = L p(a, b).
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Theorem 2.8. Suppose that 1 < p < ∞, v ∈ L p(a, b), u ∈ Lq(a, b) where 1/p + 1/q = 1.
Then for T : L p(a, b) → L p(a, b) we have

lim
n→∞

nsn(T ) =
1
2
γp

 b

a
u(x)v(x)dx,

where γp = π−1 p1/qq1/p sin(π/p).

When p = 2 and the sn are approximation numbers this was first established in [7], see
also [22]. The general case, namely that when 1 < p < ∞, was proved in [15], where it appears
as a special case of results for trees. When p = 2, for nice u and v these results were improved
in [9] and more recently extended for 1 < p < ∞ in [18].

We say that a space E fulfills the Muckenhoupt condition if for some constant C > 0 and for
all intervals J ⊂ I we have

1
|J |

∥χJ ∥E∥χJ ∥E ′ ≤ C.

Note that if E fulfills the Muckenhoupt condition, then using Hölder’s inequality we obtain

1
|J |


J
| f (x)|dx ≤ C

∥ f χJ ∥E

∥χJ ∥E
,

and if additionally E simultaneously satisfies upper and lower l = {lQ}Q∈Π estimates, then from
(2.1) we obtain

Ii ∈Q
χIi

1
|Ii |


Ii

| f (x)|dx


E

≤ C1∥ f ∥E ,

where C1 > 0 is an absolute constant independent of the partition Q of I . If for a space E
we have the Muckenhoupt condition and (2.1), we denote this by writing E ∈ M. Note that in
the case of a reflexive variable exponent Lebesgue space the condition L p(·)

∈ M implies the
boundedness of the Hardy–Littlewood maximal operator in L p(·) (see [3,4]).

The main result of this paper is the following theorem.

Theorem 2.9. Let E be BFS belong to the class M. Let the spaces E, E∗ be strictly convex
and assume that E and E ′ have AC-norms. Suppose u ∈ E ′, v ∈ E. Then there exist constants
C1 = C1(E),C2 = C2(E) > 0 such that, for the map T : E → E

C1

 b

a
u(x)v(x)dx ≤ lim inf

n→∞
nsn(T ) ≤ lim sup

n→∞

nsn(T ) ≤ C2

 b

a
u(x)v(x)dx .

3. Variable exponent Lebesgue spaces

Given a measurable function p(·) : (a, b) → [1,+∞), L p(·)(a, b) denotes the set of mea-
surable functions f on (a, b) such that for some λ > 0,

(a,b)


| f (x)|

λ

p(x)

dx < ∞.
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This set becomes a Banach function space when equipped with the norm

∥ f ∥p(·) = inf


λ > 0 :


(a,b)


| f (x)|

λ

p(x)

dx ≤ 1


.

These spaces and corresponding variable Sobolev spaces W k,p(·) are of interest in their own
right, and also have applications to partial differential equations and the calculus of variations.
(For more details of results about variable exponent Lebesgue spaces we refer to [4].)

We say that a function p : (a, b) → (1,∞) is log-Hölder continuous if there exists C > 0
such that

|p(x)− p(y)| ≤
C

log(e + 1/|x − y|)
for all x, y ∈ (a, b) and x ≠ y.

Denote by Plog the set of all log-Hölder continuous exponents that satisfy

p− = ess inf
x∈(a,b)

p(x) > 1, p+ = ess sup
x∈(a,b)

p(x) < ∞.

Note that the log-Hölder continuous condition is in fact optimal in the sense of the modulus
of continuity, for boundedness of the Hardy–Littlewood maximal operator in variable Lebesgue
spaces (see [3,4]).

We say that an exponent p(·) ∈ Plog is strongly log-Hölder continuous (and write p(·) ∈

S P log) if there is an increasing continuous function defined on [0, b − a] such that
limt→0+ ψ(t) = 0 and

−|p(x)− p(y)| ln |x − y| ≤ ψ(|x − y|) for all x, y ∈ (a, b) with 0 < |x − y| < 1/2.

In [16] the following was proved.

Proposition 3.1. Let p(·) ∈ Plog. Then L p(·)(a, b) ∈ M.

Note that there exists another class of exponents giving rise to property (2.1). Indeed, let
p(·) : [0, 1] → [1,+∞) be log-Hölder continuous, w(t) =

 t
a l(u)du, t ∈ (a, b), w(b) = 1,

l(u) > 0 (u ∈ (a, b)). Then L p(w(·))(a, b) has property (2.1) (see [17]).
From Theorem 2.9 and Proposition 3.1 we obtain

Corollary 3.2. Let p(·) ∈ Plog and v ∈ L p(·)(a, b), u ∈ Lq(·)(a, b) (1/p(x)+1/q(x) = 1, x ∈

(a, b)). Then T acts from the variable exponent space L p(·)(a, b) to itself and

C1


(a,b)

u(x)v(x)dx ≤ lim inf
n→∞

nsn(T ) ≤ lim sup
n→∞

nsn(T ) ≤ C2


(a,b)

u(x)v(x)dx .

An analogue of Theorem 2.9 in the setting of spaces with variable exponent when u = v = 1
was investigated in [13], where the following theorem was proved.

Theorem 3.3. Let p(·) ∈ S P log and u = v = 1. Then T acts from the variable exponent space
L p(·)(a, b) to itself and

lim
n→∞

ns′
n(T ) =

1
2π


I
(q(x)p(x)p(x)−1)1/p(x) sin(π/p(x))dx,

where s′
n(T ) stands for any of the nth approximation, Gelfand, Kolmogorov and Bernstein

numbers of T .
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4. Properties of A

Here we establish properties of the function A which we shall need in the next section.

Definition 4.1. Let E be a BFS, J be a subinterval of I = (a, b), c ∈ [a, b], and suppose that
u ∈ E ′(J ) and v ∈ E(J ). We define

A(J ) = A(J, u, v) = sup
f ∈E, f ≠0

inf
α∈R

∥Tc,J f − αv∥E(J )

∥ f ∥E(J )
,

where

Tc,J f (x) = v(x)χJ (x)
 x

c
f (t)u(t)χJ (t)dt.

We prove some basic properties of A(J ). Choosing α = 0 we immediately obtain

A(J ) ≤ ∥Tc,J ∥ ≤ K · AJ ,

where

AJ = sup
t∈J

AJ (t) = sup
t∈J

∥vχJχ(t,b)∥E∥uχJχ(a,t)∥E ′ .

Note that for d ∈ [a, b],

Td,J f (x) = Tc,J f (x)+ v(x)χJ (x)
 c

d
f (t)u(t)χJ (t)dt

and the number A(J, u, v) is independent of c ∈ [a, b].

Lemma 4.2. Let E be a BFS, J be a subinterval of I , and suppose that u ∈ E ′(J ) and v ∈ E(J ).
Set A(J ) = sup

∥ f ∥E(J )=1
inf

|α|≤2∥u∥E ′(J )

∥Tc,J f − αv∥E(J ).

Then A(J ) = A(J ).

Proof. Hölder’s inequality yields

∥Tc,J ∥ ≤ ∥uχJ ∥E ′(J )∥vχJ ∥E(J ).

Let ∥ f ∥E(J ) = 1 and |α| > 2∥u∥E ′(J ). Then |α| >
2∥Tc,J ∥

∥v∥E(J )
and using the triangle inequality we

obtain

∥αv − Tc,J f ∥E(J ) ≥ |α|∥v∥E(J ) − ∥Tc,J ∥∥ f ∥E(J )

> 2∥Tc,J ∥ − ∥Tc,J ∥

= ∥Tc,J ∥.

We have

∥Tc,J ∥

≥ A(J )
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= sup
∥ f ∥E(J )=1

min


inf

|α|≤2∥u∥E ′(J )

∥Tc,J f − αv∥E(J ), inf
|α|>2∥u∥E ′(J )

∥Tc,J f − αv∥E(J )


= sup

∥ f ∥E(J )=1
inf

|α|≤2∥u∥E ′(J )

∥Tc,I f − αv∥E(J ) = A(J ). �

Note that using the same arguments we may prove that

A(J ) = sup
∥ f ∥E(J )≤1

inf
|α|≤2∥u∥E ′(J )

∥Tc,J f − αv∥E(J ).

Lemma 4.3. Let E be a BFS and suppose that E ′ has AC-norm. Let J = (c, d) be a subinterval
of I , and suppose that u ∈ E ′(J ) and v ∈ E(J ). Then:

1. The function A(x, d) is non-increasing and continuous on (c, d).
2. The function A(c, x) is non-decreasing and continuous on (c, d).
3. limx→c− A(c, x) = limx→d+ A(x, d) = 0.

Proof. That A(x, d) is non-increasing is easy to see. Fix y, c < y < d . Let ε > 0. Fix h0 > 0
such that y − h0 > 0 and ∥u∥E ′(y−h,y) < ε for 0 < h ≤ h0.

Let Dh = ∥u∥E ′(y−h,d) (0 ≤ h ≤ h0) and w(y) =
 y

y−h f (t)u(t)dt.
We have

A(y, d) ≤ A(y − h, d)

= sup
∥ f ∥E(y−h,d)=1

inf
α∈R

∥αv − Ty−h,(y−h,d) f ∥E((y−h,d))

≤ sup
∥ f ∥E(y−h,d)=1

inf
|α|≤2Dh

{∥(αv − Ty−h,(y−h,d) f )χ(y−h,y)∥E((y−h,y))

+ ∥(αv − Ty−h,(y−h,d) f )χ(y,d)∥E((y,d))}

≤ sup
∥ f ∥E(y−h,d)=1

inf
|α|≤2Dh

{∥Ty−h,(y−h,y)|E((y − h, y)) → E((y − h, y))∥

× ∥ f ∥E((y−h,y)) + ∥(αv − Ty,(y−h,d) f − vw(y))χ(y,d)∥E((y,d))}

≤ sup
∥ f ∥E(y−h,d)=1

inf
|α|≤2Dh


∥u∥E ′((y−h,y))∥v∥E((y−h,y))∥ f ∥E((y−h,y))

+ ∥v∥E((y,d))∥u∥E ′((y−h,y))∥ f ∥E((y−h,y)) + ∥(αv − Ty,(y,d) f )χ(y,d)∥E((y,d))


≤ ∥v∥E((y−h,y))ε + ∥v∥E((y,d))ε

+ sup
∥ f ∥E(y−h,d)=1

inf
|α|≤2Dh

∥Ty,(y,d) f − αv∥E((y,d)).

Since D0 ≤ Dh ≤ Dh0 we have

sup
∥ f ∥E((y−h,d))=1

inf
|α|≤2Dh

∥Ty,(y,d) f − αv∥E((y,d))

≤ sup
∥ f ∥E((y−h,d))=1

inf
|α|≤2D0

∥Ty,(y,d) f − αv∥E((y,d))

= sup
∥ f ∥E((y,d))≤1

inf
|α|≤2D0

∥Ty,(y,d) f − αv∥E((y,d))

= A(y, d)
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and thus

A(y, d) ≤ A(y − h, d) ≤ ∥v∥E((y−h,y))ε + ∥v∥E((y,d))ε + A(y, d),

which proves that

lim
h→0+

A(y − h, d) = A(y, d).

Analogously

lim
h→0+

A(y + h, d) = A(y, d).

In the same way we prove 2 and 3, which finishes the proof of the lemma. �

Lemma 4.4. Let E be a BFS and suppose that E ′ has AC-norm. Let J = (c, d) be a subinterval
of I , and suppose that u ∈ E ′(J ) and v ∈ E(J ). Then

A(J ) ≤ inf
x∈J

∥Tx,J |E(J ) → E(J )∥. (4.1)

The norms ∥Tx,J ∥, ∥Tx,(c,x)∥, ∥Tx,(x,d)∥ of the operators Tx,J Tx,(c,x), Tx,(x,d), from E(J ) to
E(J ), are continuous in x ∈ (c, d) and there exists e ∈ J such that

∥Te,(c,e)∥ = ∥Te,(e,d)∥. (4.2)

For any x ∈ J

∥Tx,J ∥ ≈ max{∥Tx,(c,x)∥, ∥Tx,(x,d)∥}, (4.3)

and

min
x∈J

∥Tx,J ∥ ≈ ∥Te,J ∥. (4.4)

Proof. For any x ∈ (c, d),

A(J ) ≤ sup{∥Tx,J f ∥E(J ) : ∥ f ∥E(J ) = 1} = ∥Tx,J | E(J ) → E(J )∥,

and consequently we have (4.1).
To prove the continuity of ∥Tx,(x,d)∥, we first note that for z, y ∈ (c, d), z < y,

Tz,(z,d) f (x)− Ty,(y,d) f (x) = v(x)χ(y,d)(x)
 y

z
f (t)u(t)dt

+ v(x)χ(z,y)(x)
 x

z
f (t)u(t)dt.

Hence, applying Hölder’s inequality,

∥Tz,(z,d) − Ty,(y,d)∥ ≤ ∥v∥E((y,d))∥u∥E ′((z,y)) + ∥v∥E((z,y))∥u∥E ′((z,y))

and so∥Tz,(z,d)∥ − ∥Ty,(y,d)∥
 ≤ ∥Tz,(z,d) − Ty,(y,d)∥ ≤ 2∥u∥E ′((z,y))∥v∥E((z,d)),

which yields the continuity of ∥Tx,(x,d)∥. Similarly we obtain the continuity for ∥Tx,(c,x)∥ and
∥Tx,J ∥.

If supp f ⊂ (y, d) then for z < y,

Tz,(z,d) f (x) = Ty,(y,d) f (x).



86 D. Edmunds et al. / Journal of Approximation Theory 207 (2016) 76–97

Consequently

∥Ty,(y,d)∥ ≤ ∥Tz,(z,d)∥

and similarly

∥Tz,(c,z)∥ ≤ ∥Ty,(c,y)∥.

The identity (4.2) follows from these inequalities and the continuity of the norms
∥Tx,(c,x)∥, ∥Tx,(x,d)∥.

Let f ∈ E(J ) and set f1 = f χ(c,x), f2 = f χ(x,d). Then

(Tx,J f )(t) = (Tx,(c,x) f1)(t)+ (Tx,(x,d) f2)(t).

We have

∥Tx,J f ∥E(J ) ≈ max{∥Tx,(c,x) f1∥E((c,x)), ∥Tx,(x,d) f2∥E((x,d))}

≤ C max{∥Tx,(c,x)∥, ∥Tx,(x,d)∥} max{∥ f1∥E((c,x)), ∥ f2∥E((x,d))}

≤ C max{∥Tx,(c,x)∥, ∥Tx,(x,d)∥}∥ f ∥E(J ).

Consequently

∥Tx,J ∥ ≤ C max{∥Tx,(c,x)∥, ∥Tx,(x,d)∥}.

The reverse inequality is obvious and (4.3) is proved. From (4.2), (4.3) and the above analysis,
we have (4.4). �

Definition 4.5. Let E be a BFS and suppose that E ′ has AC-norm. Let J = (c, d) be a
subinterval of I , and suppose that u ∈ E ′(J ) and v ∈ E(J ). DefineA(J ) = ∥Te,(c,e)∥E(J )

where e ∈ J is defined by (4.2).

Lemma 4.6. Let E be reflexive, a strictly convex BFS. Let J = (c, d) be a subinterval of
I = (a, b), and suppose that u ∈ E ′(J ), v ∈ E(J ) and u, v ≠ 0 a.e. on J . Then

1. ∥Tc,(c,x)∥ and ∥Tx,(c,x)∥ are strictly increasing and ∥Tx,(x,d)∥ is strictly decreasing on (c, d).
2. A(c, x) is strictly increasing and A(x, d) is strictly decreasing on (c, d).

Proof. Let c < x1 < x2 < d. Let 0 ≤ f ∈ E(J ), and ∥ f ∥E(J ) = 1 with supp f ⊂ (c, x1). We
have following

∥Tc,(c,x2) f ∥E(J ) > ∥Tc,(c,x1) f ∥E(J ). (4.5)

Indeed, if ∥Tc,(c,x2) f ∥E(J ) = ∥Tc,(c,x1) f ∥E(J ), define the functions

f1(y) :=
Tc,(c,x1) f (y)

∥Tc,(c,x1) f ∥E(J )
, f2(y) :=

Tc,(c,x2) f (y)

∥Tc,(c,x2) f ∥E(J )
.

It is clear that ∥ f1∥E(J ) = ∥ f2∥E(J ) = 1 and

Tc,(c,x2) f (y) = Tc,(c,x1) f (y)+ Tc,(c,x1) f (x1)χ(x1,x2)(y).

By strict convexity of E

2 = ∥2 f1∥E(J ) ≤ ∥ f1 + f2∥E(J ) < 2,
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which gives a contradiction, and (4.5) follows. As our operator T is compact and E is reflexive
there exists f such that ∥Tc,((c,x1))| E((c, x1)) → E((c, x1))∥ = ∥Tc,(c,x1) f ∥E((c,x1)). Therefore,

∥Tc,(c,x1)| E((c, x1)) → E((c, x1))∥ = ∥Tc,(c,x1) f ∥E((c,x1))

< ∥Tc,(c,x2) f ∥E(,c,(c,x2))

≤ ∥Tc,(c,x2)| E((c, x2)) → E((c, x2))∥.

In the same way we show that ∥Tx,(c,x)∥ is strictly increasing and ∥Tx,(x,d)∥ is strictly de-
creasing on (c, d).

Next, let us suppose that c < x1 < x2 < d . According to Definition 4.5 there exist e1 ∈ (c, x1)

and e2 ∈ (c, x2) such that A(c, x1) = ∥Te1,(c,e1)∥ and A(c, x2) = ∥Te2,(c,e2)∥.
As

∥Te1,(c,e1)∥ = ∥Te1,(e1,x1)∥ < ∥Te1,(e1,x2)∥

and ∥Te2,(c,e2)∥ = ∥Te2,(e2,x2)∥, we have, that e1 < e2. Therefore,A(c, x1) = ∥Te1,(c,e1)∥ < ∥Te2,(c,e2)∥ = A(c, x2).

That A(x, d) is strictly decreasing on (c, d) can be proved similarly; if we use arguments analo-
gous to those in the proof of Lemma 4.4 we may prove continuity of A(c, x). �

Lemma 4.7. Let E be a strictly convex BFS. Then given any f, g ∈ E, g ≠ 0 there is a unique
scalar c f such that

∥ f − c f g∥E = inf
c∈R

∥ f − cg∥E .

Proof. Since ∥ f − cg∥E is continuous in c and tends to ∞ as c → ∞, the existence of c f is
guaranteed by the local compactness of R. The uniqueness of c f follows from the strict convexity
of E . �

Lemma 4.8. Let E be a strictly convex BFS and given f ∈ E, let c f be the unique scalar such
that ∥ f − c f g∥E = infc∈R ∥ f − cg∥E , for g ≠ 0, g ∈ E. Then the map f → c f is continuous.

Proof. Suppose ∥ fn − f ∥E → 0. Since c fn is bounded, we may suppose that c fn → c. Then

∥ fn − c f g∥E ≥ ∥ fn − c fn g∥E

and so

∥ f − c f g∥E ≥ ∥ f − cg∥E

which gives c = c f . �

In fact, Lemmas 4.7 and 4.8 are well-known: see, e.g. [24].

Lemma 4.9. Let E be a strictly convex BFS satisfying the condition (2.1) and suppose that E ′

has AC-norm. Let J = (c, d) be a subinterval of I , and suppose that u ∈ E ′(J ) and v ∈ E(J ).
Then

A(J ) ≈ min
x∈J

∥Tx,J |E(J ) → E(J )∥ ≈ ∥Te,J |E(J ) → E(J )∥, (4.6)

where e ∈ I defined by (4.2).
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Proof. Note that (using (4.3) and (4.4))

∥Te,(c,e)|E(J ) → E(J )∥ = ∥Te,(e,d)|E(J ) → E(J )∥

≤ ∥Te,J |E(J ) → E(J )∥

≤ C1∥Te,(c,e)|E(J ) → E(J )∥. (4.7)

Let α < ∥Te,J ∥. Set Te,J = vF , where,

F f (x) = Fe,J f (x) = χJ (x)
 x

e
f (t)u(t)χJ (t)dt.

By (4.7) it follows that there exists fi , i = 1, 2, supported in (c, e) and (e, d), respectively,
such that ∥ fi∥E = 1, ∥Te,J fi∥E(J ) > α/C1 and f1 positive, f2 negative. Note that the same is
true of the signs of the corresponding values of cvF f1 , cvF f2 , with g = v (see Lemmas 4.7–4.8).
Hence by the continuity established in Lemma 4.8, there is a λ ∈ (0, 1) such that cvFg = 0 for
g = λ f1 + (1 − λ) f2.

We have

∥Te,J g∥E(J ) ≥ max{∥λTe,(c,e) f1∥E((c,e)), ∥(1 − λ)Te,(e,d) f2∥E((e,d))}

≥ C3α∥g∥E(J ).

We have

A(J ) ≥ inf
α∈R

∥vFg − αv∥E(J )/∥g∥E(J ) = ∥vFg∥E(J )/∥g∥E(J ) ≥ C3α.

Since α < ∥Te,J ∥ is arbitrary, A(J ) ≥ C3∥Te,J ∥ and we have

C3∥Te,J ∥ ≤ A(J )
(4.1)
≤ inf

x∈J
∥Tx,J |E(J ) → E(J )∥

(4.4)
≈ ∥Te,J ∥. �

Lemma 4.10. Let J = (c, d) be a subinterval of I , and suppose that u1, u2 belong to E ′(J )
and v ∈ E(J ). Then

|A(J, u1, v)− A(J, u2, v)| ≤ ∥u1 − u2∥E ′(J )∥v∥E(J ).

Proof.

A(J, u1, v) = sup
∥ f ∥E(J )=1

inf
α∈R

v(x) x

a
f (t)(u1(t)− u2(t)+ u2(t))dt − α


E(J )

≤ sup
∥ f ∥E(J )=1

inf
α∈R

v(x)  x

a
f (t)(u1(t)− u2(t))dt


E(J )

+

v(x)  x

a
f (t)u2(t)dt − αv(x)


E(J )



≤ sup
∥ f ∥E(J )=1

inf
α∈R


∥u1 − u2∥E ′(J )∥v∥E(J )

+

v(x)  x

a
f (t)u2(t)dt − αv(x)


E(J )


≤ ∥u1 − u2∥E ′(J )∥v∥E(J ) + A(J, u2, v).

The same holds with u1 and u2 interchanged, and the result follows. �
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Lemma 4.11. Let J = (c, d) be a subinterval of I , and suppose that u ∈ E ′(I ) and v1, v2 ∈

E(I ). Then

|A(J, u, v1)− A(J, u, v2)| ≤ 3∥v1 − v2∥E(J )∥u∥E ′(J ).

Proof. Let

T 1
J f (x) = v1(x)χJ (x)

 x

a
f (t)u(t)dt,

T 2
J f (x) = v2(x)χJ (x)

 x

a
f (t)u(t)dt,

T 3
I f (x) = (v1(x)− v2(x))χJ (x)

 x

a
f (t)u(t)dt.

Suppose that A(J, u, v1) > A(J, u, v2). By Lemma 4.2 we have

A(J, u, v1)− A(J, u, v2)

= sup
∥ f ∥E(J )=1

inf
α∈R

∥T 1
J f − αv1∥E(J ) − A(J, u, v2)

= sup
∥ f ∥E(J )=1

inf
|α|≤2∥u∥E ′(J )

∥T 1
J f − αv1∥E(J ) − A(J, u, v2)

≤ sup
∥ f ∥E(J )=1

inf
|α|≤2∥u∥E ′(J )


∥T 3

J f − α(v1 − v2)∥E(J ) + ∥T 2
J f − αv2∥E(J )


− A(J, u, v2)

≤ sup
∥ f ∥E(J )=1

inf
|α|≤2∥u∥E ′(J )


3∥v1 − v2∥E(J )∥u∥E ′(J ) + ∥T 2

J f − αv2∥E(J )


− A(J, u, v2)

≤ 3∥v1 − v2∥E(J )∥u∥E ′(J ) + A(J, u, v2)− A(J, u, v2)

= 3∥v1 − v2∥E(J )∥u∥E ′(J ).

The proof is complete. �

Note that in Lemmas 4.10–4.11 we can replace A(J ) by ∥Ta,J ∥.

Lemma 4.12. Let E ∈ M be a strictly convex BFS and suppose that E ′ has AC-norm. Let u and
v be constant over an interval J = (c, d). Then A(J, u, v) ≈ uv|J |.

Proof. From the Muckenhoupt condition we deduce that if J ⊂ J and |J |/|J | ≥ 1/2, then
∥χJ ∥E ≈ ∥χJ ∥E and ∥χJ ∥E ′ ≈ ∥χJ ∥E ′ . Let e ∈ (c, d), we have

max


sup

t∈(c,e)
∥χ(c,t)∥E ′∥χ(t,e)∥E , sup

t∈(e,d)
∥χ(e,t)∥E ′∥χ(t,d)∥E


≈ |J |.

Using Theorem 2.4 and Lemma 4.9 we obtain

A(I, 1, 1) ≈ |J |.
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Consequently

A(J, u, v) = sup
∥ f ∥E(J )=1

inf
α∈R

v  x

a
f (t)udt − α


E(J )

= uv sup
∥ f ∥E(J )=1

inf
c∈R

 x

a
f (t)dt − c


E(J )

= uvA(J, 1, 1) ≈ uv|J |. �

5. Estimates of s-numbers for T

Throughout this section we view T as a map from a BFS E to itself.

Lemma 5.1. Let E be a strictly convex BFS space that fulfills condition (2.1), let E ′ have
AC-norm, and suppose that u ∈ E ′(I ) and v ∈ E(I ). Let a = τ0 < τ1 < · · · < τN = b
be a sequence such that A(τi−1, τi ) ≤ ε for i = 2, . . . , N and ∥Ta,(a,τ1)∥ ≤ ε. Then

aN (T ) ≤ Cε.

Proof. Set Ii = (τi−1, τi ) for i = 1, . . . , N and P f =
N

i=2 Pi f, where

Pi f (x) = v(x)χIi

 ei

a
f (t)u(t)dt,

and ei is a number obtained from Lemma 4.9 for which

A(Ii ) = min
x∈Ii

∥Tx,Ii |E(Ii ) → E(Ii )∥ ≈ ∥Tei ,Ii |E(Ii ) → E(Ii )∥.

Note that rankP ≤ N − 1. By Theorem 2.2, there is a BSS l such that E simultaneously
satisfies upper and lower l-estimates; using Lemma 4.9, we obtain

∥(T − P) f ∥E =

χI1 Ta,I1 f +

N
i=2

(T f − Pi f )χIi


E

=

χI1 Ta,I1 f +

N
i=2

χIi Tei ,Ii f


E

≤ C∥{∥χI1 Ta,I1 f ∥E , ∥χIi Tei ,Ii f ∥E }∥l

≤ C max{∥Ta,I1∥, A(I2), . . . ,A(IN )}∥{∥ f χIi ∥E }∥l

≤ C1ε∥ f ∥E . �

Lemma 5.2. Let E be a reflexive, strictly convex BFS satisfying condition (2.1). Let E∗ be strictly
convex. Let u ∈ E ′(I ) and v ∈ E(I ). Let a = τ0 < τ1 < · · · < τN = b be a sequence such that
A(τi−1, τi ) ≥ ε for i = 2, . . . , N and ∥Ta,(a,τ1)∥ ≥ ε. Then

iN (T ) ≥ Cε.

Proof. The argument here is similar to the proof of Lemma 6.13 of [19] (which dealt with the
case when E is a Lebesgue space), but we give full details for the convenience of the reader. Set
Ii = (τi−1, τi ) (i = 1, . . . , N ). From Lemma 4.9 it follows that there is ei ∈ Ii such that

A(Ii ) = min
x∈Ii

∥Tx,Ii |E(Ii ) → E(Ii )∥ ≈ ∥Tei ,Ii |E(Ii ) → E(Ii )∥.
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Note also that (see Lemma 4.4)

∥Tei ,(τi−1,ei )|E((τi−1, ei )) → E((τi−1, ei ))∥ = ∥Tei ,(ei ,τi )|E((ei , τi )) → E((ei , τi ))∥

≈ ∥Tei ,Ii |E(Ii ) → E(Ii )∥.

Since Tei ,(τi−1,ei ) and Tei ,(ei ,τi ) are compact operators and E is reflexive there exist functions
f 1
i , f 2

i such that

supp f 1
i ⊂ (τi−1, ei ), supp f 2

i ⊂ (ei , τi ), ∥ f 1
i ∥E = ∥ f 2

i ∥E = 1,

∥Tei ,(τi−1,ei )|E((τi−1, ei )) → E((τi−1, ei ))∥ = ∥Tei ,(τi−1,ei ) f 1
i ∥E(ei ,(τi−1,ei ))

and

∥Tei ,(ei ,τi )|E((ei , τi )) → E((ei , τi ))∥ = ∥Tei ,(ei ,τi ) f 2
i ∥E((ei ,τi )).

Define J1 = (τ0, e1) = (e0, e1), Ji = (ei−1, ei ) for i = 2, . . . , N and JN+1 = (eN , b). We
introduce functions

g1(x) = f 1
1 (x)χ(e0,e1)(x),

gi (x) = (ci f 2
i−1(x)χ(ei−1,τi−1)(x)+ di f 1

i (x)χ(τi−1,ei )(x)) for i = 2, . . . , N

and

gN+1(x) = f 2
N (x)χJN+1(x).

For these functions we have
∥Tei−1,Ji gi∥E((ei−1,τi−1))

∥gi∥E((ei−1,τi−1))

≥ Cε

and
∥Tei ,Ji gi∥E((τi−1,ei ))

∥gi∥E((τi−1,ei ))

≥ Cε for i = 1, . . . , N + 1.

We can see that Tei−1,Ji gi and Tei ,Ji gi do not change sign on (ei−1, τi−1) and (τi−1, ei ) re-
spectively. Since Tei−1,Ji gi (x) and Tei ,Ji gi (x) are continuous function we can choose constants
ci and di such that

Tei−1,Ji gi (τi−1) = Tei ,Ji gi (τi−1) > 0

and ∥gi∥E(Ji ) = 1. Then we can see that supp(T gi ) ⊂ Ji , i = 1, . . . , N + 1.
Note that

∥T gi∥E(Ji )

∥gi∥E(Ji )

=
∥Tei−1,(ei−1,τi−1)giχ(ei−1,τi−1) + Tei ,(τi−1,ei )giχ(τi−1,ei )∥E(Ji )

∥gi∥E(Ji )

≈ max


∥Tei−1,(ei−1,τi−1)gi∥E((ei−1,τi−1))

∥gi∥E(Ji )

,
∥Tei ,(τi−1,ei )gi∥E((τi−1,ei ))

∥gi∥E(Ji )


≥ C1ε for i = 1, . . . , N + 1. (5.1)

Since E and E∗ are strictly convex BFS, given any x ∈ E \ {0}, there is a unique element of
E∗, here written as JE (x), such that ∥JE (x)∥E∗ = 1 and ⟨x, JE (x)⟩ = ∥x∥E . Note that for all
x ∈ E \ {0}, JE (x) = grad∥x∥E , where grad∥x∥E denotes the Gâteaux derivative of ∥ · ∥E at x
(see [19]).
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By Theorem 2.2 exists BSS l such that E simultaneously satisfies upper and lower l-estimates
corresponding to the partition Ji , i = 1, . . . , N + 1 of the interval I. The maps A : l → E and
B : E → l are defined by:

A({d ′

i }
N
i=1) =

N+1
i=1

d ′

i gi (x)

Bg(x) =


⟨gχJi ,

JE (T gi )⟩

∥T gi∥E(Ji )

N+1

i=1

.

Since ⟨T gi , JE (T gi )⟩ = ∥T gi∥E ,

BT A({di }
N+1
i=1 ) = {di }

N+1
1 .

Observe that ∥B : E → l∥ is attained (up to a constant factor) on functions of the following form

g(x) =

N+1
i=1

c′

i T gi (x). (5.2)

It is enough to find a function g ∈ E such that ∥g∥E ≤ 1 and ∥B : E → l∥ ≤ C∥Bg∥l . By
Theorem 2.2, E simultaneously satisfies upper and lower l-estimates with constant C . Let h ∈ E
be such that ∥h∥E(I ) = 1 and ∥B : E → l∥ = ∥Bh∥l . Let

g =

N+1
i=1

⟨hχJi ,
JE (T gi )⟩E

C2∥T gi∥E(I )
T gi (x).

We have

∥g∥E(I ) ≤ C




⟨hχJi ,
JE (T gi )⟩E

C2∥T gi∥E(I )
∥T gi ∥E(I )

N+1

i=1


l

≤
1
C

⟨hχJi ,
JE (T gi )⟩E

N+1
i=1


l

≤
1
C

∥hχJi ∥E ∥|JE (T gi ) ∥E∗

N+1
i=1


l

≤
1
C

∥hχJi ∥E
N+1

i=1


l

≤ ∥h∥E

≤ 1.

It is clear that

Bg =


⟨hχJi ,

JE (T gi )⟩E

C2∥T gi∥E(I )

N+1

i=1

and

Bh =


⟨hχJi ,

JE (T gi )⟩E

∥T gi∥E(I )

N+1

i=1

.

Therefore we have Bh = C2 Bg and ∥B : E → l∥ = ∥Bh∥l = C2
∥Bg∥l .
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Using (5.1) we obtain

∥g∥E ≥ C2ε∥{c
′

i }
N+1
i=1 ∥l

where the function g is defined by (5.2), and then

sup
∥ f ∥E ≤1

∥B f ∥l = sup
∥g∥E ≤1

B


N+1
i=1

c′
nT gi (x)


l

= sup
∥g∥E ≤1

∥{c′

i }
N+1
i=1 ∥l ≤ C2/ε.

From

∥A({d ′

i })
N+1
i=1 ∥E ≈ ∥{∥d ′

i gi ∥E(Ji )}∥l = ∥{d ′

i }∥l

it follows that ∥A : l → E∥ ≈ 1. Thus

iN (T ) ≥ ∥A∥
−1

∥B∥
−1

≥ C3ε. �

Note that in the formulation of Lemmas 5.1 and 5.2 instead A we may use A.
Let E be a reflexive BFS satisfying condition (2.1) and suppose that u ∈ E ′(I ) and v ∈ E(I ).

Note that for sufficiently small ε > 0 there are c, d ∈ (a, b) for which A(c, b) = ε and
∥Ta,(a,d)∥ = ε. Indeed, since T is compact, By Lemmas 4.3 and 4.6, there exist a positive
integer N (ε) and points a = τ0 < τ1 < · · · < τN (ε) = b with A(τi−1, τi ) = ε for i = 2,
. . . , N (ε) − 1, A(τN (ε)−1, b) ≤ ε and ∥Ta,(a,τ1)∥ = ε. The intervals Ii = (τi−1, τi ), i =

1, . . . , N (ε) form a partition of I.

Lemma 5.3. Let E be a reflexive BFS satisfying condition (2.1), and suppose that u ∈ E ′(I )
and v ∈ E(I ). Then the number N (ε) is a non-increasing function of ε that takes on every
sufficiently large integer value.

Proof. As in the proof of Lemma 6.11 of [19], fix c, a < c < b. We have ∥Ta,(a,c)∥ = ε0 > 0
and there is a positive integer N (ε0) and a partition a = τ0 < τ1 < · · · < τN (ε0) = b such
that ∥Ta,(a,τ1)∥ = ε0, A(τi−1, τi ) = ε0 for i = 2, . . . , N (ε0) − 1, A(τN (ε0)−1, b) ≤ ε0. Let
d ∈ (a, c). According to Lemma 4.6, A(a, d) = ε′0 < ε0 and the procedure outlined above
applied with ε′0 gives ∞ > N (ε′0) ≥ N (ε0). By continuity of A(c, ·) and ∥Ta,(a,·)∥, there exists
d ∈ (a, c) such that N (ε′0) > N (ε0). If N (ε′0) = N (ε0)+ 1, stop. Otherwise, define

ε1 = sup{ε : 0 < ε < ε0 and N (ε) ≥ N (ε0)+ 1}.

We claim N (ε1) = N (ε0) + 1. Indeed suppose N (ε1) ≥ N (ε0) + 2 and the partition a = τ0 <

· · · < τN (ε1) = b satisfies ∥Ta,(a,τ1)∥ = ε1 and A(τi , τi+1) = ε1 i = 1, 2, . . . , N (ε1) − 1 andA(τN (ε1)−1, τN (ε1)) ≤ ε1. Increase τN (ε1)−1 slightly to τ ′

N (ε1)−1 so that A(τ ′

N (ε1)−1, b) < ε1 andA(τN (ε1)−2, τ
′

N (ε1)−1) > ε1, continuing the process to get a partition of (a, b) having N (ε1) inter-

vals such that ∥Ta,(a,τ1)∥ > ε1, A(τ ′

i−1, τ
′

i ) > ε1, i = 2, . . . , N (ε1) − 1 and A(τN (ε1)−1, b) <
ε1. Taking ε2 ≤ min{∥Ta,(a,τ1)∥,

A(τ ′

i−1, τ
′

i ); i = 2, . . . , N (ε1 − 1)} we obtain ε2 > ε1 and
N (ε2) ≥ N (ε0)+ 2, a contradiction. An inductive argument completes the proof. �

From Lemmas 5.3, 4.6 and continuity of A(c, ·) and ∥Ta,(c,·)∥ the next lemma follows.

Lemma 5.4. Let E be a reflexive BFS satisfying condition (2.1), and suppose that u ∈ E ′(I )
and v ∈ E(I ). Then for each N > 1 there exist εN and a sequence a = τ0 < τ1 < · · · < τN = b
such that A(τi−1, τi ) = εN for i = 2, . . . , N and ∥Ta,(a,τ1)∥ = εN .
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Combining Lemmas 5.1–5.4 we obtain the following theorem.

Theorem 5.5. Let E be a reflexive strictly convex BFS satisfying condition (2.1), let E∗ be
strictly convex, and suppose that ∥uχI ∥E ′(I )∥vχI ∥E(I ) < ∞. Then for each N > 1 there exist
εN and a sequence a = τ0 < τ1 < · · · < τN = b such that A(τi−1, τi ) = εN for i = 2, . . . , N
and ∥Ta,(a,τ1)∥ = εN and

aN (T ) ≈ iN (T ) ≈ εN .

6. Asymptotic results

Theorem 6.1. Let E be a reflexive strictly convex BFS satisfying condition (2.1). Let E∗ be
strictly convex, and suppose that u ∈ E ′(I ) and v ∈ E(I ). Then there exist constants
C1 = C1(E),C2 = C2(E) > 0 such that for the map T : E → E

C1

 b

a
u(x)v(x)dx ≤ lim inf

N→∞
NεN ≤ lim sup

N→∞

NεN ≤ C2

 b

a
u(x)v(x)dx .

Proof. As in the proof of Theorem 6.3 of [19] we observe that for each η > 0 there exist
nonnegative step functions uη, vη on I such that

∥u − uη∥E ′(I ) < η, ∥v − vη∥E(I ) < η.

We may suppose that

uη =

m
j=1

ξ jχW ( j), vη =

m
j=1

η jχW ( j)

where W ( j) are closed subintervals of I with disjoint interiors and I = ∪
m
j=1 W ( j).

Let N be an integer greater than 1. By Lemma 5.4 there exist εN > 0 and a sequence
τk, k = 0, 1, . . . , N , such that τ0 = a, τN = b andA(Ii ) = ε = εN for i = 2, . . . , N and ∥Ta,I1∥ = ε where Ik = (τk−1, τk).

We have
I

uη(t)vη(t)dt −


I

uv

 ≤


I

u(t)|v(t)− vη(t)|dt +


I
|u(t)− uη(t)|vη(t)dt

≤ ∥u∥E ′∥v − vη∥E + ∥u − uη∥E ′∥vη∥E

≤ η(∥u∥E ′ + ∥v∥E + η). (6.1)

Let K = {k > 1 : there exists j such that Ik ⊂ W ( j)}. Then #K ≥ N − 1 − m, and by
Definition 4.5, (4.6), Lemmas 4.10–4.12 and (2.2),

(N − 1 − m)ε ≤ C1


k∈K

A(Ik, u, v)

≤ C2


k∈K

A(Ik, u, v)

≤ C3


k∈K


A(Ik, uη, vη)+ (A(Ik, u, v)− A(Ik, uη, v))
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+ (A(Ik, uη, v)− A(Ik, uη, vη))


≤ C4


j


|ξ j∥η j∥W ( j)| + ∥u − uη∥E ′(W ( j))∥v∥E(W ( j))

+ ∥v − vη∥E(W ( j))∥uη∥E ′(W ( j))


≤ C4


I

uη(t)vη(t)dt + η∥v∥E + η(∥u∥E ′ + η)

.

By (6.1) we conclude that

lim sup
N→∞

NεN ≤ C4


I

u(t)v(t)dt + 2η∥v∥E + 2η∥u∥E ′ + 2η2


and then

lim sup
N→∞

NεN ≤ C4


I

u(t)v(t)dt.

To prove the opposite inequality we add the end-points of the intervals W ( j), j = 1, 2, . . . ,m
to the τk, k = 0, 1, . . . , N , to form the partition a = e0 < · · · < en = b, say, where
n ≤ N + 1 + m. Note that each interval Ji = (ek, ek+1) is a subinterval of some W ( j) and
hence uη, vη have constant values on each Ji . Thus, by Lemma 4.12

I
uηvηdt =


I1

uηvηdt +


I\I1

uηvηdt

≤ C5


Ji ⊂I1

∥Ta,Ji ,uη,vη∥ +


Ji ⊄I1

A(Ji , uη, vη)

.

Using (2.2), we obtain
Ji ⊄I1

A(Ji , uη, vη)

≤


Ji ⊄I1


A(Ji , u, v)+ (A(Ji , uη, v)− A(Ji , u, v))

+ (A(Ji , uη, vη)− A(Ji , uη, v))


≤


Ji ⊄I1


A(Ji , u, v)+ ∥u − uη∥E ′(Ji )∥v∥E(Ji ) + ∥uη∥E ′(Ji )∥vη − v∥E(Ji )


≤


Ji ⊄I1

A(Ji , u, v)+ C1


∥u − uη∥E ′(I )∥v∥E(I ) + ∥uη∥E ′(I )∥vη − v∥E(I )


;

analogously for ∥Ta,Ji ,uη,vη∥ we have
Ji ⊂I1

∥Ta,Ji ,uη,vη∥

≤


Ji ⊂I1


∥Ta,Ji ,u,v∥ + (∥Ta,Ji ,uη,v∥ − ∥Ta,Ji ,u,v∥)+ (∥Ta,Ji ,uη,vη∥ − ∥Ta,Ji ,uη,v∥)
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≤


Ji ⊂I1


∥Ta,Ji ,u,v∥ + ∥u − uη∥E ′(Ji )∥v∥E(Ji ) + ∥uη∥E ′(Ji )∥vη − v∥E(Ji )


≤


Ji ⊂I1

∥Ta,Ji ,u,v∥ + C1


∥u − uη∥E ′(I )∥v∥E(I ) + ∥uη∥E ′(I )∥vη − v∥E(I )


.

Hence, from ∥Ta,I1,u,v∥ ≤ ε and A(Ji , u, v) ≤ C5ε
I

u(t)v(t)dt ≤ C6((N + 1 + m)ε + η(∥v∥E(I ) + ∥u∥E ′(I ) + η))

and since η > 0 is arbitrary the theorem follows. �

Proof of Theorem 2.9. Combining Theorems 5.5 and 6.1 we obtain the proof of Theo-
rem 2.9. �
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