

# **INSTITUTE OF MATHEMATICS**

THE CZECH ACADEMY OF SCIENCES

# Separable quotients in $C_c(X)$ , $C_p(X)$ , and their duals

Jerzy Kąkol Stephen A. Saxon

Preprint No. 62-2016 PRAHA 2016

### Separable quotients in $C_{c}(X)$ , $C_{p}(X)$ , and their duals

Jerzy Kąkol and Stephen A. Saxon

ABSTRACT. The quotient problem has a positive solution for the weak and strong duals of  $C_c(X)$  (X an infinite Tichonov space), for Banach spaces  $C_c(X)$  [Rosenthal], and even for barrelled  $C_c(X)$ , but not for barrelled spaces in general [KST]. The solution is unknown for general  $C_c(X)$ . A locally convex space is properly separable if it has a proper dense  $\aleph_0$ -dimensional subspace [Robertson]. For  $C_c(X)$  quotients, properly separable coincides with infinitedimensional separable.  $C_c(X)$  has a properly separable algebra quotient if X has a compact denumerable set [Rosenthal]. Relaxing compact to closed, we obtain the converse as well; likewise for  $C_p(X)$ . And the weak dual of  $C_p(X)$ , which always has an  $\aleph_0$ -dimensional quotient, has no properly separable quotient precisely when X is a P-space.

#### 1. Introduction

Here we assume topological vector spaces (tvs's) and their quotients are Hausdorff and infinite-dimensional. Banach's famous unsolved problem asks: *Does every Banach space admit a separable quotient?* [Popov's]  $\langle \text{Our} \rangle$  negative [tvs]  $\langle \text{lcs} \rangle$  solution found a [metrizable tvs]  $\langle \text{barrelled lcs} \rangle$  without a separable quotient [16, 20]. (By *lcs* we mean *locally convex tvs over the real or complex scalar field.*)

The familiar Banach spaces admit separable quotients, as do all non-Banach Fréchet spaces [6, Satz 2] and (LF)-spaces [28, Theorem 3]. The non-Banach (LF)space  $\varphi$  is an  $\aleph_0$ -dimensional space with the strongest locally convex topology whose only quotients are copies of  $\varphi$  itself. While separable,  $\varphi$  is not *properly* separable by Robertson's *ad hoc* definition [21] (see Abstract). Saxon's answer [26] to her quarter-century-old question proves  $\varphi$  is the *only* non-Banach (LF)-space without a *properly* separable quotient if and only if every Banach space has a separable quotient.

Her notion, unexpectedly characterized in weak barrelledness terms [26], intrigues the more: When/How may separable vs. properly separable quotients exist/differ in an lcs? Section 2 explores differences but finds no lcs without a separable quotient other than the (rather exotic) examples we found earlier [16]. The

<sup>2010</sup> Mathematics Subject Classification. 46A08, 46A30, 54C35.

Key words and phrases. (properly) separables quotients, C(X), weak barrelledness, P-spaces. Thanks to Professor Aaron R. Todd for vital discussions/encouragements/prequels.

Kąkol's research was supported by Generalitat Valenciana, Conselleria d'Educació, Cultura i Esport, Spain, grant PROMETEO/2013/058, and by GACR grant 16-34860L and RVO 67985840 (Czech Republic).

main (third) section concentrates on the function spaces  $C_c(X)$  and  $C_p(X)$ , where the two notions of separable quotient coincide and beg the existential question (we fully answer) for separable algebra quotients. Robertson's dual-distinct notion keys new analytic characterizations ([Theorem 23] (Theorem 24)): X is a P-space if and only if the weak dual [of  $C_p(X)$ ] (of  $C_c(X)$ ) has no properly separable quotient. The final section reviews open questions.

#### 2. Weak barrelledness motivations, general lcs quotients

Remarkably, dense subspaces of GM-spaces are barrelled [5]. A Banach space has no separable quotient if and only if its dense subspaces are barrelled [30, 31]. An lcs E has no separable quotient if and only if its dense subspaces are non- $S_{\sigma}$ (defined below) [16]. E has no properly separable quotient if and only if its dense subspaces are primitive [26].

 $S_{\sigma}$ -spaces are those lcs's covered by increasing sequences of closed proper subspaces. An lcs E is  $[inductive] \langle primitive \rangle$  if  $\phi$  is continuous whenever  $\{E_n\}_n$  is an increasing covering sequence of subspaces and  $\phi$  is a  $[seminorm] \langle linear form \rangle$  on E such that each restriction  $\phi|_{E_n}$  is continuous. These notions from the study of weak barrelledness relate as follows:

Hence GM-spaces lack properly separable quotients. Quotients and countablecodimensional subspaces preserve each of the four properties. Non- $S_{\sigma}$  and primitive are duality invariant properties, unlike *barrelled* and *inductive*. Under the Mackey topology, *inductive*  $\Leftrightarrow$  primitive. Under metrizability, non- $S_{\sigma} \Leftrightarrow$  primitive [27, 29].

Easily, properly separable quotients and separable quotients coincide for metrizable spaces and for non- $S_{\sigma}$  spaces, e.g., for all  $C_c(X)$  and  $C_p(X)$ . Our negative barrelled solution [16] now follows from the two paragraphs above; we merely needed a GM-space that is non- $S_{\sigma}$ , and such spaces exist (that are even Baire) [5].

An lcs E is properly separable if and only if E is separable and  $E' \neq E^*$ , a corollary to the fact that (†) *finite*-codimensional subspaces of separable lcs's are separable [4]. Moreover, (††) *countable*- cannot replace *finite*- [4, 32].

The separable quotient analogs of  $(\dagger)$  and  $(\dagger\dagger)$  hold:

THEOREM 1. If an lcs E has a separable quotient, so do the finite-codimensional subspaces of E.

PROOF. Immediate from  $(\dagger)$  and [23, Theorem 2(b)].

EXAMPLE 2. A countable-codimensional subspace G of a barrelled space E does not necessarily admit a separable quotient when E does.

PROOF. Let G be any non- $S_{\sigma}$  GM-space and set  $E = G \oplus \varphi$ .

The properly separable quotient story excludes Theorem 1:

EXAMPLE 3. There is a Mackey space E with dense hyperplane H such that E admits a properly separable quotient and H does not.

PROOF. Let  $(H, \tau)$  be any  $S_{\sigma}$  GM-space, e.g.,  $\varphi$ . By [29, Theorem 3.2], H is a dense hyperplane of a non-primitive Mackey space  $(E, \mu)$  with  $(H, \mu)' = (H, \tau)'$ . Thus all the dense subspaces of H are primitive. This Section's first paragraph assures (i) E has a properly separable quotient, but (ii) H does not.

## **3.** $C_{c}(X)$ , $C_{p}(X)$ and their duals

Throughout, X denotes an infinite completely regular Hausdorff topological space with Stone-Čech compactification  $\beta X$ . Let C(X) [resp.,  $C^b(X)$ ] denote the vector space of  $\mathbb{R}$ -valued continuous [resp., and bounded] functions on X. Let  $C_c(X)$  denote C(X) endowed with the compact-open topology. For  $A \subset X$  and  $\varepsilon > 0$ , we put  $[A, \varepsilon] = \{f \in C(X) : |f(x)| \le \varepsilon$  for all  $x \in A\}$ . Sets of the form  $[K, \varepsilon]$  with K a compact (resp., finite) subset of X and  $\varepsilon > 0$  constitute a base of neighborhoods of 0 for  $C_c(X)$  (resp., for the lcs denoted by  $C_p(X)$ ). By  $C_u^b(X)$  we denote the Banach space whose unit ball is [X, 1].

For compact X, Rosenthal [22] implies the Banach space c is an algebra quotient of  $C_c(X)$  if X has a denumerable compact subset. We prove the result and its converse for arbitrary X. We prove  $C_c(X)$  and  $C_p(X)$  have separable algebra quotients if and only if X has a denumerable closed subset. We prove  $C_c(X)$  admits a separable quotient when X is non-pseudocompact, or a P-space, or of pointwise countable type.

It is unknown whether  $C_c(X)$  or  $C_p(X)$  always has a separable quotient. Their weak and strong duals do [16]. The dual L(X) of  $C_p(X)$  given any topology compatible with the dual pairing, *e.g.*, the weak dual  $L_p(X)$  or the Mackey dual  $L_m(X)$ , even has an  $\aleph_0$ -dimensional quotient [9]. When  $L_p(X)$  does <u>not</u> have a properly separable quotient,  $C_p(X)$  <u>does</u>, and when  $C_p(X)$  does, so does  $C_c(X)$  [Theorem 23, Corollaries 19, 20]. Example 3 (with the same proof) holds for  $H = L_m(X)$  if and only if X is a P-space, as we show later. Or, we could combine Theorem 23 with [2] to obtain [X is a non-discrete P-space]  $\Leftrightarrow$  [every dense subspace of  $L_m(X)$  is primitive and not barrelled], adding new examples/characterizations to the previous section and recent work [9, 10, 24]. (Many other modern marriages of topology and analysis may be found in [13].)

Now X is compact if and only if  $C_u^b(X) = C_c(X)$ . Always,  $C_c(X)$  and  $C_p(X)$  are non- $S_{\sigma}$  [18, II.4.7] since  $C^b(X)$  is dense and  $C_u^b(X)$  is non- $S_{\sigma}$ . Density derives from a well-known corollary to [11, 3.11(a),(c)]:

LEMMA 4. If  $K \subset \mathcal{O} \subset X$  with K compact and  $\mathcal{O}$  open, and  $g \in C(K)$ , then there exists  $f \in C^{b}(X)$  such that  $\sup \{|f(x)| : x \in X\} = \sup \{|g(x)| : x \in K\}, f|_{K} = g$ , and f vanishes on  $X \setminus \mathcal{O}$ .

The next Lemma, likely known, has a simple proof.

LEMMA 5. The following five statements are equivalent.

- (1) X admits a nontrivial convergent sequence.
- (2) X admits a sequentially compact infinite set.
- (3) X admits a compact denumerable set.
- (4) X admits a countably compact denumerable set.
- (5) X admits a compact metrizable infinite set.

PROOF. Obviously,  $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ , and  $(5) \Rightarrow (2) \Rightarrow (1)$ . Moreover,  $(1) \Rightarrow (5)$ , since any sequence  $\{x_0, x_1, x_2, x_3, \ldots\}$  of distinct points converging to  $x_0$  in X is clearly homeomorphic to  $\{0, 1, 1/2, 1/3, \ldots\}$  in the (metrizable) unit interval [0, 1].

Finally, note that  $\neg (1) \Rightarrow \neg (4)$ : Let  $S = \{y_1, y_2, ...\}$  be an arbitrary sequence of distinct points in X. By hypothesis S does not converge to  $y_1$ , so there exists some neighborhood  $N_1$  of  $y_1$  which misses a subsequence  $S_1 = \{x_{11}, x_{12}, ...\}$  of S. We inductively find a neighborhood  $N_k$  of  $y_k$  which misses a subsequence  $S_k =$  $\{x_{k1}, x_{k2}, ...\}$  of  $S_{k-1}$  for k = 2, 3, ... The diagonal sequence  $T = \{x_{11}, x_{22}, ...\}$ of distinct points in S has no cluster point in S, since  $N_k$  is a neighborhood of  $y_k$ that contains at most k-1 points of T (k = 1, 2, ...). Therefore S is not countably compact, denying (4).

The proof of [22, Corollary 2.6] explicitly uses a form of

LEMMA 6. If X is countably compact, at least one of the following two cases holds:

Case 1. X admits a nontrivial convergent sequence. Case 2. The derived set  $X^d$  of all cluster points is infinite and perfect.

PROOF. If  $X^d$  is finite, then its union with any denumerable set in X verifies (4), hence (1). If  $X^d$  is not perfect, then there exists  $x_0$  in  $X^d \setminus X^{dd}$ . Let V be a closed neighborhood of  $x_0$  that misses  $X^d \setminus \{x_0\}$ , let  $x_1, x_2, \ldots$  be distinct points in V, and define  $S := \{x_0, x_1, x_2, \ldots\}$ . Since  $S^d \subset V \cap X^d = \{x_0\}$ , the set S is countably compact by hypothesis; *i.e.*, (4) holds. Then so does (1).

In the simplest Case 1 examples, X is a convergent sequence of distinct points, making  $C_c(X)$  isomorphic to the Banach space c of convergent scalar sequences, and  $C_p(X)$  isomorphic to c with the topology induced by  $\mathbb{R}^{\mathbb{N}}$ , both separable.

We can now sketch a proof from [22] of the seminal

THEOREM 7 (Rosenthal). When X is compact, the Banach space  $C_c(X)$  has a (separable) quotient isomorphic to either c or the Hilbert space  $\ell^2$ .

PROOF. By Lemma 6, there are only two cases possible.

Case 1. X contains a sequence  $\{x_n\}_n$  of distinct points converging to some point  $x_0 \neq x_n \quad (n \in \mathbb{N})$ . The linear map  $T : C_c(X) \to c$  defined by  $f \mapsto (f(x_n))_{n \geq 1}$  is obviously continuous, and is onto the Banach space c by Lemma 4. Hence the quotient  $C_c(X)/T^{-1}(0)$  is isomorphic to c.

Case 2. X contains a perfect infinite set. Via the Khinchin inequality (cf. [8]) one finds  $\ell^2$  is isomorphic to a subspace of  $L^1[0,1]$ , and in Case 2,  $L^1[0,1]$  is isomorphic to a subspace of  $L^1(X, \mathfrak{B}_X, \mu)$ , with  $\mathfrak{B}_X$  the Borel sets in X and  $\mu$  a nonnegative, finite, regular Borel measure on X. In turn, the latter space is isomorphic to a subspace of the strong dual  $C_c(X)'_\beta$  of  $C_c(X)$ . Therefore the reflexive  $\ell^2$  is a subspace of  $C_c(X)'_\beta$  that is  $w^*$ -closed [22, Corollary 1.6, Proposition 1.2]. This yields a quotient of  $C_c(X)$  isomorphic to  $\ell^2$ .

Rosenthal recalled on p.180 of [22] that  $\ell^{\infty}$  may be identified with  $C_u^b(\beta \mathbb{N})$ , clearly aware of Corollaries 8, 9 below. Whether he actually observed Corollaries 10, 11 is less clear.

COROLLARY 8 (Rosenthal).  $C_u^b(X) \approx C_c(\beta X)$  has a separable quotient.

PROOF. By the Stone-Čech theorem [33].

COROLLARY 9 (Rosenthal). Some quotient of  $\ell^{\infty}$  is isomorphic to  $\ell^2$ .

PROOF.  $\ell^{\infty} = C_u^b(\mathbb{N}) \approx C_c(\beta \mathbb{N})$  and  $(\beta \mathbb{N})^d = \beta \mathbb{N} \setminus \mathbb{N}$  is infinite, perfect. Case 2 of Theorem 7 applies.

COROLLARY 10. If X has an infinite compact subset Y, then  $C_c(X)$  has a quotient isomorphic to c or  $\ell^2$ .

PROOF. The restriction map  $f \mapsto f|_Y$  from  $C_c(X)$  into  $C_c(Y)$  is clearly linear and continuous. By Lemma 4, it is open. And quotient-taking is transitive.  $\Box$ 

COROLLARY 11. If  $C_p(X)$  has a separable quotient, then so does  $C_c(X)$ .

PROOF. Either  $C_c(X) = C_p(X)$ , or Corollary 10 applies.

Recall that an lcs E is a GM-space [5] if every linear map  $t: E \to F$ , where F is any metrizable lcs and t has closed graph, is necessarily continuous. Immediately from Mahowald's theorem, every GM-space is barrelled. No  $C_u^b(X)$  is a GM-space, twice-proved: (i) No metrizable lcs F is a GM-space, since there is always a strictly finer metrizable locally convex topology on F; (ii) GM-spaces lack properly separable quotients. Moreover,

THEOREM 12. Neither  $C_c(X)$  nor  $C_p(X)$  is a GM-space.

PROOF. Barrelled  $C_c(X)$  spaces admit (properly) separable quotients [16]. And if  $C_p(X)$  is barrelled, then  $C_p(X) = C_c(X)$  [2].

COROLLARY 13. Always, there exists a discontinuous linear map with closed graph from  $C_c(X)$  into some metrizable lcs.

From Lemma 4, the closed ideals of  $C_p(X)$  are precisely the spaces

 $\mathfrak{T}_{A} = \{ f \in C(X) : f(x) = 0 \text{ for all } x \in A \}$ 

where A ranges over the closed subsets of X. These are also the closed ideals of  $C_c(X)$  [7, Theorem 4.10.6]. An algebra quotient of  $C_c(X)$  or  $C_p(X)$  is one by a closed ideal, thus preserving vector multiplication. In Rosenthal's Case 1 the quotient is an algebra quotient, since the kernel of T is  $\mathfrak{F}_A$  with  $A = \{x_0, x_1, x_2, \ldots\}$ .

Please recall that X is *pseudocompact* if  $C(X) = C^{b}(X)$ . Algebra quotients add to a list [15, Theorem 1.1] of characterizations found jointly with Todd.

THEOREM 14. When X is non-pseudocompact,  $C_c(X)$  and  $C_p(X)$  admit separable quotients. In fact, the following seven statements are equivalent.

- (1) X is not pseudocompact.
- (2)  $C_c(X)$  contains a copy of  $\mathbb{R}^{\mathbb{N}}$ .
- (3)  $C_p(X)$  contains a copy of  $\mathbb{R}^{\mathbb{N}}$ .
- (4)  $C_c(X)$  admits a quotient isomorphic to  $\mathbb{R}^{\mathbb{N}}$ .
- (5)  $C_p(X)$  admits a quotient isomorphic to  $\mathbb{R}^{\mathbb{N}}$ .
- (6)  $C_c(X)$  admits an algebra quotient isomorphic to  $\mathbb{R}^{\mathbb{N}}$ .
- (7)  $C_p(X)$  admits an algebra quotient isomorphic to  $\mathbb{R}^{\mathbb{N}}$ .

Moreover, if one (and thus each) of (1-7) holds, then  $C_u^b(X)$  admits quotients isomorphic to  $\ell^{\infty}$  and to  $\ell^2$ .

PROOF. In [14] we showed that (1)  $\Leftrightarrow$  (2), and since the topology on  $\mathbb{R}^{\mathbb{N}}$  is minimal, (2)  $\Rightarrow$  (3). In every lcs, each copy of  $\mathbb{R}^{\mathbb{N}}$  is complemented [19, 2.6.5(iii)], so (2)  $\Rightarrow$  (4) and (3)  $\Rightarrow$  (5).

Now let M be any closed subspace of  $C_c(X)$  [resp., of  $C_p(X)$ ]. If X is pseudocompact, then M is a closed subspace of  $C_u^b(X)$ . The topology of the Banach space  $C_u^b(X)/M$  is finer than that of  $C_c(X)/M$  [resp., of  $C_p(X)/M$ ], so, by the open mapping theorem, the latter cannot be the non-Banach Fréchet space  $\mathbb{R}^{\mathbb{N}}$ . This shows (the contrapositive of) (4)  $\Rightarrow$  (1) [resp., (5)  $\Rightarrow$  (1)]. Thus (1-5) are equivalent.

 $[(1) \Rightarrow (6), (7)]$ . By definition, the non-pseudocompact X admits a disjoint sequence  $\{U_n\}_n$  of non-empty open sets that is locally finite; *i.e.*, each point in X has a neighborhood which meets only finitely many of the  $U_n$ . Choose  $x_n$  in  $U_n$  for each  $n \in \mathbb{N}$  and define the linear map  $T : C(X) \to \mathbb{R}^{\mathbb{N}}$  so that, for all  $f \in C(X)$ ,

$$T\left(f\right) = \left(f\left(x_n\right)\right)_n$$

T is continuous on  $C_p(X)$ , and thus also on  $C_c(X)$ . By Lemma 4, for each n there exists  $f_n \in [X, 1]$  with  $f_n(x_n) = 1$  and  $f_n(X \setminus U_n) = \{0\}$ . For an arbitrary scalar sequence  $(a_n)_n$ , the point-wise sum  $\sum_n a_n f_n$  is in C(X) by local finiteness. If K is compact in X, it is countably compact and meets  $U_k$  only for those k in some finite set  $\sigma \subset \mathbb{N}$ . If  $\varepsilon > 0$  and

$$W = \left\{ (a_n)_n \in \mathbb{R}^{\mathbb{N}} : |a_k| \le \varepsilon \text{ for each } k \in \sigma \right\},\$$

then for each  $(a_n)_n \in W$  we have  $\sum_n a_n f_n \in [K, \varepsilon]$  with  $T(\sum_n a_n f_n) = (a_n)_n$ . Hence  $T([K, \varepsilon]) \supset W$ , so that T is an open map both from  $C_c(X)$  and  $C_p(X)$ , and  $T^{-1}(0) = \mathfrak{P}_A$ , where  $A = \{x_1, x_2, \dots\}$  is obviously closed. Thus (6) and (7) hold.

Trivially, (7) and (6) imply (5) and (4), respectively, completing the proof that (1-7) are equivalent.

The  $C_u^b(X)$  case remains. If (1-7) hold, then T exists as above, and the restriction  $T|_{C^b(X)}$  is clearly continuous and open from  $C_u^b(X)$  onto the Banach space  $\ell^{\infty}$ . Thus  $\ell^{\infty}$  is a quotient of  $C_u^b(X)$ , as is  $\ell^2$  by Corollary 9 and transitivity.  $\Box$ 

In [15] we proved that  $C_c(X)$  contains a copy of a dense subspace of  $\mathbb{R}^{\mathbb{N}}$  if and only if X is not Warner bounded. (X is Warner bounded if for every disjoint sequence  $(U_n)_n$  of non-empty open sets in X there exists a compact  $K \subset X$  such that  $U_n \bigcap K \neq \emptyset$  for infinitely many  $n \in \mathbb{N}$ .)

LEMMA 15. Let A be a closed infinite subset of X. Then  $C_p(X)/\mathfrak{S}_A$  is isomorphic to a dense subspace of  $C_p(A)$ , itself a dense subspace of the product space  $\mathbb{R}^A$ . If A is also compact, then  $C_c(X)/\mathfrak{S}_A$  is isomorphic to the Banach space  $C_c(A)$ .

PROOF. Let q denote the quotient map. One may use Lemma 4 to see that: (i) in both cases, the map  $q(f) \mapsto f|_A$  is an isomorphism from the quotient onto its image in C(A); (ii) the image is a dense subspace of  $\mathbb{R}^A$  since some f in C(X)achieves arbitrarily prescribed values on any given finite subset of A; (iii) the map is onto C(A) when A is compact.

Rosenthal's Banach algebra quotient (Case 1) generalizes, with converse:

THEOREM 16. Statements (1-5) of Lemma 5 are equivalent to the next four.

- (6)  $C_c(X)$  admits an algebra quotient isomorphic to c.
- (7)  $C_c(X)$  admits a separable Banach algebra quotient.
- (8)  $C_c(A)$  is isomorphic to c for some  $A \subset X$ .
- (9)  $C_c(A)$  is a separable Banach space for some  $A \subset X$ .

PROOF. If A is closed in X and  $C_c(X)/\mathfrak{F}_A$  is normable, then for some compact K the quotient map q takes [K, 1] into a bounded set. If we suppose that  $K \not\supseteq A$ , then Lemma 4 provides  $f \in \mathfrak{F}_K \setminus \mathfrak{F}_A$ . But then the span  $\pounds$  of f is in [K, 1] and  $q(f) \neq 0$ , so the unbounded line  $q(\pounds)$  is in q([K, 1]), a contradiction. Therefore K must contain the closed set A, and A must be compact. We combine this with Lemma 15 to see that  $(6) \Leftrightarrow (8)$  and  $(7) \Leftrightarrow (9)$ .

If A consists of a nontrivial convergent sequence and its limit, then it is clear from Case 1 that  $C_c(A) \approx c$ ; *i.e.*, (1)  $\Rightarrow$  (8). Trivially, (8)  $\Rightarrow$  (9).

Finally, the Krein-Krein criterion [17] merely says  $(9) \Leftrightarrow (5)$ .

LEMMA 17. If X has no closed denumerable sets, then  $C_p(X)$  is not separable.

PROOF. Let  $f_1, f_2, \dots \in C(X)$  be arbitrary. We desire  $y_1 \neq y_2$  in X with

$$|f_n(y_1) - f_n(y_2)| \le 1$$

for all  $n \in \mathbb{N}$ . By hypothesis, every denumerable set has more than one cluster point in X. Fix a cluster point  $y_1$  in X. Continuity allows us to choose a strictly decreasing sequence of closed neighborhoods  $V_n$  of  $y_1$  so that each  $f_n(V_n)$  has diameter no larger than 1. We choose  $x_n \in V_n \setminus V_{n+1}$  and let  $y_2$  be a cluster point of  $\{x_n\}_n$  distinct from  $y_1$ . Since all but finitely many of the  $x_k$  are in a given  $V_n$ , this closed set contains the cluster point  $y_2$ . Indeed, then, the displayed inequality holds for each n.

Lemma 4 provides  $h \in C(X)$  with  $h(y_1) = 5$  and  $h(y_2) = 9$ . If we assume some  $f_n \in h + [\{y_1, y_2\}, 1]$ , we have  $|f_n(y_1) - f_n(y_2)| \ge (9-5) - 1 - 1 = 2$ , a contradiction. Thus the arbitrary sequence is not dense in  $C_p(X)$ .

THEOREM 18. The following three statements are equivalent.

- (1) X admits a closed denumerable set D.
- (2)  $C_c(X)$  admits a separable algebra quotient.
- (3)  $C_p(X)$  admits a separable algebra quotient.

PROOF.  $[(1) \Rightarrow (2)]$ . If *D* admits a compact infinite subset, the previous Theorem ensures *c* is a (separable) algebra quotient of  $C_c(X)$ . If *D* has no such subset, then  $C_c(X)/\Im_D = C_p(X)/\Im_D$  is isomorphic to a dense subspace of the metrizable separable  $\mathbb{R}^D$  by Lemma 15. Hence the algebra quotient is separable.

 $[(2) \Rightarrow (3)]$ . If  $C_c(X)/\Im_A$  is separable, so is  $C_p(X)/\Im_A$ .

 $[(3) \Rightarrow (1)]$ . If A is closed in X with  $C_p(X)/\Im_A$  separable, then so is  $C_p(A)$  by Lemma 15. Since A is infinite, (the contrapositive of) Lemma 17 shows A has a closed denumerable subset D. Thus D is closed in X, and (1) holds.

Thus  $C_c(X)$  and  $C_p(X)$  have separable algebra quotients if X has an infinite closed subset that is metrizable; *e.g.*, if X is a tvs. Since  $\beta \mathbb{N}$  lacks a closed denumerable set,  $C_c(\beta \mathbb{N})$  and  $C_p(\beta \mathbb{N})$  lack separable algebra quotients, although  $C_c(\beta \mathbb{N})$  contains a copy of c, as do all Banach spaces of the form  $C_c(X)$ .

If countable intersections of open sets are open, X is called a *P*-space; then denumerable sets are closed, not compact, so one may apply Theorem 18, not 16:

COROLLARY 19. If X is a P-space, then  $C_{c}(X)$  and  $C_{p}(X)$  admit separable algebra quotients.

COROLLARY 20. Both  $C_c(X)$  and  $C_p(X)$  have properly separable quotients when  $L_m(X)$  does not.

PROOF. By hypothesis, dense subspaces of  $L_m(X)$  are primitive [26], including  $L_m(X)$ . Therefore X is a P-space [9, 10] and the previous Corollary applies.  $\Box$ 

X is of pointwise countable type (Arkhangel'skii) if every point in X is in some compact set K for which there exists a sequence of open sets  $U_n$  in X with the properties that (i) each  $U_n$  contains K and (ii) some  $U_n$  is contained in U whenever U is an open set containing K. Obviously, X is of pointwise countable type if X is first countable, and conversely when every compact set K is finite. Only the most extreme P-spaces are of pointwise countable type. Indeed,

THEOREM 21. Assume X is of pointwise countable type. The following five statements are equivalent.

- (1) X is discrete.
- (2) X is a P-space.
- (3) No compact set in X is infinite.
- (4) No compact set in X is denumerable, and X is first countable.
- (5)  $C_c(X) = C_p(X) = \mathbb{R}^X$ .

PROOF. Trivially,  $(1) \Rightarrow (2)$ . Suppose (2) holds. Then every denumerable set in X is closed and not compact. Therefore there are no denumerable subsets of compact sets, thus no infinite compact sets in X; i.e.,  $(2) \Rightarrow (3)$ . Since X is of pointwise countable type,  $(3) \Rightarrow (4)$ .

 $[(4) \Rightarrow (1)]$ . Suppose (4) holds and not (1). Then there is some  $x_0 \in X$  such that  $\{x_0\}$  is not open in X. First countability posits a countable base  $\{V_n\}_n$  of open neighborhoods of  $x_0$ . We may assume each  $V_n \supset V_{n+1}$  and inductively choose distinct points  $x_1, x_2, \ldots$  with each  $x_n \in V_n$ . Clearly, this sequence converges to  $x_0$ , and  $\{x_0, x_1, x_2, \ldots\}$  is a denumerable compact set in X, a contradiction of (4); the desired implication follows.

We now have (1) - (4) are equivalent. Since  $[(1) \Rightarrow (5)]$  and  $[(5) \Rightarrow (3)]$  are obvious, the proof is complete.

COROLLARY 22. If X is of pointwise countable type, then  $C_c(X)$  has a quotient isomorphic to either  $\mathbb{R}^{\mathbb{N}}$ , c, or  $\ell^2$ .

PROOF. Clearly,  $\mathbb{R}^{\mathbb{N}}$  is a quotient of  $\mathbb{R}^X$ . If  $C_c(X) \neq \mathbb{R}^X$ , then X contains an infinite compact set Y, and Corollary 10 applies.

The weak and strong duals of  $C_c(X)$  have separable quotients [16], but not always *properly* separable quotients (*e.g.*, when X is discrete). Re-examination of the dual of  $C_p(X)$  adds to the analytic P-space characterizations [2, 9, 10].

THEOREM 23. The following five assertions are equivalent.

- (1) X is a P-space.
- (2)  $L_m(X)$  is primitive.
- (3) Every dense subspace of  $L_m(X)$  is primitive.
- (4) Every dense subspace of  $L_m(X)$  is inductive.
- (5) No quotient of  $L_m(X)$  is properly separable.

PROOF. By [9, Theorem 6], (1)  $\Leftrightarrow$  (2). Always, *inductive*  $\Rightarrow$  *primitive*, and for Mackey spaces, *primitive*  $\Leftrightarrow$  *inductive* [29, box 4 of Fig. 3], so Theorem 3.12 of [29] yields (3)  $\Leftrightarrow$  (4). And [(3)  $\Leftrightarrow$  (5)] is a part of [26, Theorem 1]. Trivially, (3)  $\Rightarrow$  (2). We are left to prove

 $[(1) \Rightarrow (5)]$ . Suppose X is a P-space and  $L_m(X)$  admits a properly separable quotient. By definition,  $L_m(X)$  contains a closed subspace M and a sequence  $\{y_n\}_n$  such that  $F = M + \operatorname{sp} \{y_n\}_n$  is a dense proper subspace. In the usual manner, we identify X with a Hamel basis for L(X), and C(X) with the dual of  $L_m(X)$ . Since the countable union of finite sets is countable, there is a sequence  $\{x_n\}_n \subset X$  with  $F \subset G = M + \operatorname{sp} \{x_n\}_n$ . Assume G = L(X), so that M is countable-codimensional. Now  $L_m(X)$  is primitive [9], and by [29, Theorem 2.4], every subspace between M and  $L_m(X)$  is closed. Therefore F is closed, contradicting the fact that F is supposed to be dense and proper; the assumption is false:  $G \neq L(X)$ , and there exists some  $x \in X \setminus G$ . The Hahn-Banach theorem yields  $f \in C(X)$  with f(x) = 1 and  $f(M) = \{0\}$ . Since X is a P-space, there is a neighborhood  $\mathcal{O}$  of x with each  $x_n \notin \mathcal{O}$ . Lemma 4 yields  $h \in C(X)$  with h(x) = 1 and each  $h(x_n) = 0$ . Now the product  $fh \in C(X)$  vanishes on G, hence on F, but not at x, which contradicts density of F. Our supposition is false, then, which proves  $[(1) \Rightarrow (5)]$ .

THEOREM 24. X is a P-space if and only if the weak dual  $C_c(X)'_{\sigma}$  of  $C_c(X)$  has no properly separable quotient.

PROOF. Always,  $L_p(X)$  is a dense subspace of  $C_c(X)'_{\sigma}$ , so the latter has a properly separable quotient if the former does. Thus by Theorem 23 and duality invariance,  $C_c(X)'_{\sigma}$  has a properly separable quotient if X is not a P-space.

Conversely, if X is a P-space, then all compact sets in X are finite, so that  $C_c(X)'_{\sigma} = L_p(X)$  has no properly separable quotient, again by Theorem 23 and duality invariance.

Precisely the X that are P-spaces provide a wealth of simple lcs's  $L_m(X)$  to which the proof of Example 3 applies:

EXAMPLE 25. Suppose X is a P-space; equivalently, every dense subspace of  $L_m(X)$  is primitive. The  $S_{\sigma}$  space  $L_m(X)$  [9] dominates a dense hyperplane H of some non-primitive lcs  $(E, \tau)$  with  $(H, \tau)' = L_m(X)'$  [29, Theorem 3.2]. The non-primitive E must admit a properly separable quotient, but, via duality invariance, its hyperplane H cannot (see first paragraph of Section 2).

We mention some concrete nondiscrete P-spaces. If  $\kappa$  is an infinite cardinal, let  $X_{\kappa}$  denote the closed interval  $[0, \kappa]$  of ordinals with a finer topology whose open sets are precisely those which either omit  $\kappa$  or contain the closed interval  $[\alpha, \kappa]$  for some ordinal  $\alpha < \kappa$ . Certainly,  $X_{\kappa}$  is an infinite completely regular Hausdorff space. The *cofinality* of  $\kappa$ , denoted cof  $(\kappa)$ , is the least cardinality of the cofinal subsets of the well-ordered interval  $[0, \kappa)$ .

By Theorem 18, all  $C_p(X_{\kappa})$  and  $C_c(X_{\kappa})$  admit separable algebra quotients. Easily,  $[X_{\kappa} \text{ is a P-space}] \Leftrightarrow [\operatorname{cof}(\kappa) \neq \aleph_0] \Leftrightarrow [X_{\kappa} \text{ has no infinite compact set}] \Leftrightarrow [X_{\kappa} \text{ has no denumerable compact set}]$ . By Theorems 23 and 24, then,  $\operatorname{cof}(\kappa)$  determines whether  $C_p(X_{\kappa})'_{\sigma}$  and  $C_c(X_{\kappa})'_{\sigma}$  admit properly separable quotients.

Cofinality is similarly crucial in [25]. If E is a linear space with infinite Hamel basis B of size |B|, define the subspace  $E^{B,|B|}$  of the algebraic dual  $E^*$  by writing

$$E^{B,|B|} = \{f \in E^* : |\{x \in B : f(x) \neq 0\}| < |B|\}.$$

The lcs that E becomes under the Mackey topology  $\mu(E, E^{B,|B|})$ , denoted  $E_B$ , is never  $\aleph_0$ -barrelled and has dense subspaces of codimension |B|, the largest possible [25, Theorems 2, 3]. Moreover,

THEOREM 26. The following seven statements are equivalent.

(1)  $\operatorname{cof}(|B|) \neq \aleph_0$ .

(2)  $E_B$  is primitive.

(3) [Every]  $\langle Some \rangle$  dense hyperplane in  $E_B$  is nonMackey.

- (4) Every dense proper subspace in  $E_B$  is nonMackey.
- (5) Every dense subspace in  $E_B$  is primitive.
- (6) Every dense subspace in  $E_B$  is inductive.
- (7)  $E_B$  does not admit a properly separable quotient.

PROOF. By [25, Theorems 2, 3],  $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ . In particular, the [*Every*] and (Some) versions of (3) are equivalent.

 $[(3) \Leftrightarrow (4)]$ . If F is a dense proper subspace in  $E_B$ , there is a hyperplane H in  $E_B$  with  $F \subset H$ ; if F is also Mackey, so is H, routinely, which contrapositively proves  $[(3) \Rightarrow (4)]$ . The converse is trivial.

 $[(5) \Leftrightarrow (6) \Leftrightarrow (7)]$ . Suppose (5) holds. Then the primitive Mackey space  $E_B$  is inductive [29], which, combined with (5), implies (6) [29, Theorem 3.12]. The converse is obvious, so (5)  $\Leftrightarrow$  (6). Theorem 1(ii) of [26] equates (5) and (7).

 $[(5) \Rightarrow (2)]$ . Trivially. To complete the proof, we show

 $[(1) \Rightarrow (7)]$ . By Theorem 1(iii) of [26],  $E_B$  has a properly separable quotient if and only if there exists a sequence  $\{f_n\}_n \subset E'_B \ (=E^{B,|B|})$  such that the subspace

 $\operatorname{ez} \{f_n\}_n = \{x \in E : f_n(x) = 0 \text{ for all but finitely many } n \in \mathbb{N}\}\$ 

is dense and proper in  $E_B$ . Given any  $\{f_n\}_n \subset E'_B$ ,

$$B_0 = \{ x \in B : f_n(x) \neq 0 \text{ for some } n \in \mathbb{N} \}$$

is a countable union of sets of size  $\langle |B|$ , so if (1) holds, then  $|B_0| \langle |B|$  and all superspaces of sp  $(B \setminus B_0)$  are closed by definition of  $E'_B$ . In particular, ez  $\{f_n\}_n$  is closed, and cannot be dense and proper in  $E_B$ ; thus (7) holds.

Since each  $E_B$  is  $S_{\sigma}$ , the process of Examples 3 and 25 applies to precisely those  $E_B = H$  with  $\operatorname{cof}(|B|) \neq \aleph_0$ . Conversely, no other process avails, since

THEOREM 27. If an lcs E admits a properly separable quotient, and a dense hyperplane H does not, then H is  $S_{\sigma}$  and E is not primitive.

PROOF. Theorem 1 implies H has a separable quotient Q. Thus H must be  $S_{\sigma}$ , since Q would otherwise be properly separable, contrary to hypothesis.

Assume *E* is primitive. Let  $\{f_n\}_n \subset E'$  with  $Z = ez\{f_n\}_n$  dense in *E*. Let  $\overline{H \cap Z}^H$  and  $\overline{H \cap Z}^E$  denote the closure of  $H \cap Z$  in *H* and *E*, respectively. Clearly,

$$\operatorname{codim}_{H}\left(\overline{H \bigcap Z}^{H}\right) \leq \operatorname{codim}_{E}\left(\overline{H \bigcap Z}^{E}\right).$$

If  $Z \subset H$ , then by density both codimensions are null. If there exists  $x \in Z \setminus H$ , then  $Z = H \bigcap Z + \operatorname{sp} x$ , and  $E = \overline{Z} = \overline{H \bigcap Z}^E + \operatorname{sp} x$ : Both codimensions are  $\leq 1$ . In every case, then,

$$\operatorname{codim}_{H}\left(\overline{H \bigcap Z}^{H}\right) \leq \operatorname{codim}_{E}\left(\overline{H \bigcap Z}^{E}\right) \leq 1.$$

We need Theorem 3.11(a) of [29], which says:

(\*) Let F be a dense primitive subspace of an lcs E. Every subspace between F and E is primitive if and only if  $ez \{h_n\}_n = E$  whenever  $\{h_n\}_n \subset E'$  with  $ez \{h_n\}_n \supset F$ .

By hypothesis, every dense subspace of H is primitive. If G is a subspace between  $H \bigcap Z$  and  $\overline{H \bigcap Z}^H$ , it has codimension  $\leq 1$  in a dense, hence primitive subspace of H, and therefore G itself is primitive [**29**, Theorem 2.9]. Application of (\*) to the primitive subspace  $H \bigcap Z$ , dense in  $\overline{H \bigcap Z}^H$ , yields the fact that  $Z = \exp\{f_n\} \supset \overline{H \bigcap Z}^H$ . Consequently,  $\overline{H \bigcap Z}^H = H \bigcap Z$  and

$$\operatorname{codim}_{E}(Z) \leq \operatorname{codim}_{H}(H \bigcap Z) + \operatorname{codim}_{E}(H) = \operatorname{codim}_{H}(\overline{H \bigcap Z}^{H}) + 1 \leq 2.$$

Therefore every subspace between the dense Z and the primitive E has codimension  $\leq 2$  and is, itself, primitive. Now (\*) implies  $Z = \exp\{f_n\}_n = E$ . Hence there is no  $\{f_n\}_n \subset E'$  with  $\exp\{f_n\}_n$  dense and proper in E; i.e., E has no properly separable quotient, a contradiction of hypothesis. We must conclude the assumption is false; E is not primitive.

#### 4. Remaining questions

Despite the strong dual solution [1], the Banach problem remains. Analogs implicate P-spaces and weak barrelledness. We have clear answers as to when

- the strong and weak duals of  $C_c(X)$  have separable quotients (always [16])
- the weak dual of  $C_c(X)$  has a properly separable quotient (when X is not a P-space, Theorem 24)
- the weak dual of  $C_p(X)$  has a separable quotient (always [9]) or a properly separable quotient (when X is not a P-space, Theorem 23)
- proper (*LF*)-spaces have separable quotients (always [28]) or properly separable quotients (almost always [26])
- non-normable Fréchet spaces have separable quotients (always [6, Satz 2])
- GM-spaces have properly separable quotients (never) or separable quotients (when they are  $S_{\sigma}$  [16])
- $C_c(X), C_p(X)$  have separable algebra quotients (Theorem 18)
- barrelled  $C_{c}(X)$ ,  $C_{p}(X)$  have separable quotients (always [16]).

**Q1**. Must arbitrary  $C_c(X)$  have separable quotients? (Rosenthal and Theorem 18 leave only the case where X is countably compact and not compact.)

**Q2.** If  $C_c(X)$  has separable quotients, must  $C_p(X)$ ? (See Corollary 11.)

**Q3.** If X is compact, must  $C_p(X)$  have separable quotients?

So far, only certain GM-spaces have been shown to lack separable quotients [16]. Are there Schwartz spaces or nuclear spaces, for example, that lack separable quotients? Our answer is positive, albeit pedestrian: Any non-trivial variety  $\mathcal{V}$  of lcs's, the nuclear and Schwartz varieties included, must contain the smallest non-trivial variety  $\mathcal{W}$  of all lcs's having their weak topology [3]. Let E be a non- $S_{\sigma}$  GM-space. Then  $(E, \sigma(E, E'))$  is in  $\mathcal{W} \subset \mathcal{V}$  and does not admit separable quotients.

**Q4**. Does some Schwartz or nuclear space not in  $\mathcal{W}$  lack separable quotients? (Both varieties have separable universal generators not in  $\mathcal{W}$  [12].)

#### References

- S. A. Argyros, P. Dodos and V. Kanellopoulos, Unconditional families in Banach spaces, Math. Ann. 341(2008), 15-38.
- [2] H. Buchwalter and J. Schmets, Sur quelques propriétés de l'espace C<sub>s</sub>(X), J. Math. Pures Appl. 52(1973), 337-352.
- [3] J. Diestel, S. Morris and S. Saxon, Varieties of linear topological vector spaces, Trans. Amer. Math. Soc. 172(1972), 207-230.
- [4] L. Drewnowski and R. H. Lohman, On the number of separable locally convex spaces, Proc. Amer. Math. Soc. 58(1976), 185–188.
- [5] V. Eberhardt and W. Roelcke, Über einem Graphensatz für lineare abbildungen mit metrisierbarem Zielraum, Manuscr. Math. 13(1974), 53-68.
- [6] M. Eidelheit, Zur Theorie der Systeme Linearer Gleichungen, Studia Math. 6(1936), 130-148.
- [7] R. E. Edwards, Functional Analysis, Holt, Rinehart, and Winston, 1965.
- [8] S. Yu. Favorov, A generalized Kahane-Khinchin inequality, Studia Math. 130(1998), 101-107.
- [9] J. C. Ferrando, Jerzy Kąkol and Stephen A. Saxon, The dual of the locally convex space C<sub>p</sub>(X), Functiones et Approximatio 50(2), 1-11 (2014). doi: 10.7169/facm/2014.50.2.
- [10] J. C. Ferrando, Jerzy Kąkol and Stephen A. Saxon, *Characterizing P-spaces X in terms of*  $C_p(X)$ , Journal of Convex Analysis **22**(2015), 905-915.
- [11] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, 1960.
- [12] H. Jarchow, Locally Convex Spaces, Stuttgart, Teubner 1981.
- [13] Jerzy Kąkol, Wiesław Kubiś and M. López-Pellicer, Descriptive Topology in Selected Topics of Functional Analysis, DEVM 24, Springer, 2011.
- [14] J. Kąkol, S. A. Saxon and A. R. Todd, Pseudocompact spaces X and df-spaces C<sub>c</sub>(X), Proc. Amer. Math. Soc. 132(2004), 1703-1712.
- [15] J. Kąkol, S. A. Saxon and A. R. Todd, The analysis of Warner boundedness, Proc. Edinb. Math. Soc. 47(2004), 625-631.
- [16] J. Kąkol, S. A. Saxon and A. R. Todd, Barrelled spaces with(out) separable quotients, Bull. Austral. Math. Soc. 90(2014), 295-303. doi: 10.1017/S0004972714000422.
- [17] M. Krein and S. Krein, On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space, Doklady Acad. Nauk, USSR, 27(1940), 427-430.
- [18] W. Lehner, Über die Bedeutung gewisser Varianten des Baire'schen Kategorienbegriffs für die Funktionenräume  $C_c(T)$ , Dissertation, Ludwig-Maximilians-Universität, München, 1979.
- [19] P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, Math. Studies 131, North Holland, 1987.
- [20] M. M. Popov, On the codimension of subspaces of  $L_p(\mu)$ , 0 , Funkt. Anal. Prilozen**18**(1984), 94-95 (in Russian).
- [21] W. J. Robertson, On properly separable quotients of strict (LF) spaces, J. Austral. Math. Soc. 47(1989), 307-312.
- [22] H. P. Rosenthal, On quasicomplemented subspaces of Banach spaces, with an appendix on compactness of operators from  $L^{p}(\mu)$  to  $L^{r}(\nu)$ , J. Functional Analysis 4(1969), 176-214.
- [23] S. A. Saxon, Every countable-codimensional subspace of an infinite-dimensional [nonnormable] Fréchet space has an infinite-dimensional Fréchet quotient [isomorphic to ω], Bull. Pol. Acad. Sci. **39**(1991),161-166.
- [24] S. A. Saxon, Weak barrelledness vs. P-spaces, in Descriptive Topology and Functional Analysis, (J. C. Ferrando and M. López-Pellicer, Editors) Springer PROMS 80, 2014, pp. 27-32. doi: 10.1007/978-3-319-05224-3 2
- [25] S. A. Saxon, Mackey hyperplanes/enlargements for Tweddle's space, RACSAM 108(2014), pp. 1035-1054. doi: 10.1007/s13398-013-0159-x
- [26] S. A. Saxon, (LF)-spaces with more-than-separable quotients, J. Math. Anal. Appl., to appear. doi: 10.1016/j.jmaa.2015.09.005
- [27] S. A. Saxon and M. Levin, Every countable-codimensional subspace of a barrelled space is barrelled, Proc. Amer. Math. Soc. 29(1971), 91-96.
- [28] S. A. Saxon and P. P. Narayanaswami, Metrizable (*LF*)-spaces, (*db*)-spaces and the separable quotient problem, *Bull. Austral. Math. Soc.* 23(1981), 65-80.
- [29] S. A. Saxon and L. M. Sánchez Ruiz, *Reinventing weak barrelledness*, Journal of Convex Analysis, accepted.

- [30] S. A. Saxon and A. Wilansky, The equivalence of some Banach space problems, Colloquium Math. XXXVII (1977), 217-226.
- [31] W. Śliwa, The separable quotient problem and the strongly normal sequences, J. Math. Soc. Japan 64(2012), 387-397.
- [32] M. Valdivia, On weak compactness, Studia Math. 49(1973), 3-13
- [33] R. C. Walker, The Stone-Čech compactification, Springer 1974.

FACULTY OF MATHEMATICS AND INFORMATICS, A. MICKIEWICZ UNIVERSITY, 60-769 POZNAŃ, MATEJKI 48-49, POLAND; INSTUTUTE OF MATHEMATICS, CZECH ACADEMY OF SCIENCES, PRAGUE, CZECH REPUBLIC, ZITNA 25

*E-mail address*: kakol@math.amu.edu.pl

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, PO BOX 118105, GAINESVILLE, FL 32611-8105, U.S.A.

*E-mail address*: stephen\_saxon@yahoo.com