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Separable quotients in Cc (X), Cp (X), and their duals

Jerzy K ¾akol and Stephen A. Saxon

Abstract. The quotient problem has a positive solution for the weak and
strong duals of Cc (X) (X an in�nite Tichonov space), for Banach spaces
Cc (X) [Rosenthal], and even for barrelled Cc (X), but not for barrelled spaces
in general [KST]. The solution is unknown for general Cc (X). A locally convex
space is properly separable if it has a proper dense @0-dimensional subspace
[Robertson]. For Cc (X) quotients, properly separable coincides with in�nite-
dimensional separable. Cc (X) has a properly separable algebra quotient if X
has a compact denumerable set [Rosenthal]. Relaxing compact to closed, we
obtain the converse as well; likewise for Cp (X). And the weak dual of Cp (X),
which always has an @0-dimensional quotient, has no properly separable quo-
tient precisely when X is a P-space.

1. Introduction

Here we assume topological vector spaces (tvs�s) and their quotients are Haus-
dor¤ and in�nite-dimensional. Banach�s famous unsolved problem asks: Does every
Banach space admit a separable quotient? [Popov�s] hOuri negative [tvs] hlcsi solu-
tion found a [metrizable tvs] hbarrelled lcsi without a separable quotient [16, 20].
(By lcs we mean locally convex tvs over the real or complex scalar �eld.)

The familiar Banach spaces admit separable quotients, as do all non-Banach
Fréchet spaces [6, Satz 2] and (LF )-spaces [28, Theorem 3]. The non-Banach (LF )-
space ' is an @0-dimensional space with the strongest locally convex topology whose
only quotients are copies of ' itself. While separable, ' is not properly separable
by Robertson�s ad hoc de�nition [21] (see Abstract). Saxon�s answer [26] to her
quarter-century-old question proves ' is the only non-Banach (LF )-space without
a properly separable quotient if and only if every Banach space has a separable
quotient.

Her notion, unexpectedly characterized in weak barrelledness terms [26], in-
trigues the more: When/How may separable vs. properly separable quotients ex-
ist/di¤er in an lcs? Section 2 explores di¤erences but �nds no lcs without a sepa-
rable quotient other than the (rather exotic) examples we found earlier [16]. The
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2 JERZY K ¾AKOL AND STEPHEN A. SAXON

main (third) section concentrates on the function spaces Cc (X) and Cp (X), where
the two notions of separable quotient coincide and beg the existential question (we
fully answer) for separable algebra quotients. Robertson�s dual-distinct notion keys
new analytic characterizations ([Theorem 23] hTheorem 24i): X is a P-space if and
only if the weak dual [of Cp (X)] hof Cc (X)i has no properly separable quotient.
The �nal section reviews open questions.

2. Weak barrelledness motivations, general lcs quotients

Remarkably, dense subspaces of GM -spaces are barrelled [5]. A Banach space
has no separable quotient if and only if its dense subspaces are barrelled [30, 31].
An lcs E has no separable quotient if and only if its dense subspaces are non-S�
(de�ned below) [16]. E has no properly separable quotient if and only if its dense
subspaces are primitive [26].

S�-spaces are those lcs�s covered by increasing sequences of closed proper sub-
spaces. An lcs E is [inductive] hprimitivei if � is continuous whenever fEngn is an
increasing covering sequence of subspaces and � is a [seminorm] hlinear formi on
E such that each restriction �jEn is continuous. These notions from the study of
weak barrelledness relate as follows:

barrelled
+

non-S� ) inductive ) primitive.

Hence GM -spaces lack properly separable quotients. Quotients and countable-
codimensional subspaces preserve each of the four properties. Non-S� and primitive
are duality invariant properties, unlike barrelled and inductive. Under the Mackey
topology, inductive , primitive. Under metrizability, non-S� , primitive [27, 29].

Easily, properly separable quotients and separable quotients coincide for metriz-
able spaces and for non-S� spaces, e.g., for all Cc (X) and Cp (X). Our negative bar-
relled solution [16] now follows from the two paragraphs above; we merely needed
a GM -space that is non-S�, and such spaces exist (that are even Baire) [5].

An lcs E is properly separable if and only if E is separable and E0 6= E�, a
corollary to the fact that (y) �nite-codimensional subspaces of separable lcs�s are
separable [4]. Moreover, (yy) countable- cannot replace �nite- [4, 32].

The separable quotient analogs of (y) and (yy) hold:

Theorem 1. If an lcs E has a separable quotient, so do the �nite-codimensional
subspaces of E.

Proof. Immediate from (y) and [23, Theorem 2(b)]. �

Example 2. A countable-codimensional subspace G of a barrelled space E does
not necessarily admit a separable quotient when E does.

Proof. Let G be any non-S� GM -space and set E = G� '. �

The properly separable quotient story excludes Theorem 1:

Example 3. There is a Mackey space E with dense hyperplane H such that E
admits a properly separable quotient and H does not.

Proof. Let (H; �) be any S� GM -space, e.g., '. By [29, Theorem 3.2], H is
a dense hyperplane of a non-primitive Mackey space (E;�) with (H;�)0 = (H; �)0.
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Thus all the dense subspaces of H are primitive. This Section�s �rst paragraph
assures (i) E has a properly separable quotient, but (ii) H does not. �

3. Cc (X), Cp (X) and their duals

Throughout, X denotes an in�nite completely regular Hausdor¤ topological
space with Stone-µCech compacti�cation �X. Let C (X)

�
resp., Cb (X)

�
denote the

vector space of R-valued continuous [resp., and bounded] functions on X. Let
Cc (X) denote C (X) endowed with the compact-open topology. For A � X and
" > 0, we put [A; "] = ff 2 C (X) : jf (x)j � " for all x 2 Ag. Sets of the form
[K; "] with K a compact hresp., �nitei subset of X and " > 0 constitute a base of
neighborhoods of 0 for Cc (X) hresp., for the lcs denoted by Cp (X)i. By Cbu (X)
we denote the Banach space whose unit ball is [X; 1].

For compact X, Rosenthal [22] implies the Banach space c is an algebra quo-
tient of Cc(X) if X has a denumerable compact subset. We prove the result and
its converse for arbitrary X. We prove Cc (X) and Cp (X) have separable algebra
quotients if and only if X has a denumerable closed subset. We prove Cc (X) admits
a separable quotient when X is non-pseudocompact, or a P-space, or of pointwise
countable type.

It is unknown whether Cc (X) or Cp (X) always has a separable quotient.
Their weak and strong duals do [16]. The dual L (X) of Cp (X) given any topol-
ogy compatible with the dual pairing, e.g., the weak dual Lp (X) or the Mackey
dual Lm (X), even has an @0-dimensional quotient [9]. When Lp (X) does not
have a properly separable quotient, Cp (X) does, and when Cp (X) does, so does
Cc (X) [Theorem 23, Corollaries 19, 20]. Example 3 (with the same proof) holds for
H = Lm (X) if and only if X is a P-space, as we show later. Or, we could combine
Theorem 23 with [2] to obtain [X is a non-discrete P-space], [every dense subspace
of Lm (X) is primitive and not barrelled], adding new examples/characterizations
to the previous section and recent work [9, 10, 24]. (Many other modern marriages
of topology and analysis may be found in [13].)

Now X is compact if and only if Cbu (X) = Cc (X). Always, Cc (X) and Cp (X)
are non-S� [18, II.4.7] since Cb (X) is dense and Cbu (X) is non-S�. Density derives
from a well-known corollary to [11, 3.11(a),(c)]:

Lemma 4. If K � O � X with K compact and O open, and g 2 C (K),
then there exists f 2 Cb (X) such that sup fjf (x)j : x 2 Xg = sup fjg (x)j : x 2 Kg,
f jK = g, and f vanishes on XnO.

The next Lemma, likely known, has a simple proof.

Lemma 5. The following �ve statements are equivalent.

(1) X admits a nontrivial convergent sequence.
(2) X admits a sequentially compact in�nite set.
(3) X admits a compact denumerable set.
(4) X admits a countably compact denumerable set.
(5) X admits a compact metrizable in�nite set.

Proof. Obviously, (1) ) (2) ) (3) ) (4), and (5) ) (2) ) (1). Moreover,
(1) ) (5), since any sequence fx0; x1; x2; x3; : : : g of distinct points converging to
x0 in X is clearly homeomorphic to f0; 1; 1=2; 1=3; : : : g in the (metrizable) unit
interval [0; 1].
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Finally, note that : (1)) : (4): Let S = fy1; y2; : : : g be an arbitrary sequence
of distinct points in X. By hypothesis S does not converge to y1, so there exists
some neighborhood N1 of y1 which misses a subsequence S1 = fx11; x12; : : : g of
S. We inductively �nd a neighborhood Nk of yk which misses a subsequence Sk =
fxk1; xk2; : : : g of Sk�1 for k = 2; 3; : : : . The diagonal sequence T = fx11; x22; : : : g
of distinct points in S has no cluster point in S, since Nk is a neighborhood of yk
that contains at most k�1 points of T (k = 1; 2; : : : ). Therefore S is not countably
compact, denying (4). �

The proof of [22, Corollary 2.6] explicitly uses a form of

Lemma 6. If X is countably compact, at least one of the following two cases
holds:

Case 1. X admits a nontrivial convergent sequence.
Case 2. The derived set Xd of all cluster points is in�nite and perfect.

Proof. If Xd is �nite, then its union with any denumerable set in X veri�es
(4), hence (1). If Xd is not perfect, then there exists x0 in XdnXdd. Let V be a
closed neighborhood of x0 that misses Xdn fx0g, let x1; x2; : : : be distinct points
in V , and de�ne S := fx0; x1; x2; : : : g. Since Sd � V \ Xd = fx0g, the set S is
countably compact by hypothesis; i.e., (4) holds. Then so does (1). �

In the simplest Case 1 examples, X is a convergent sequence of distinct points,
making Cc (X) isomorphic to the Banach space c of convergent scalar sequences,
and Cp (X) isomorphic to c with the topology induced by RN, both separable.

We can now sketch a proof from [22] of the seminal

Theorem 7 (Rosenthal). When X is compact, the Banach space Cc (X) has
a (separable) quotient isomorphic to either c or the Hilbert space `2.

Proof. By Lemma 6, there are only two cases possible.
Case 1. X contains a sequence fxngn of distinct points converging to some point

x0 6= xn (n 2 N). The linear map T : Cc (X) ! c de�ned by f 7! (f (xn))n�1
is obviously continuous, and is onto the Banach space c by Lemma 4. Hence the
quotient Cc (X) =T�1 (0) is isomorphic to c.

Case 2. X contains a perfect in�nite set. Via the Khinchin inequality (cf.
[8]) one �nds `2 is isomorphic to a subspace of L1 [0; 1], and in Case 2, L1 [0; 1]
is isomorphic to a subspace of L1 (X;BX ; �), with BX the Borel sets in X and
� a nonnegative, �nite, regular Borel measure on X. In turn, the latter space
is isomorphic to a subspace of the strong dual Cc (X)

0
� of Cc (X). Therefore the

re�exive `2 is a subspace of Cc (X)
0
� that is w

�-closed [22, Corollary 1.6, Proposition
1.2]. This yields a quotient of Cc (X) isomorphic to `2. �

Rosenthal recalled on p.180 of [22] that `1 may be identi�ed with Cbu (�N),
clearly aware of Corollaries 8, 9 below. Whether he actually observed Corollaries
10, 11 is less clear.

Corollary 8 (Rosenthal). Cbu (X) � Cc (�X) has a separable quotient.

Proof. By the Stone-µCech theorem [33]. �

Corollary 9 (Rosenthal). Some quotient of `1 is isomorphic to `2.
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Proof. `1 = Cbu (N) � Cc (�N) and (�N)
d
= �NnN is in�nite, perfect. Case

2 of Theorem 7 applies. �

Corollary 10. If X has an in�nite compact subset Y , then Cc (X) has a
quotient isomorphic to c or `2.

Proof. The restriction map f 7! f jY from Cc (X) into Cc (Y ) is clearly linear
and continuous. By Lemma 4, it is open. And quotient-taking is transitive. �

Corollary 11. If Cp (X) has a separable quotient, then so does Cc (X).

Proof. Either Cc (X) = Cp (X), or Corollary 10 applies. �

Recall that an lcs E is a GM -space [5] if every linear map t : E ! F , where F
is any metrizable lcs and t has closed graph, is necessarily continuous. Immediately
from Mahowald�s theorem, every GM -space is barrelled. No Cbu (X) is a GM -
space, twice-proved: (i) No metrizable lcs F is a GM -space, since there is always a
strictly �ner metrizable locally convex topology on F ; (ii) GM -spaces lack properly
separable quotients. Moreover,

Theorem 12. Neither Cc(X) nor Cp(X) is a GM -space.

Proof. Barrelled Cc (X) spaces admit (properly) separable quotients [16].
And if Cp(X) is barrelled, then Cp(X) = Cc(X) [2]. �

Corollary 13. Always, there exists a discontinuous linear map with closed
graph from Cc(X) into some metrizable lcs.

From Lemma 4, the closed ideals of Cp (X) are precisely the spaces

=A = ff 2 C (X) : f (x) = 0 for all x 2 Ag
where A ranges over the closed subsets of X. These are also the closed ideals of
Cc (X) [7, Theorem 4.10.6]. An algebra quotient of Cc (X) or Cp (X) is one by a
closed ideal, thus preserving vector multiplication. In Rosenthal�s Case 1 the quo-
tient is an algebra quotient, since the kernel of T is =A with A = fx0; x1; x2; : : : g.

Please recall that X is pseudocompact if C (X) = Cb (X). Algebra quotients
add to a list [15, Theorem 1.1] of characterizations found jointly with Todd.

Theorem 14. When X is non-pseudocompact, Cc (X) and Cp (X) admit sep-
arable quotients. In fact, the following seven statements are equivalent.

(1) X is not pseudocompact.
(2) Cc (X) contains a copy of RN.
(3) Cp (X) contains a copy of RN.
(4) Cc (X) admits a quotient isomorphic to RN.
(5) Cp (X) admits a quotient isomorphic to RN.
(6) Cc (X) admits an algebra quotient isomorphic to RN.
(7) Cp (X) admits an algebra quotient isomorphic to RN.

Moreover, if one (and thus each) of (1-7) holds, then Cbu (X) admits quotients
isomorphic to `1 and to `2.

Proof. In [14] we showed that (1) , (2), and since the topology on RN is
minimal, (2) ) (3). In every lcs, each copy of RN is complemented [19, 2.6.5(iii)],
so (2) ) (4) and (3) ) (5).
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Now let M be any closed subspace of Cc (X) [resp., of Cp (X)]. If X is pseudo-
compact, then M is a closed subspace of Cbu (X). The topology of the Banach
space Cbu (X) =M is �ner than that of Cc (X) =M [resp., of Cp (X) =M ], so, by the
open mapping theorem, the latter cannot be the non-Banach Fréchet space RN.
This shows (the contrapositive of) (4) ) (1) [resp., (5) ) (1)]. Thus (1-5) are
equivalent.

[(1) ) (6),(7)]. By de�nition, the non-pseudocompact X admits a disjoint
sequence fUngn of non-empty open sets that is locally �nite; i.e., each point in X
has a neighborhood which meets only �nitely many of the Un. Choose xn in Un for
each n 2 N and de�ne the linear map T : C (X)! RN so that, for all f 2 C (X),

T (f) = (f (xn))n :

T is continuous on Cp (X), and thus also on Cc (X). By Lemma 4, for each n there
exists fn 2 [X; 1] with fn (xn) = 1 and fn (XnUn) = f0g. For an arbitrary scalar
sequence (an)n, the point-wise sum

P
n anfn is in C (X) by local �niteness. If K

is compact in X, it is countably compact and meets Uk only for those k in some
�nite set � � N. If " > 0 and

W =
�
(an)n 2 R

N : jakj � " for each k 2 �
	
,

then for each (an)n 2 W we have
P

n anfn 2 [K; "] with T (
P

n anfn) = (an)n.
Hence T ([K; "]) �W , so that T is an open map both from Cc (X) and Cp (X), and
T�1 (0) = =A, where A = fx1; x2; : : : g is obviously closed. Thus (6) and (7) hold.

Trivially, (7) and (6) imply (5) and (4), respectively, completing the proof that
(1-7) are equivalent.

The Cbu (X) case remains. If (1-7) hold, then T exists as above, and the restric-
tion T jCb(X) is clearly continuous and open from Cbu (X) onto the Banach space
`1. Thus `1 is a quotient of Cbu (X), as is `

2 by Corollary 9 and transitivity. �

In [15] we proved that Cc (X) contains a copy of a dense subspace of RN if
and only if X is not Warner bounded. (X is Warner bounded if for every disjoint
sequence (Un)n of non-empty open sets in X there exists a compact K � X such
that Un

T
K 6= ; for in�nitely many n 2 N.)

Lemma 15. Let A be a closed in�nite subset of X. Then Cp (X) ==A is isomor-
phic to a dense subspace of Cp (A), itself a dense subspace of the product space RA.
If A is also compact, then Cc (X) ==A is isomorphic to the Banach space Cc (A).

Proof. Let q denote the quotient map. One may use Lemma 4 to see that:
(i) in both cases, the map q (f) 7! f jA is an isomorphism from the quotient onto
its image in C (A); (ii) the image is a dense subspace of RA since some f in C (X)
achieves arbitrarily prescribed values on any given �nite subset of A; (iii) the map
is onto C (A) when A is compact. �

Rosenthal�s Banach algebra quotient (Case 1) generalizes, with converse:

Theorem 16. Statements (1-5) of Lemma 5 are equivalent to the next four.

(6) Cc (X) admits an algebra quotient isomorphic to c.
(7) Cc (X) admits a separable Banach algebra quotient.
(8) Cc (A) is isomorphic to c for some A � X.
(9) Cc (A) is a separable Banach space for some A � X.
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Proof. If A is closed inX and Cc (X) ==A is normable, then for some compact
K the quotient map q takes [K; 1] into a bounded set. If we suppose that K 6� A,
then Lemma 4 provides f 2 =K n =A. But then the span $ of f is in [K; 1] and
q (f) 6= 0, so the unbounded line q ($) is in q ([K; 1]), a contradiction. Therefore
K must contain the closed set A, and A must be compact. We combine this with
Lemma 15 to see that (6) , (8) and (7) , (9).

If A consists of a nontrivial convergent sequence and its limit, then it is clear
from Case 1 that Cc (A) � c; i.e., (1) ) (8). Trivially, (8) ) (9).

Finally, the Krein-Krein criterion [17] merely says (9) , (5). �

Lemma 17. If X has no closed denumerable sets, then Cp (X) is not separable.

Proof. Let f1; f2; � � � 2 C (X) be arbitrary. We desire y1 6= y2 in X with

jfn (y1)� fn (y2)j � 1
for all n 2 N. By hypothesis, every denumerable set has more than one cluster
point in X. Fix a cluster point y1 in X. Continuity allows us to choose a strictly
decreasing sequence of closed neighborhoods Vn of y1 so that each fn (Vn) has
diameter no larger than 1. We choose xn 2 VnnVn+1 and let y2 be a cluster point
of fxngn distinct from y1. Since all but �nitely many of the xk are in a given Vn,
this closed set contains the cluster point y2. Indeed, then, the displayed inequality
holds for each n.

Lemma 4 provides h 2 C (X) with h (y1) = 5 and h (y2) = 9. If we assume
some fn 2 h + [fy1; y2g ; 1], we have jfn (y1)� fn (y2)j � (9� 5) � 1 � 1 = 2, a
contradiction. Thus the arbitrary sequence is not dense in Cp (X). �

Theorem 18. The following three statements are equivalent.
(1) X admits a closed denumerable set D.
(2) Cc (X) admits a separable algebra quotient.
(3) Cp (X) admits a separable algebra quotient.

Proof. [(1)) (2)]. If D admits a compact in�nite subset, the previous Theo-
rem ensures c is a (separable) algebra quotient of Cc (X). If D has no such subset,
then Cc (X) ==D = Cp (X) ==D is isomorphic to a dense subspace of the metrizable
separable RD by Lemma 15. Hence the algebra quotient is separable.

[(2) ) (3)]. If Cc (X) ==A is separable, so is Cp (X) ==A.
[(3) ) (1)]. If A is closed in X with Cp (X) ==A separable, then so is Cp (A)

by Lemma 15. Since A is in�nite, (the contrapositive of) Lemma 17 shows A has a
closed denumerable subset D. Thus D is closed in X, and (1) holds. �

Thus Cc (X) and Cp (X) have separable algebra quotients if X has an in�nite
closed subset that is metrizable; e.g., if X is a tvs. Since �N lacks a closed denumer-
able set, Cc (�N) and Cp (�N) lack separable algebra quotients, although Cc (�N)
contains a copy of c, as do all Banach spaces of the form Cc (X).

If countable intersections of open sets are open, X is called a P-space; then
denumerable sets are closed, not compact, so one may apply Theorem 18, not 16:

Corollary 19. If X is a P-space, then Cc (X) and Cp (X) admit separable
algebra quotients.

Corollary 20. Both Cc (X) and Cp (X) have properly separable quotients
when Lm (X) does not.
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Proof. By hypothesis, dense subspaces of Lm (X) are primitive [26], including
Lm (X). Therefore X is a P-space [9, 10] and the previous Corollary applies. �

X is of pointwise countable type (Arkhangel�skii) if every point in X is in some
compact set K for which there exists a sequence of open sets Un in X with the
properties that (i) each Un contains K and (ii) some Un is contained in U whenever
U is an open set containing K. Obviously, X is of pointwise countable type if X is
�rst countable, and conversely when every compact set K is �nite. Only the most
extreme P-spaces are of pointwise countable type. Indeed,

Theorem 21. Assume X is of pointwise countable type. The following �ve
statements are equivalent.

(1) X is discrete.
(2) X is a P-space.
(3) No compact set in X is in�nite.
(4) No compact set in X is denumerable, and X is �rst countable.
(5) Cc (X) = Cp (X) = RX .

Proof. Trivially, (1) ) (2). Suppose (2) holds. Then every denumerable set
in X is closed and not compact. Therefore there are no denumerable subsets of
compact sets, thus no in�nite compact sets in X; i.e., (2) ) (3). Since X is of
pointwise countable type, (3) ) (4).

[(4) ) (1)]. Suppose (4) holds and not (1). Then there is some x0 2 X such
that fx0g is not open in X. First countability posits a countable base fVngn of
open neighborhoods of x0. We may assume each Vn � Vn+1 and inductively choose
distinct points x1; x2; : : : with each xn 2 Vn. Clearly, this sequence converges to
x0, and fx0; x1; x2; : : : g is a denumerable compact set in X, a contradiction of (4);
the desired implication follows.

We now have (1) - (4) are equivalent. Since [(1) ) (5)] and [(5) ) (3)] are
obvious, the proof is complete. �

Corollary 22. If X is of pointwise countable type, then Cc (X) has a quotient
isomorphic to either RN, c, or `2.

Proof. Clearly, RN is a quotient of RX . If Cc (X) 6= RX , then X contains an
in�nite compact set Y , and Corollary 10 applies. �

The weak and strong duals of Cc (X) have separable quotients [16], but not
always properly separable quotients (e.g., when X is discrete). Re-examination of
the dual of Cp (X) adds to the analytic P-space characterizations [2, 9, 10].

Theorem 23. The following �ve assertions are equivalent.

(1) X is a P-space.
(2) Lm (X) is primitive.
(3) Every dense subspace of Lm (X) is primitive.
(4) Every dense subspace of Lm (X) is inductive.
(5) No quotient of Lm (X) is properly separable.

Proof. By [9, Theorem 6], (1) , (2). Always, inductive ) primitive, and
for Mackey spaces, primitive , inductive [29, box 4 of Fig. 3], so Theorem 3.12 of
[29] yields (3) , (4). And [(3) , (5)] is a part of [26, Theorem 1]. Trivially, (3)
) (2). We are left to prove
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[(1) ) (5)]. Suppose X is a P-space and Lm (X) admits a properly separable
quotient. By de�nition, Lm (X) contains a closed subspaceM and a sequence fyngn
such that F = M + sp fyngn is a dense proper subspace. In the usual manner, we
identify X with a Hamel basis for L (X), and C (X) with the dual of Lm (X). Since
the countable union of �nite sets is countable, there is a sequence fxngn � X with
F � G =M+sp fxngn. Assume G = L (X), so thatM is countable-codimensional.
Now Lm (X) is primitive [9], and by [29, Theorem 2.4], every subspace between
M and Lm (X) is closed. Therefore F is closed, contradicting the fact that F is
supposed to be dense and proper; the assumption is false: G 6= L (X), and there
exists some x 2 XnG. The Hahn-Banach theorem yields f 2 C (X) with f (x) = 1
and f (M) = f0g. Since X is a P-space, there is a neighborhood O of x with each
xn =2 O. Lemma 4 yields h 2 C (X) with h (x) = 1 and each h (xn) = 0. Now the
product fh 2 C (X) vanishes on G, hence on F , but not at x, which contradicts
density of F . Our supposition is false, then, which proves [(1) ) (5)]. �

Theorem 24. X is a P-space if and only if the weak dual Cc (X)
0
� of Cc (X)

has no properly separable quotient.

Proof. Always, Lp (X) is a dense subspace of Cc (X)
0
�, so the latter has a

properly separable quotient if the former does. Thus by Theorem 23 and duality
invariance, Cc (X)

0
� has a properly separable quotient if X is not a P-space.

Conversely, if X is a P-space, then all compact sets in X are �nite, so that
Cc (X)

0
� = Lp (X) has no properly separable quotient, again by Theorem 23 and

duality invariance. �

Precisely the X that are P-spaces provide a wealth of simple lcs�s Lm (X) to
which the proof of Example 3 applies:

Example 25. Suppose X is a P-space; equivalently, every dense subspace of
Lm (X) is primitive. The S� space Lm (X) [9] dominates a dense hyperplane H of
some non-primitive lcs (E; �) with (H; �)0 = Lm (X)

0 [29, Theorem 3.2]. The non-
primitive E must admit a properly separable quotient, but, via duality invariance,
its hyperplane H cannot (see �rst paragraph of Section 2).

We mention some concrete nondiscrete P-spaces. If � is an in�nite cardinal, let
X� denote the closed interval [0; �] of ordinals with a �ner topology whose open sets
are precisely those which either omit � or contain the closed interval [�; �] for some
ordinal � < �. Certainly, X� is an in�nite completely regular Hausdor¤ space. The
co�nality of �, denoted cof (�), is the least cardinality of the co�nal subsets of the
well-ordered interval [0; �).

By Theorem 18, all Cp (X�) and Cc (X�) admit separable algebra quotients.
Easily, [X� is a P-space], [cof (�) 6= @0], [X� has no in�nite compact set], [X�
has no denumerable compact set]. By Theorems 23 and 24, then, cof (�) determines
whether Cp (X�)

0
� and Cc (X�)

0
� admit properly separable quotients.

Co�nality is similarly crucial in [25]. If E is a linear space with in�nite Hamel
basis B of size jBj, de�ne the subspace EB;jBj of the algebraic dual E� by writing

EB;jBj = ff 2 E� : jfx 2 B : f (x) 6= 0gj < jBjg .
The lcs that E becomes under the Mackey topology �

�
E;EB;jBj

�
, denoted EB , is

never @0-barrelled and has dense subspaces of codimension jBj, the largest possible
[25, Theorems 2, 3]. Moreover,
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Theorem 26. The following seven statements are equivalent.

(1) cof (jBj) 6= @0.
(2) EB is primitive.
(3) [Every ] hSomei dense hyperplane in EB is nonMackey.
(4) Every dense proper subspace in EB is nonMackey.
(5) Every dense subspace in EB is primitive.
(6) Every dense subspace in EB is inductive.
(7) EB does not admit a properly separable quotient.

Proof. By [25, Theorems 2, 3], (1) , (2) , (3). In particular, the [Every ]
and hSomei versions of (3) are equivalent.

[(3) , (4)]. If F is a dense proper subspace in EB , there is a hyperplane H
in EB with F � H; if F is also Mackey, so is H, routinely, which contrapositively
proves [(3) ) (4)]. The converse is trivial.

[(5) , (6) , (7)]. Suppose (5) holds. Then the primitive Mackey space EB
is inductive [29], which, combined with (5), implies (6) [29, Theorem 3.12]. The
converse is obvious, so (5) , (6). Theorem 1(ii) of [26] equates (5) and (7).

[(5) ) (2)]. Trivially. To complete the proof, we show
[(1) ) (7)]. By Theorem 1(iii) of [26], EB has a properly separable quotient if

and only if there exists a sequence ffngn � E0B (= EB;jBj) such that the subspace

ez ffngn = fx 2 E : fn (x) = 0 for all but �nitely many n 2 Ng

is dense and proper in EB . Given any ffngn � E0B ,

B0 = fx 2 B : fn (x) 6= 0 for some n 2 Ng

is a countable union of sets of size < jBj, so if (1) holds, then jB0j < jBj and all
superspaces of sp (BnB0) are closed by de�nition of E0B . In particular, ez ffngn is
closed, and cannot be dense and proper in EB ; thus (7) holds. �

Since each EB is S�, the process of Examples 3 and 25 applies to precisely
those EB = H with cof (jBj) 6= @0. Conversely, no other process avails, since

Theorem 27. If an lcs E admits a properly separable quotient, and a dense
hyperplane H does not, then H is S� and E is not primitive.

Proof. Theorem 1 implies H has a separable quotient Q. Thus H must be
S�, since Q would otherwise be properly separable, contrary to hypothesis.

Assume E is primitive. Let ffngn � E0 with Z = ez ffngn dense in E. Let
H
T
Z
H
andH

T
Z
E
denote the closure ofH

T
Z inH and E, respectively. Clearly,

codimH

�
H
\
Z
H
�
� codimE

�
H
\
Z
E
�
.

If Z � H, then by density both codimensions are null. If there exists x 2 ZnH,
then Z = H

T
Z + spx, and E = Z = H

T
Z
E
+ spx: Both codimensions are � 1.

In every case, then,

codimH

�
H
\
Z
H
�
� codimE

�
H
\
Z
E
�
� 1.

We need Theorem 3.11(a) of [29], which says:
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(*) Let F be a dense primitive subspace of an lcs E. Every subspace between
F and E is primitive if and only if ez fhngn = E whenever fhngn � E0 with
ez fhngn � F:

By hypothesis, every dense subspace of H is primitive. If G is a subspace

between H
T
Z and H

T
Z
H
, it has codimension � 1 in a dense, hence primitive

subspace of H, and therefore G itself is primitive [29, Theorem 2.9]. Application

of (*) to the primitive subspace H
T
Z, dense in H

T
Z
H
, yields the fact that

Z = ez ffng � H
T
Z
H
. Consequently, H

T
Z
H
= H

T
Z and

codimE (Z) � codimH
�
H
\
Z
�
+ codimE (H) = codimH

�
H
\
Z
H
�
+ 1 � 2.

Therefore every subspace between the dense Z and the primitive E has codimension
� 2 and is, itself, primitive. Now (*) implies Z = ez ffngn = E. Hence there is no
ffngn � E0 with ez ffngn dense and proper in E; i.e., E has no properly separable
quotient, a contradiction of hypothesis. We must conclude the assumption is false;
E is not primitive. �

4. Remaining questions

Despite the strong dual solution [1], the Banach problem remains. Analogs
implicate P-spaces and weak barrelledness. We have clear answers as to when

� the strong and weak duals of Cc (X) have separable quotients (always
[16])

� the weak dual of Cc (X) has a properly separable quotient (when X is not
a P-space, Theorem 24)

� the weak dual of Cp (X) has a separable quotient (always [9]) or a properly
separable quotient (when X is not a P-space, Theorem 23)

� proper (LF )-spaces have separable quotients (always [28]) or properly
separable quotients (almost always [26])

� non-normable Fréchet spaces have separable quotients (always [6, Satz 2])
� GM -spaces have properly separable quotients (never) or separable quo-
tients (when they are S� [16])

� Cc (X), Cp (X) have separable algebra quotients (Theorem 18)
� barrelled Cc (X), Cp (X) have separable quotients (always [16]).

Q1. Must arbitrary Cc (X) have separable quotients? (Rosenthal and Theorem
18 leave only the case where X is countably compact and not compact.)

Q2. If Cc (X) has separable quotients, must Cp (X)? (See Corollary 11.)
Q3. If X is compact, must Cp (X) have separable quotients?

So far, only certain GM -spaces have been shown to lack separable quotients
[16]. Are there Schwartz spaces or nuclear spaces, for example, that lack separable
quotients? Our answer is positive, albeit pedestrian: Any non-trivial variety V
of lcs�s, the nuclear and Schwartz varieties included, must contain the smallest
non-trivial variety W of all lcs�s having their weak topology [3]. Let E be a non-
S� GM -space. Then (E; � (E;E0)) is in W � V and does not admit separable
quotients.

Q4. Does some Schwartz or nuclear space not in W lack separable quotients?
(Both varieties have separable universal generators not in W [12].)
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