

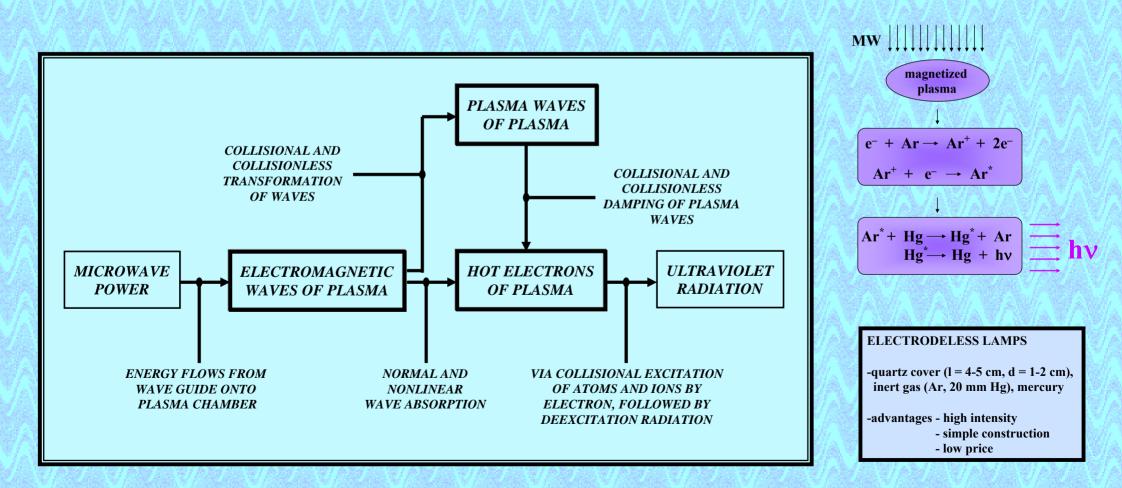
MICROWAVE PHOTOCHEMISTRY OF SUBSTITUTED PHENOLS

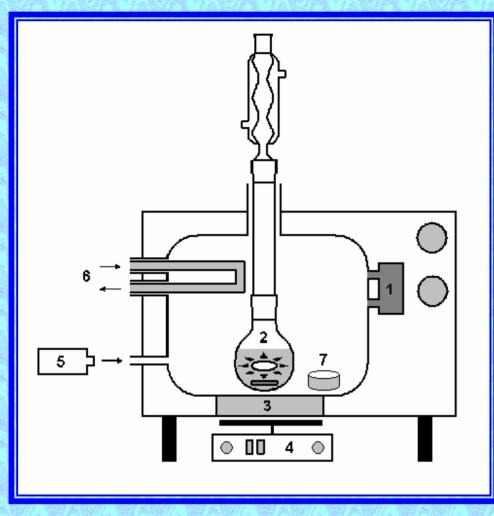
V. Církva, J. Kurfürstová, M. Hájek

Institute of Chemical Process Fundamentals, Academy of Sciences, Rozvojová 135, 165 02 Prague 6, Czech Republic

INTRODUCTION

The fact that electrodeless discharge lamp (EDL) generates ultraviolet radiation when placed into the microwave field (MW) has been known for long time [1-3]. The low powered and low-pressure electrodeless lamps were utilized in spectroscopy and analytical chemistry four decades ago [4]. However, its application for organic photochemistry has been shown only recently [5-11].


We disclosed the studies of microwave photochemistry of substituted phenols in an original photochemical reactor consisting of EDL placed into the reactor vessel of a commercial microwave oven [7, 12]. The UV discharge in the lamp [1, 13] is generated by microwave field with a consequence of the simultaneous UV and MW irradiation of the sample. Such simple arrangement brings a unique possibility to study photochemical reactions under extreme thermal conditions.


ELECTRODELESS DISCHARGE LAMPS

Electrodeless discharge lamps (EDL) [13] were made of quartz tubings, filled with Hg and Ar, and sealed under 20 Torr vacuum [14]. The size of lamp was from 20x50 mm. The spectral characteristics [1] of the electrodeless lamp resemble more those of high-pressure mercury lamps and are known.

MICROWAVE GENERATION OF THE UV IRRADIATION

The microwave energy which is at a high power density in the medium causes electrons to be generated in densities exceeding the cut-off density. The electrons are generated by processes including the collisionless and collisional transformation of waves and normal and non-linear wave absorption. The energetic electrons collide with the heavy particles of the plasma thereby exciting them and the heavy particles emit the desired radiation upon deexcitation.

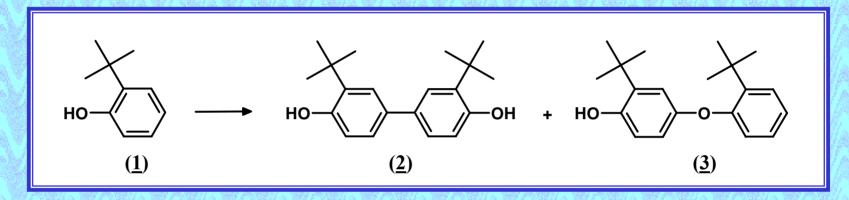
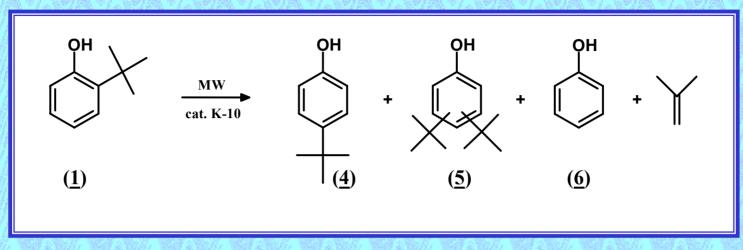


Figure: A modified MW oven for microwave photochemical experiments: (1) magnetron, (2) reaction mixture with EDL and stir bar, (3) aluminum plate, (4) magnetic stirrer, (5) infrared pyrometer, (6) circulating water in a glass tube, (7) a solid absorber (dummy load) inside the oven cavity.

PHOTOCHEMISTRY OF 2-tert-BUTYLPHENOL


We reported here the photochemical reaction of 2-*tert*-butylphenol in non-polar (hexane, heptane, decane, toluene) and polar (acetonitrile, methanol) solvents under MW irradiation using system with electrodeless or classical UV lamps (RVC-400 W). The study is focused on the temperature products distribution in different types of solvents.

2-tert-Butylphenol (1) provide the mixture of products, mainly 3,3'-di-tert-butyl-4,4'-dihydroxybiphenyl (2) and 2-tert-butyl-4-(2-tert-butylphenoxy)phenol (3). The ratio and type of photoproducts were dependent on temperature, type of solvents and MW irradiation.

Solvent	Irradiation	Product (<u>2</u>) [%]	Product (<u>3</u>) [%]	(<u>2</u>)/(<u>3</u>)	Conversion [%]
Hexane	MW-UV	45	55	0.82	34
	UV	40	60	0.66	17
Heptane	MW-UV	44	56	0.79	34
	UV	45	55	0.82	24
Decane	MW-UV	55	45	1.22	41
2	UV	31	69	0.45	23
Toluene	MW-UV	44	56	0.79	12
Acetonitrile	MW-UV	0	100		3
	UV	0	100		2
Methanol	MW-UV	0	0		0
	UV	0	0		0

THERMAL TRANSFORMATION OF 2-tert-BUTYLPHENOL

The product distribution was completely different, i.e. 2-*tert*-butylphenol provided only isomeric (<u>4</u>) transalkylated (<u>5</u>) and dealkylated (<u>6</u>) products. The MW had a strong effect on both the reaction rate and the selectivity.

Transformation of 2-*tert*-butylphenol in liquid phase catalyzed by montmorillonite KSF catalyst under microwave (MW) and conventional (conv) conditions carried out for 1h at boiling point of the solvents [15]:

Solvent	Heating	Product (<u>4</u>) [%]	Product (<u>5</u>) [%]	Product (<u>6</u>) [%]	Conversion [%]
Hexane ^a	MW	80	12	8	98
	conv	71	19	10	95
Heptane ^b	MW	82	12	6	99
	conv	79	12	9	99
Methanol ^c	MW				0
	conv				0

^a at 75°C, ^b at 105°C, ^c at 65°C

CONCLUSIONS

In the <u>photochemical reaction</u> of 2-*tert*-butylphenol in non-polar solvents the only difference in selectivity was observed in decane. In acetonitrile the only 2-*tert*-butyl-4-(2-*tert*-butylphenoxy)phenol (<u>3</u>) was obtained. In methanol under MW-UV and UV radiation transformation of 2-*tert*-butylphenol does't proceed.

<u>Microwave-induced catalytic transformation</u> of 2-*tert*-butylphenol provide quite different products. In non-polar solvents only 4-*tert*-butylphenol (<u>4</u>), di-*tert*-butylphenols (<u>5</u>) and phenol (<u>6</u>) was obtained. In methanol MW-assisted catalytic transformation does't proceed too.

REFERENCES

- [1] R. Phillips Sources and Applications of Ultraviolet Radiation; Academic Press: London, 1983; and references therein.
- [2] I. E. Den Besten, J. W. Tracy J. Chem. Edu. 1973, 50, 303.
- [3] W. Lautenschläger Eur. Pat. Appl. 0429814, 1991.
- [4] N. L. Ruland, R. Pertel, J. Am. Chem. Soc. 1965, 87, 4213.
- [5] V. Církva, M. Hájek J. Photochem. Photobiol. A: Chemistry 1999, 123, 21.
- [6] P. Klán, J. Literák, M. Hájek J. Photochem. Photobiol. A: Chemistry 1999, 128, 145.
- [7] P. Klán, V. Církva Microwave Photochemistry, in Microwaves in Organic Synthesis, John Wiley, 2002 (in press).
- [8] J. Literák, P. Klán J. Photochem. Photobiol. A: Chemistry 2000, 137, 29.
- [9] P. Klán, J. Literák, S. Relich J. Photochem. Photobiol. A: Chemistry 2001, 143, 49.
- [10] M. Nüchter, B. Ondruschka, A. Jungnickel, U. Müller J. Phys. Org. Chem. 2000, 13, 579.
- [11] S. Chemat, A. Aouabed, P. V. Bartels, D. C. Esveld, F. Chemat J. Microwave Power and Electromagnetic Energy 1999, 34, 55.
- [12] P. Klán, M. Hájek, V. Církva J. Photochem. Photobiol. A: Chemistry 2001, 140, 185.
- [13] Manufactured by Teslamp, Prague, Czech Republic; http://www.teslamp.cz/.
- [14] W. S. Gleason, R. Pertel Rev. Sci. Instr. 1971, 42, 1638; and references therein.
- [15] M. Hájek, M.T. Radoiu J. Mol. Cat. A: Chemical 2000, 160, 383.