
AMPHIPHILIC PERFLUORALKYLATED POLYOLS FOR BIOMEDICINAL **APPLICATIONS**

R. Kaplánek^a, V. Církva^a, O. Paleta^a, K. Kefurt^b, M. Kodíček^c

^a Department of Organic Chemistry; ^b Department of Natural Compounds Chemistry; ^c Department of Biochemistry and Microbiology, Prague Institute of Chemical Technology, Technická 5, 16628 Prague 6

CF,CF,CF,CF,CF,CF,

n = 2, 4, 6

HO

OH

The combination of a strongly hydrophilic molecular part with strongly hydrophobic chain (through a spacer) creates amphiphilic properties. Such compounds can be used for medicinal purposes, e.g. as biosurfactants. potential **Biocompatible** perfluoroalkylated surfactants display unique properties for the formulation of colloidal systems including perfluorocarbon emulsions for blood substitutes, oxygen transporting gels, drug delivery systems etc.^{1,2}

CF₂(CF₂)_nCF₃

CF₂(CF₂)_nCF₃

The aim of this study has been 1) development

5-7

of the synthesis of stereochemically pure perfluoro-alkylated xylitol derivative 1 as a new standard compound, 2) syntheses of series of new isomeric perfluoroalkylated triols 2-4 and 5-7,

ÒН

ÓН

ÓН

HO

3) of testing

hemocompatibility

coemulsifying and properties of the new amphiphiles 1-7.

The testing has revealed very low

hemolysis for 1 even at high concentrations (substitution of the standard emulsifier Pluronic F-68), very low hemolysis for triols 3 and 4, but evident hemolysis for isomeric triols 6-7 having branched hydrophilic head.

	Substitution of Pluronic F-68 (% w/v PF-68)			
Amphiphile	20%	40%	60%	80%
	Range of hemolysis (%)			
1	0	0	0	0
3 $(n=4)$	0	0	-	0
6 $(n=4)$	0	0	0	10

Acknowledgement

The research has been supported by the Grant Agency of the Czech Republic (grant No. 203/01/1311) and the grant of the Ministry of Education of the Czech Republic (grant No. MSM 223100001). The authors thank heartily Ms. I. Křenová for technical assistance.

References

1 - Riess J.G., Greiner J. in book: *Carbohydrates as Organic Raw Materials II* (G. Descotes, ed.),
p 209. Weinheim, New York, 1993 - and references therein. 2 - M.P. Krafft, J.G. Riess, *Biochimie*, 1998, *80*, 489.

Riess J.G., Greiner J.: *Carbohydr. Res.* **2000**, *327*, 147.