ID - 4069

Visible-light active TiO₂ for microwave assisted photocatalytic reactions using mercury electrodeless discharge lamp

Hana Žabová and Vladimír Církva

Institute of Chemical Process Fundamentals AS CR, v.v.i. Rozvojová 135, 16502 Prague 6, Czech Republic

Titanium dioxide is a well-known photocatalyst. The photocatalytic reactions using active TiO₂ have been successfully developed as a method for remediation of contaminated water and purification of polluted air. The research is aimed to prepare a visible-light response photocatalyst via transition metals doping. Titanium dioxide nanoparticles doped with various ions of transition metals Mⁿ⁺ (M = Fe, Cr, Mn, Co, V, Cu, Ni, Ag) were prepared by using the sol-gel method based on hydrolysis of titanium butoxide. A series of Mⁿ⁺ doped TiO₂ catalysts were examined by XRD, UV-Vis, AFM and SEM. Compared with pure titania, the UV-Vis spectra of some Mⁿ⁺ doped titania show significant absorption in visible region. The photocatalytic activity was evaluated by the degradation of mono-chloroacetic acid in a microwave field using mercury electrodeless discharge lamp. The degradation efficiency of MCAA on some Mⁿ⁺ doped TiO₂ was higher than those of pure TiO₂.