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THE ASCOLI PROPERTY FOR FUNCTION SPACES AND
THE WEAK TOPOLOGY OF BANACH AND FRÉCHET SPACES

S. GABRIYELYAN, J. KA̧KOL, AND G. PLEBANEK

Abstract. Following [3] we say that a Tychonoff space X is an Ascoli space if every
compact subset K of Ck(X) is evenly continuous; this notion is closely related to the
classical Ascoli theorem. Every kR-space, hence any k-space, is Ascoli.

Let X be a metrizable space. We prove that the space Ck(X) is Ascoli iff Ck(X)
is a kR-space iff X is locally compact. Moreover, Ck(X) endowed with the weak
topology is Ascoli iff X is countable and discrete.

Using some basic concepts from probability theory and measure-theoretic proper-
ties of `1, we show that the following assertions are equivalent for a Banach space
E: (i) E does not contain isomorphic copy of `1, (ii) every real-valued sequentially
continuous map on the unit ball Bw with the weak topology is continuous, (iii) Bw

is a kR-space, (iv) Bw is an Ascoli space.
We prove also that a Fréchet lcs F does not contain isomorphic copy of `1 iff each

closed and convex bounded subset of F is Ascoli in the weak topology. However we
show that a Banach space E in the weak topology is Ascoli iff E is finite-dimensional.
We supplement the last result by showing that a Fréchet lcs F which is a quojection
is Ascoli in the weak topology iff either F is finite dimensional or F is isomorphic to
the product KN, where K ∈ {R,C}.

1. Introduction

Several topological properties of function spaces have been intensively studied for
many years, see for instance [1, 17, 20] and references therein. In particular, various
topological properties generalizing metrizability attracted a lot of attention. Let us
mention, for example, Fréchet–Urysohn property, sequentiality, k-space property and
kR-space property (all relevant definitions are given in Section 2 below). It is well
known that

metric +3 Fréchet–
Urysohn

+3 sequential +3 k-space +3 kR-space ,

and none of these implications is reversible (see [9, 21]).
For topological spaces X and Y , we denote by Ck(X, Y ) the space C(X, Y ) of all

continuous functions from X into Y endowed with the compact-open topology. For
I = [0, 1], Pol [28] proved the following remarkable result
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Theorem 1.1 ([28]). Let X be a first countable paracompact space. Then the space
Ck(X, I) is a k-space if and only if X = L∪D is the topological sum of a locally compact
Lindelöf space L and a discrete space D.

Theorem 1.1 easily implies the following result noticed in [13], see also [19], where
McCoy proved that for a first-countable paracompact X the space Ck(X) is a k-space
if and only if X is hemicompact.

Corollary 1.2. For a metric space X, the space Ck(X) is a k-space if and only if
Ck(X) is a Polish space if and only if X is a Polish locally compact space.

Note also that by a result of Pytkeev [31], for a topological space X the space
Ck(X) is a k-space if and only if it is Fréchet–Urysohn. For a metrizable space X and
the doubleton 2 = {0, 1}, topological properties of the space Ck(X,2) are thoroughly
studied in [13].

For a topological space X, denote by ψ : X × Ck(X) → R, ψ(x, f) := f(x), the
evaluation map. Recall that a subset K of Ck(X) is evenly continuous if the restriction
of ψ onto X × K is jointly continuous, i.e. for any x ∈ X, each f ∈ K and every
neighborhood Of(x) ⊂ Y of f(x) there exist neighborhoods Uf ⊂ K of f and Ox ⊂ X
of x such that Uf (Ox) := {g(y) : g ∈ Uf , y ∈ Ox} ⊂ Of(x).

Following [3], a Tychonoff (Hausdorff) space X is called an Ascoli space if each
compact subset K of Ck(X) is evenly continuous. In other words, X is Ascoli if and
only if the compact-open topology of Ck(X) is Ascoli in the sense of [20, p.45].

It is easy to see that a space X is Ascoli if and only if the canonical valuation
map X ↪→ Ck(Ck(X)) is an embedding, see [3]. By Ascoli’s theorem [9, 3.4.20], each
k-space is Ascoli. Moreover, Noble [23] proved that any kR-space is Ascoli. We have
the following implication

kR-space⇒ Ascoli,

and this implication is not reversible ([2]).
The aforementioned results motivate the following general question.

Question 1.3. For which spaces X and Y the space Ck(X, Y ) is Ascoli?

Below we present the following partial answer to this question.

Theorem 1.4. For a metrizable space X, Ck(X) is Ascoli if and only if Ck(X) is a
kR-space if and only if X is locally compact.

Corson [7] started a systematic study of various topological properties of the weak
topology of Banach spaces. The famous Kaplansky Theorem states that a normed
space E in the weak topology has countable tightness; for further results see [8, 14].
Schlüchtermann and Wheeler [33] showed that an infinite-dimensional Banach space is
never a k-space in the weak topology. We strengthen this result as follows.

Theorem 1.5. A Banach space E in the weak topology is Ascoli if and only if E is
finite-dimensional.

Below we generalize Theorem 1.5 to an interesting class of Fréchet locally convex
spaces, i.e. metrizable and complete locally convex space (lcs). We say that a Fréchet
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lcs E is a quojection if it is isomorphic to the projective limit of a sequence of Banach
spaces with surjective linking maps or, equivalently, if every quotient of E which admits
a continuous norm is a Banach space, see [4]. Obviously a countable product of Banach
spaces is a quojection. Moscatelli [22] gave examples of quojections which are not
isomorphic to countable products of Banach spaces.

Theorem 1.6. Let a Fréchet lcs E be a quojection. Then E in the weak topology is
Ascoli if and only if E is either finite-dimensional or is isomorphic to the product KN,
where K ∈ {R,C}.

Since every Fréchet lcs Ck(X) is a quojection, see the survey [5], Theorem 1.6 yields
the following

Corollary 1.7. For a Fréchet lcs Ck(X), the space Ck(X) in the weak topology is
Ascoli if and only if X is countable and discrete.

Let E be a Banach space; denote by Bw the closed unit ball B = BE in E endowed
with the weak topology of E. Schlüchtermann and Wheeler [33] showed that some
topological properties of Bw are closely related to the isomorphic structure of E:

Theorem 1.8 ([33]). The following conditions for a Banach space E are equivalent:
(a) Bw is Fréchet–Urysohn; (b) Bw is sequential; (c) Bw is a k-space; (d) E contains
no isomorphic copy of `1.

Therefore it seems to be natural to verify whether there exists a Banach space E
containing a copy of `1 and such that Bw is Ascoli or a kR-space. We answer such a
question in the negative, by proving the following extension of Theorem 1.8.

Theorem 1.9. Let E be a Banach space and Bw its closed unit ball with the weak
topology. Then the following assertions are equivalent:

(i) Bw is an Ascoli space;
(ii) Bw is a kR-space;

(iii) every sequentially continuous real-valued map on Bw is continuous;
(iv) E does not contain a copy of `1.

The proof of (i)⇒(iv) in Theorem 1.9, given in Proposition 4.5 below, uses basic
properties of stochastically independent measurable functions. We also present a result
related to Theorem 1.9 (ii), namely for Banach spaces containing an isomorphic copy
of `1 we provide, in a sense, a canonical example of a sequentially continuous but not
continuous function on Bw. Our construction builds on measure-theoretic properties
of `1-sequences of continuous functions, see Example 5.2 below.

For Fréchet lcs we supplement Theorem 1.8 by proving the following theorem.

Theorem 1.10. For a Fréchet lcs E the following conditions are equivalent:

(i) E contains no isomorphic copy of `1;
(ii) each closed and convex bounded subset of E is Ascoli in the weak topology.

Theorems 1.9–1.10 heavily depend on our result stating that the closed unit ball B
of `1 in the weak topology is not an Ascoli space, see Proposition 4.1 below.
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2. The Ascoli property for function spaces. Proof of Theorem 1.4

We start from the definitions of the following well-known notions. A topological
space X is called

• Fréchet-Urysohn if for any cluster point a ∈ X of a subset A ⊂ X there is a
sequence {an}n∈N ⊂ A which converges to a;
• sequential if for each non-closed subset A ⊂ X there is a sequence {an}n∈N ⊂ A

converging to some point a ∈ Ā \ A;
• a k-space if for each non-closed subset A ⊂ X there is a compact subset K ⊂ X

such that A ∩K is not closed in K;
• a kR-space if a real-valued function f on X is continuous if and only if its

restriction f |K to any compact subset K of X is continuous.

Recall that the family of subsets

[C; ε] := {f ∈ Ck(X) : |f(x)| < ε ∀x ∈ C},
where C is a compact subset of X and ε > 0, forms a basis of open neighborhoods at
the zero function 0 ∈ Ck(X). Below we give a simple sufficient condition on a space
X not to be Ascoli.

Proposition 2.1. Assume a Tychonoff space X admits a family U = {Ui : i ∈ I} of
open subsets of X, a subset A = {ai : i ∈ I} ⊂ X and a point z ∈ X such that

(i) ai ∈ Ui for every i ∈ I;
(ii)

∣∣{i ∈ I : C ∩ Ui 6= ∅}
∣∣ <∞ for each compact subset C of X;

(iii) z is a cluster point of A.

Then X is not an Ascoli space.

Proof. For every i ∈ I, take a continuous function fi : X → [0, 1] such that fi(ai) = 1
and fi(X \ Ui) = {0}. Set K := {fi : i ∈ I} ∪ {0}.

We claim that K is a compact subset of Ck(X) and 0 is a unique cluster point of
K. Indeed, let C be a compact subset of X and ε > 0. By (ii), the set J := {i ∈
I : C ∩ Ui 6= ∅} is finite. So, if i 6∈ J , then fi(C) = {0}. Hence fi ∈ [C; ε] for every
i ∈ I \ J . This means that K is a compact set with the unique cluster point 0.

We show that K is not evenly continuous considering 0, z and O = (−1/2, 1/2). By
the claim, any neighborhood U0 ⊂ K of 0 contains almost all functions fi, and, by (iii),
any neighborhood Oz of z contains infinitely many points ai. So, there is m ∈ I such
that fm ∈ U0 and am ∈ Oz. Since fm(am) = 1, we obtain that U0(Oz) 6⊂ O. Hence K
is not evenly continuous. Thus X is not Ascoli. �

The next corollary follows also from Proposition 5.11(1) of [3].

Corollary 2.2. Let X be a Tychonoff space with a unique cluster point z and such
that every compact subspace of X is finite. Then X is not an Ascoli space.

Proof. Since every x ∈ X, x 6= z, is isolated, we set I = A = X \ {z} and Ux = {x} for
x ∈ A. Now Proposition 2.1 applies. �

The proof of the next proposition is a modification of the proof of the assertion in
Section 5 of [28].
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Proposition 2.3. Let X be a first countable paracompact space. If X is not locally
compact, then Ck(X) contains a countable family U = {Us}s∈N of open subsets in
Ck(X) and a countable subset A = {as}s∈N ⊂ Ck(X, I) such that

(i) as ∈ Us for every s ∈ N;
(ii) if K ⊂ Ck(X) is compact, the set {s : Us ∩K 6= ∅} is finite;

(iii) the zero function 0 is a cluster point of A.

In particular, the spaces Ck(X) and Ck(X, I) are not Ascoli.

Proof. Suppose for a contradiction that X is not locally compact and let x0 ∈ X be
a point which does not have compact neighborhood. Take open bases {V ′i }i∈N and
{Wi}i∈N at x0 such that

V ′i ⊃ Wi ⊃ Wi ⊃ V ′i+1, ∀i ∈ N.

Set P ′i := V ′i \ V ′i+1, ∀i ∈ N. Since none of the sets V ′i is compact, there exists a
sequence k1 < k2 < . . . such that P ′ki is not compact and ki+1 > ki + 1. Set Pi = P ′ki
and Vi = V ′ki . Then {Pi}i∈N is a sequence of closed, non-compact subsets of X, {Vi}i∈N
is a decreasing open base at x0 and

(2.1) Pi ⊂ Vi \Wki+1 and Vi+1 ⊂ Wki+1.

Fix arbitrarily i ∈ N. Since Pi is not compact, by [9, 3.1.23], there is a one-to-one
sequence {xj,i}j∈N ⊂ Pi which is discrete and closed in X. Now the paracompactness
of X and (2.1) imply that there exists an open sequence {Vj,i}j∈N such that

(2.2) xj,i ∈ Vj,i, and Vj,i ∩ Vi+1 = ∅,∀j ∈ N, and {Vj,i}j∈N is discrete in X.

For every p, q ∈ N such that 1 ≤ p < q, choose continuous functions fq,p : X → [0, 1]
such that

(2.3) fq,p(xq,p) = 1, fq,p(xq,q) = 0, fq,p(x0) = 1/p and fq,p(x) ≤ 1/p for x 6∈ Vq,p.
Set A := {fq,p : 1 ≤ p < q < ∞} and U = {Uq,p : 1 ≤ p < q < ∞}, where Uq,p is the
set of all functions h ∈ Ck(X) satisfying the inequalities

(2.4)
∣∣h(xq,p)− 1

∣∣ < 1

4p+q
,
∣∣h(x0)−

1

p

∣∣ < 1

4p+q
,
∣∣h(xq,q)

∣∣ < 1

4p+q
.

Let us show that A and U are as desired. Clearly, (i) holds. Let us prove (ii).
Fix a compact subset K of Ck(X). Let us first observe that

(2.5) there exists p0 ∈ N such that if p ≥ p0 and q > p, then Uq,p ∩K = ∅.
Indeed, otherwise we would find sequences p1 < q1 < p2 < q2 < . . . and hqi,pi ∈
Uqi,pi ∩K. Set

Z1 := {xqi,pi : i ∈ N} ∪ {x0}.
From (2.1) it follows that Z1 is compact, and thus, by the Ascoli Theorem [9, 3.4.20],
there exists r > 10 such that if z′, z′′ ∈ Z1 ∩ Vr and f ∈ K, then |f(z′)− f(z′′)| < 1/3.
But since 10 < r ≤ pr < qr we obtain x0, xqr,pr ∈ Z1 ∩ Vr. Hence, by (2.4), we have∣∣hqr,pr(xqr,pr)− hqr,pr(x0)∣∣ > (1− 1

420

)
−
(

1

pr
+

1

420

)
>

1

3
.
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Since hqr,pr ∈ K, we get a contradiction.
We shall now prove that

(2.6) there exists q0 ∈ N such that if q ≥ q0 and 1 ≤ p < p0, then Uq,p ∩K = ∅,
where p0 is defined in (2.5). Indeed, set

Z2 := {xj,i : 1 ≤ j ≤ i <∞} ∪ {x0}.
Then Z2 is compact by (2.1). Again by the Ascoli Theorem, it follows that there exists
q0 ∈ N such that for z′, z′′ ∈ Z2 ∩ Vq0 and f ∈ K we have |f(z′) − f(z′′)| < 1/4p0.
The q0 chosen in this way satisfies (2.6), since otherwise there would exist q ≥ q0 and
1 ≤ p < p0 such that Uq,p ∩K 6= ∅. Fix hq,p ∈ Uq,p ∩K. Then x0, xq,q ∈ Z2 ∩ Vq0 , and
by (2.3) and (2.4), we obtain∣∣hq,p(xq,q)− hq,p(x0)∣∣ > (1

p
− 1

4p+q

)
− 1

4p+q
>

1

3p
>

1

4p0
,

which gives a contradiction. Now (2.5) and (2.6) immediately imply (ii).
Now we prove (iii). Fix arbitrarily a compact subset Z ⊂ X and ε > 0. Choose p0

such that 1/p0 < ε. By (2.2), we can find j0 ∈ N such that Z ∩ Vj,p0 = ∅ for every
j ≥ j0. Take q0 = p0 + j0. Then fq0,p0 ∈ A, and for z ∈ Z we have z 6∈ Vq0,p0 , and thus,
in accordance with (2.3), fq0,p0(z) ≤ 1/p0 < ε. Thus fq0,p0 ∈ [Z; ε].

Finally, the spaces Ck(X) and Ck(X, I) are not Ascoli by Proposition 2.1. �

The next corollary proved by R. Pol solves Problem 6.8 in [3].

Corollary 2.4 ([29]). For a separable metrizable space X, Ck(X) is Ascoli if and only
if X is locally compact.

Proof. If Ck(X) is Ascoli, then X is locally compact by Proposition 2.3. Conversely,
if X is a separable metrizable locally compact space, then Ck(X) is even a Polish
space. �

Recall that a family N of subsets of a topological space X is called a network in X
if, whenever x ∈ U with U open in X, then x ∈ N ⊂ U for some N ∈ N . A space X
is called a σ-space if it is regular and has a σ-locally finite network. Any metrizable
space is a σ-space by the Nagata-Smirnov Metrization Theorem.

Now Theorem 1.4 follows from the following theorem in which the equivalence of (i)
and (ii) is well-known.

Theorem 2.5. Let X be a first-countable paracompact σ-space. Then the following
assertions are equivalent:

(i) X is a locally compact metrizable space;
(ii) X =

⊕
i∈κXi, where all Xi are separable metrizable locally compact spaces;

(iii) Ck(X) is a kR-space;
(iv) Ck(X) is an Ascoli space;
(v) Ck(X, I) is a kR-space;

(vi) Ck(X, I) is an Ascoli space.

In cases (i)–(vi), the spaces Ck(X) and Ck(X, I) are the products of families of Polish
spaces.
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Proof. (i)⇒(ii) follows from [9, 5.1.27].
(ii)⇒(iii),(v): If X =

⊕
i∈κXi, then

Ck(X) =
∏
i∈κ

Ck(Xi) and Ck(X, I) =
∏
i∈κ

Ck(Xi, I),

where all the spaces Ck(Xi) and Ck(Xi, I) are Polish (see Corollary 1.2). So Ck(X)
and Ck(X, I) are kR-spaces by [24, Theorem 5.6].

(iii)⇒(iv) and (v)⇒(vi) follow from [23]. The implications (iv)⇒(i) and (vi)⇒(i)
follow from Proposition 2.3 and the fact that any locally compact σ-space is metrizable
by [25]. �

Note that Theorem 2.5 holds true for first-countable stratifiable spaces since any
stratifiable space is a paracompact σ-space (see Theorems 5.7 and 5.9 in [16]).

3. Proofs of Theorems 1.5 and 1.6

Following Arhangel’skii [1, II.2], we say that a topological space X has countable
fan tightness at a point x ∈ X if for each sets An ⊂ X, n ∈ N, with x ∈

⋂
n∈NAn there

are finite sets Fn ⊂ An, n ∈ N, such that x ∈ ∪n∈NFn; X has countable fan tightness
if X has countable fan tightness at each point x ∈ X. Clearly, if X has countable fan
tightness, then X also has countable tightness.

For a topological space X we denote by Cp(X) the space C(X) endowed with the
topology of poitwise convergence.

For a lcs E, denote by E ′ the dual space of E. The space E endowed with the
weak topology σ(E,E ′) is denoted by Ew. The closure of a subset A ⊂ E in σ(E,E ′)
we denote by A

w
. If E is a metrizable lcs, then X := (E ′, σ(E ′, E)) is σ-compact by

the Alaoglu–Bourbaki Theorem. Since Ew embeds into Cp(X), Theorem II.2.2 of [1]
immediately implies the following result noticed in [14].

Fact 3.1 ([14]). If E is a metrizable lcs, then Ew has countable fan tightness.

Denote the unit sphere of a normed space E by SE. Theorem 1.5 immediately
follows from the next proposition.

Proposition 3.2. Let E be a normed space. Then E with the weak topology is Ascoli
if and only if E is finite-dimensional.

Proof. We show that Ew is not Ascoli for any infinite-dimensional normed space E.
For every n ∈ N, let An be a countable subset of nS such that 0 ∈ An

w
(see [10,

Exercise 3.46] and Fact 3.1). Now Fact 3.1 implies that there are finite sets Fn ⊂ An,
n ∈ N, such that 0 ∈ ∪n∈NFn. Set A :=

⋃
n∈N Fn. Using the Hahn–Banach Theorem,

for every n ∈ N and each a ∈ Fn take a weakly open neighborhood Ua of a such that

(3.1) Ua ∩
(
n− 1

2

)
B = ∅.

Let us show that the family U = {Ua : a ∈ A}, the set A and the zero 0 satisfy
conditions (i)–(iii) of Proposition 2.1. Clearly, (i) and (iii) hold. To check (ii), let C
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be a compact subset of Ew. Then C ⊂ mB for some m ∈ N, and (3.1) implies that the
set

{a ∈ A : Ua ∩ C 6= ∅} ⊂
⋃
n≤m

Fn

is finite. Finally, Proposition 2.1 implies that Ew is not Ascoli. � �

We need also the following

Proposition 3.3. Let p : X → Y be an open continuous map of a topological space X
onto a regular space Y . If X is Ascoli, then Y is also an Ascoli space.

Proof. Let K be a compact subset of Ck(Y ). We have to show that K is evenly con-
tinuous. Denote by p∗ : Ck(Y ) → Ck(X), p∗(h) := h(p(x)), the adjoin continuous
map.

Fix y0 ∈ Y , h0 ∈ K and an open neighborhood Oz0 of the point z0 := h0(y0). Set
f := p∗(h0) ∈ Ck(X) and take arbitrarily a preimage x0 of y0, so p(x0) = y0. Since
p∗(K) is a compact subspace of Ck(X) it is evenly continuous. Hence we can find
neighborhoods Uf ⊂ p∗(K) of f and Ox0 ⊂ X of x0 such that Uf (Ox0) ⊂ Oz0 . Set

Uh0 := K∩
(
p∗
)−1

(Uf ) and Oy0 := p
(
Ox0

)
(which is a neighborhood of y0 as p is open).

For every h ∈ Uh0 and each y ∈ Oy0 , take x ∈ Ox0 with p(x) = y, so we obtain

h(y) = h(p(x)) = p∗(h)(x) ∈ Oz0 .

Thus K is evenly continuous, and therefore Y is Ascoli. �

Below we prove Theorem 1.6 and Corollary 1.7.
Proof of Theorem 1.6. Assume that E is infinite-dimensional. By Proposition 3.2

the space E is not normed. Let (pn)n be a sequence of continuous seminorms providing
the topology of E. For each n ∈ N, let En := E/p−1n (0) be the quotient endowed with
the norm topology p∗n : [x] 7→ pn(x), where [x] is the equivalence class of x in E. Since
E is a quojection, the quotient En with the original quotient topology is a Banach
space by [4, Proposition 3].

By Proposition 3.3 the space En endowed with the weak topology is Ascoli, so we
apply Proposition 3.2 to deduce that each En is finite-dimensional. On the other hand,
E embeds into the product

∏
nEn. So E, being complete, is isomorphic to a closed

subspace of the product KN. Thus E is also isomorphic to KN by [27, Corollary 2.6.5].
�

Proof of Corollary 1.7. By Theorem 1.6 the space Ck(X) is isomorphic to RN, and
since RN does not admit a weaker locally convex topology (see [27, Corollary 2.6.5]),
Ck(X) = Cp(X) = RN. Thus X is countable and discrete. The converse assertion is
trivial. �

We do not know whether there exists a Fréchet space E such that Ew is an Ascoli
non-metrizable space.

Remark 3.4. The first example of a non-distinguished Fréchet space (so also not
quojection) was given by Grothendieck and Köthe, and it was the Köthe echelon space
λ1(A) of order 1 for the Köthe matrix A = (an)n defined on N × N by an(i, j) := j
if i < n and an(i, j) = 1 otherwise, see [5] also for more references. We do not know
however if this space with the weak topology is an Ascoli space.
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4. Proof of Theorem 1.9

To prove Theorem 1.9 we need the following key proposition, which proves, among
others, that the unit ball B`1 in the weak topology is not Ascoli. In particular, since
the k-space property is inherited by the closed subspaces, this shows also that any
Banach space E whose weak unit ball Bw is a k-space contains no isomorphic copy of
`1, i.e. the proposition proves (c)⇒(d) in Schlüchtermann–Wheeler’s theorem 1.8. A
sequence {xi}i∈N ⊂ E is called trivial if there is n ∈ N such that xi = xn for all i > n.

Proposition 4.1. Let E = `1 and Bw its closed unit ball in the weak topology. Then
there is a countable subset A of S`1 and a family U = {Ua : a ∈ A} of weakly open
subsets of the unit ball B such that

(1) a ∈ Ua for every a ∈ A;
(2) dist(Ua, Ub) ≥ 1/5 for every distinct a, b ∈ A;
(3) the zero 0 is the unique cluster point of A;
(4)

∣∣{a ∈ A : C ∩ Ua 6= ∅}
∣∣ <∞ for every weakly compact subset C of B;

(5) A
w

= A ∪ {0} and every weakly compact subset of A
w

is finite;
(6) A contains a sequence which is equivalent to the unit basis of `1;
(7) the set A does not have a non-trivial weakly fundamental subsequence;
(8) the countable space A

w
and Bw are not Ascoli.

Proof. Let {(ei, e∗i ) : i ∈ N} be the standard biorthogonal basis in `1 × `′1 = `1 × `∞.
Following [14], set Ω := {(m,n) ∈ N× N : m < n} and

A :=

{
am,n :=

1

2
(em − en) : (m,n) ∈ Ω

}
⊂ S`1 .

For every (m,n) ∈ Ω, define the following weak neighborhood of am,n

Um,n :=

{
x ∈ B : | 〈e∗m, am,n − x〉 | <

1

10
and | 〈e∗n, am,n − x〉 | <

1

10

}
=

{
x = (xi) ∈ B :

∣∣∣∣12 − xm
∣∣∣∣ < 1

10
and

∣∣∣∣12 + xn

∣∣∣∣ < 1

10

}
.

Then (1) holds trivially. Let us check (2). For every k 6∈ {m,n} and each x = (xi) ∈
Um,n, one has

|xk| ≤ ‖x‖ − |xm| − |xn| < 1−
(

1

2
− 1

10

)
−
(

1

2
− 1

10

)
=

1

5
.

So, if (m,n) 6= (k, l) and x = (xi) ∈ Um,n, we obtain either∣∣∣∣12 − xk
∣∣∣∣ > 1

2
− 1

5
=

3

10
if k 6∈ {m,n}, or

∣∣∣∣12 + xl

∣∣∣∣ > 3

10
if l 6∈ {m,n}.

Hence dist
(
Um,n, Uk,l

)
≥ 3/10− 1/10 = 1/5 for all (m,n) 6= (k, l). This proves (2). In

particular, every point of A is weakly isolated.
To prove (3) we note first that 0 ∈ Aw

by Lemma 3.2 of [14]. We provide a proof
of this result to keep the paper self-contained. Let U be a neighborhood of 0 of the
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canonical form

U =
{
x ∈ `1 : |〈χk, x〉| < ε, where χk =

(
χk(i)

)
i∈N ∈ S`∞ for 1 ≤ k ≤ s

}
.

Let I be an infinite subset of N such that, for every 1 ≤ k ≤ s, either χk(i) > 0 for
all i ∈ I, or χk(i) = 0 for all i ∈ I, or χk(i) < 0 for all i ∈ I. Take a natural number
N > 1/ε. Since I is infinite, by induction, one can find (m,n) ∈ Ω satisfying the
following condition: for every 1 ≤ k ≤ s there is 0 < tk ≤ N such that

(4.1)
tk − 1

N
≤ min

{
|χk(m)|, |χk(n)|

}
≤ max

{
|χk(m)|, |χk(n)|

}
≤ tk
N
.

Then, by the construction of I, we obtain

|〈χk, am,n〉| < 1/N < ε for every 1 ≤ k ≤ s.

Thus am,n ∈ U , and hence 0 ∈ Aw
.

Now fix arbitrarily a nonzero z = (zi) ∈ `1 and consider the following three cases.
(a) There is zi 6∈ {−1/2, 0, 1/2}, so z 6∈ A. Set

ε :=
1

2
min

{
|zi|,

∣∣∣∣zi − 1

2

∣∣∣∣ , ∣∣∣∣zi +
1

2

∣∣∣∣} and U := {x ∈ `1 : |〈e∗i , z − x〉| < ε}.

Clearly, U ∩ A = ∅ and z 6∈ Aw
.

(b) Assume that z 6∈ A and zi ∈ {−1/2, 0, 1/2} for every i ∈ N. So there are distinct
indices i and j such that zi = zj ∈ {−1/2, 1/2}. Set

U := {x ∈ `1 : |〈e∗i + e∗j , z − x〉| < 1/10}.

By the definition of A, we obtain U ∩ A = ∅, and hence z 6∈ Aw
.

(c) Assume that z ∈ A. Then z is not a cluster point of A because it is weakly
isolated.

Now (a)–(c) prove (3). Let us prove (4). Fix a weakly compact subset C of `1.
Assuming that C ∩Ua 6= ∅ for an infinite subset J ⊂ A we choose xj ∈ C ∩Uj for every
j ∈ J . Since `1 has the Schur property, C is also compact in the norm topology of `1.
So we can assume that xj converges to some x∞ ∈ C in the norm topology. But this
contradicts (2) that proves (4).

(5) immediately follows from (3) and (4).
(6): Clearly, the sequence {a1,i}i>1 ⊂ A is equivalent to the unit basis of `1.
(7): Assuming the converse let {ami,ni

}i∈N be a faithfully indexed weakly fundamen-
tal subsequence of A. Then only the next two cases are possible.

Case 1. There is k ∈ N and i1 < i2 < . . . such that k = mi1 = mi2 = . . . . Passing
to a subsequence we can assume that m1 = m2 = · · · = k and k < n1 < n2 < . . . . Set

χ := (χj)j∈N ∈ `∞, where χj =

{−1, if j ∈ {n2, n4, . . . },
0, if j 6∈ {n2, n4, . . . }.

Then χ ∈ S`∞ and

〈χ, ak,n2s − ak,n2s+1〉 =
1

2
, ∀s ∈ N.

Thus the sequence {ami,ni
}i∈N is not fundamental, a contradiction.
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Case 2. mi → ∞ and ni → ∞. Passing to a subsequence if it is needed, we can
assume that

m1 < n1 < m2 < n2 < . . . .

Defining χ ∈ S`∞ as in Case 1, we obtain

〈χ, am2s,n2s − am2s+1,n2s+1〉 =
1

2
, ∀s ∈ N.

Thus the sequence {ami,ni
}i∈N is not weakly fundamental also in this case.

Therefore A does not have a weakly fundamental subsequence.
(8): The space A

w
is not Ascoli by (5) and Corollary 2.2, and Bw is not Ascoli by

(1)-(4) and Proposition 2.1. �

Recall that a (normalized) sequence (xn) in a Banach space E is said to be equivalent
to the standard basis of `1, or simply called an `1-sequence, if for some θ > 0∥∥∥∥∥

n∑
i=1

cixi

∥∥∥∥∥ ≥ θ ·
n∑
i=1

|ci|,

for any natural number n and any scalars ci ∈ R. We also call such a sequence a
θ-`1-sequence if we want to specify the constant in the definition.

We need some measure-theoretic preparations. Let (T,Σ, µ) be a probability mea-
sure space. Measurable functions gn : T → R are said to be stochastically independent
with respect to µ if

µ

(⋂
n≤k

g−1n (Bn)

)
=
∏
n≤k

µ
(
g−1n (Bn)

)
,

for every k and any Borel sets Bn ⊆ R; see e.g. Fremlin [11, 272], for basic facts
concerning independence. Recall (see [11, 272Q]) that, if integrable functions f, g :
T → R are independent with respect to µ, then

∫
T
f · g dµ =

(∫
T
f dµ

)
·
(∫

T
g dµ

)
.

Lemma 4.2. Let (T,Σ, µ) and (S,Θ, ν) be probability measure spaces and let Φ : T →
S be a measurable mapping such that Φ[µ] = ν, that is µ(Φ−1(E)) = ν(E) for every
E ∈ Θ. If (pn)n be a sequence of measurable functions S → R which is stochasti-
cally independent with respect to ν, then the functions gn = pn ◦ Φ are stochastically
independent with respect to µ.

Lemma 4.2 is standard and follows for instance from Theorem 272G in [11].
In the proof of crucial Proposition 4.5 we essentially use the following version of the

Riemann-Lebesgue lemma, which is mentioned in Talagrand’s [35], page 3.

Theorem 4.3. Let (T,Σ, µ) be any probability space and let (gn)n be a stochasti-
cally independent uniformly bounded sequence of measurable functions T → R with∫
T
gn dµ = 0 for every n. Then

lim
n→∞

∫
T

f · gn dµ = 0,

for every bounded measurable function f : T → R.

Finally, let us recall the following fact, see e.g. [35], 1-2-5.
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Lemma 4.4. Let Φ be a continuous surjection of a compact space K onto a compact
space L. If λ is a regular probability Borel measure on L then there exists a regular
probability Borel measure µ on K such that Φ[µ] = λ, that is µ(Φ−1(B)) = λ(B) for
every Borel set B ⊆ L.

Proposition 4.5. If a Banach space E contains an isomorphic copy of `1, then Bw is
not an Ascoli space.

Proof. We show that Bw is not Ascoli in four steps.
Step 1. Since the Hilbert cube H = [0, 1]N is separable, one can find a continuous

function Φ0 from the discrete space N onto a dense subset of H. By Theorem 3.6.1 of [9],
we can extend Φ0 to a continuous map Φ : βN→ H. As Φ0(N) is dense in H, we obtain
that Φ(βN) = H. Let πn : H → [−1, 1] be the projection onto the nth coordinate, and
let λ =

∏
n mn be the product measure of the normalized Lebesgue measures mn on

the interval [−1, 1]. Then the sequence (πn) is stochastically independent with respect
to λ and

(4.2)

∫
H

πn dλ =

∫
H

πnπm dλ = 0, and

∫
H

π2
n dλ =

1

2

∫ 1

−1
x2 dx =

1

3
,

for all n,m ∈ N and n 6= m. Moreover, the sequence (πn)n is a 1-`1-sequence in C(H).
Indeed, for every n ∈ N and each scalars c1, . . . , cn ∈ R, set

x :=
(
sign(c1), . . . , sign(cn), 0, . . .

)
∈ H.

Then
∑

i≤n ciπi(x) =
∑

i≤n |ci|. Thus (πn) is a 1-`1-sequence in C(H).
Step 2. Let µ be a measure on βN such that Φ[µ] = λ, see Lemma 4.4. Set

gn := πn ◦ Φ for every n ∈ N. Then the sequence (gn) is stochastically independent
with respect to µ by Lemma 4.2. As Φ is surjective, (gn) is also a 1-`1-sequence in
C(βN).

Step 3. Let Y be a subspace of E isomorphic to `1 and let T1 : Y → `1 be an
isomorphism. For every n ∈ N choose xn ∈ Y such that T1(xn) = en, where (en) is the
standard coordinate basis in `1. In turn, as (gn) is a 1-`1-sequence in C(βN), there is
an isometric embedding T2 : `1 → C(βN), sending en to gn.

As the space C(βN) is 1-injective, the operator T = T2 ◦ T1 : Y → C(βN) can be

extended to an operator T̃ : E → C(βN) having the same norm; cf. Proposition 5.10
of [10].

Step 4. Set d := sup{‖xn‖E : n ∈ N} and γ := sup{‖T̃ (x)‖ : x ∈ dBE}. Let
hm,n = (gm − gn)/2 for n,m ∈ N, n > m, and set

Vm,n =

{
f ∈ γBC(βN) :

∣∣∣∣∫
βN
f · gi dµ

∣∣∣∣ > 1/4, for i = m,n

}
.

Denote by T+ the map T̃ from Ew into Cw(βN). Clearly, T+ is also continuous. Finally
we set

A := {am,n := (xm − xn)/2 : 1 ≤ m < n},
and

U := {Um,n := (T+)−1(Vm,n) ∩ dBE : 1 ≤ m < n}.
Now the following claim finishes the proof.
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Claim. The ball dBE is not Ascoli in the weak topology.
To prove the claim it is enough to check (i)-(iii) of Proposition 2.1 for the set A and

the family U .
(i): To show that am,n ∈ Um,n it is enough to prove that hm,n ∈ Vm,n. But this

follows from (4.2) since

2

∫
βN
hm,n · gn dµ =

∫
βN
gm · gn dµ−

∫
βN
g2n dµ = −2

3
= −2

∫
βN
hm,n · gm dµ.

(iii): The zero function 0 is the weak cluster point of A by Proposition 4.1.
Let us check (ii), i.e. if C ⊆ dBE is weakly compact, then C can meet only finite

number of Um,n’s. Suppose otherwise: let xi ∈ C ∩ Umi,ni
, where the pairs (mi, ni) are

distinct. As mi < ni we may assume also that ni 6= ni′ for i 6= i′. Since C is weakly
compact it is Fréchet–Urysohn by the Eberlein–Šmulyan theorem [10, 3.109]. So we
can further assume that xi converge weakly to some x ∈ C. Then also the functions
fi := T+(xi) ∈ Vmi,ni

converge weakly to f := T+(x) ∈ T+(C) ⊂ γBC(βN), and they
are uniformly bounded on βN and fi → f pointwise.

Take arbitrarily 0 < δ < 1/16(1 + γ + 2γ2). By Theorem 4.3, there is N1 ∈ N such

that
∣∣∣∫βN f · gni

dµ
∣∣∣ < δ for all i > N1. By the classical Egorov theorem, fi converge

almost uniformly to f , i.e. there is B ⊆ βN such that µ(βN \ B) < δ and fi converge
uniformly to f on B. Take N2 > N1 such that |fi− f | < δ on B for all i > N2. Taking
into account that |h| ≤ γ for each h ∈ γBC(βN), for every i > N2 we obtain∣∣∣∣∫

βN
fi · gni

dµ

∣∣∣∣ ≤ ∣∣∣∣∫
βN
fi · gni

dµ−
∫
βN
f · gni

dµ

∣∣∣∣+

∣∣∣∣∫
βN
f · gni

dµ

∣∣∣∣
≤
∫
βN
|fi − f | · |gni

| dµ+ δ ≤
∫
B

+

∫
βN\B

+δ

≤ γ · δ + 2γ2 · δ + δ = δ(1 + γ + 2γ2) < 1/16.

On the other hand, fi ∈ Vmi,ni
implies

∣∣∣∫βN fi · gni
dµ
∣∣∣ > 1/4. This contradiction proves

the claim. �

To prove Theorem 1.9 we need also the following simple lemma.

Lemma 4.6. Let E be a Banach space and let Bw denote the unit ball of E equipped
with the weak topology. For any function f : Bw → R the following are equivalent

(i) f is sequentially continuous on Bw;
(ii) f is continuous on every compact subset of Bw.

Proof. Let f be sequentially continuous on Bw and let C be a compact subset of Bw.
For any closed set H ⊆ R, the set F = f−1(H) ∩ C is sequentially closed in C. Hence
F is closed in C, since C, as a weakly compact set, has the Frechet–Urysohn property
by the classical Eberlein–Šmulian theorem.

We have checked that (i) imples (ii); the reverse implication is obvious. �
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Proof of Theorem 1.9. (i)⇒(iv) follows from Proposition 4.5. Theorem 1.8 implies
(iv)⇒(iii). (iii)⇒(ii) follows from Lemma 4.6. Finally, the implication (ii)⇒(i) holds
by [23]. �

5. On weakly sequentially continuous functions on the unit ball

Let E be a Banach space containing an isomorphic copy of `1 and let Bw denote
the unit ball in E equipped with the weak topology. It follows from Theorem 1.9 that
Bw is not a kR-space which, in view of Lemma 4.6, is equivalent to saying that there
is a function Φ : Bw → R which is sequentially continuous but not continuous. We
show below that such a function can be defined, in a sense, effectively by means of
measure-theoretic properties of `1-sequences of continuous functions.

Proposition 5.1. Let K be a compact space and let (gn) be a normalized θ-`1-sequence
in the Banach space C(K). Then there exists a regular probability measure µ on K
such that ∫

K

|gn − gk| dµ ≥ θ/2 whenever n 6= k.

Proof. Suppose that (gn) is θ-equivalent to the standard basis (en) in `1. Put

H = conv ({|gn − gk| : n 6= k}) ⊆ C(K).

Note that it is enough to check that ‖h‖ ≥ θ/2 for all h ∈ H since in such a case, by
the separation theorem, there is a norm-one µ ∈ C(K)∗ such that

∫
K
h dµ ≥ θ/2 for

every h ∈ H. As h ≥ 0 for h ∈ H, we can then replace the signed measure µ by its
variation |µ|.

In turn, the fact that ‖h‖ ≥ θ/2 for h ∈ H is implied by the following.

Claim. Suppose that ni 6= ki for i ≤ p. then for any convex coefficients α1, . . . , αp∥∥∥∥∥
p∑
i=1

αi|gni
− gki |

∥∥∥∥∥ ≥ θ/2.

We shall verify the claim in two steps.
Step 1. There is E ⊆ {1, . . . , p} such that∥∥∥∥∥∑

i∈E

αi(eni
− eki)

∥∥∥∥∥ ≥ 1/2.

Indeed, if L denotes the Cantor set {−1, 1}N, then the projections πn : L→ {−1, 1}
form a sequence in C(L) which is a 1-`1-sequence, so we have an isometric embedding
T : `1 → C(L), where Ten = πn for every n ∈ N.

Write λ for the standard product measure on L. We calculate directly that
∫
K
|πn−

πk| dλ = 1 for n 6= k and therefore∥∥∥∥∥
p∑
i=1

αi|πni
− πki |

∥∥∥∥∥ ≥
∫
L

p∑
i=1

αi|πni
− πki | dλ = 1.
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Hence there is t ∈ L such that
∑p

i=1 αi|πni
(t) − πki(t)| ≥ 1. Examining the signs of

summands we conclude that for some set E ⊆ {1, . . . , p} we have∣∣∣∣∣∑
i∈E

αi(πni
(t)− πki(t))

∣∣∣∣∣ ≥ 1/2.

This implies that∥∥∥∥∥∑
i∈E

αi(eni
− eki)

∥∥∥∥∥ =

∥∥∥∥∥∑
i∈E

αi(Teni
− Teki)

∥∥∥∥∥ ≥
∣∣∣∣∣∑
i∈E

αi(πni
(t)− πki(t))

∣∣∣∣∣ ≥ 1/2.

Step 2. Taking a set E from Step 1 we conclude that∥∥∥∥∥
p∑
i=1

αi|gni
− gki |

∥∥∥∥∥ ≥
∥∥∥∥∥∑
i∈E

αi(gni
− gki)

∥∥∥∥∥ ≥ θ ·

∥∥∥∥∥∑
i∈E

αi(eni
− eki)

∥∥∥∥∥ ≥ θ/2.

This verifies the claim and the proof is complete. �

Example 5.2. Suppose that E is a Banach space containing an isomorphic copy of
`1. Then there is a function Φ : Bw → R which is sequentially continuous but not
continuous.

Proof. Let K denote the dual unit ball BE∗ equipped with the weak∗ topology. Write
Ix for the function on K given by Ix(x∗) = x∗(x) for x∗ ∈ K. Then I : E → C(K) is
an isometric embedding.

Since E contains a copy of `1, there is a normalized sequence (xn) in E which is a θ-
`1-sequence for some θ > 0. Then the functions gn = Ixn form a θ-`1-sequence in C(K).
By Proposition 5.1 there is a probability measure µ onK such that

∫
K
|gn−gk| dµ ≥ θ/2

whenever n 6= k.
Define a function Φ on E by Φ(x) =

∫
K
|Ix| dµ. If yj → y weakly in E then Iyj → Iy

weakly in C(K), i.e. (Iyj)j is a uniformly bounded sequence converging pointwise to
Iy. Consequently, Φ(yj) → Φ(y) by the Lebesgue dominated convergence theorem.
Thus Φ is sequentially continuous.

We now check that Φ is not weakly continuous at 0 on Bw. Consider a basic weak
neighbourhood of 0 ∈ Bw of the form

V = {x ∈ Bw : |x∗j(x)| < ε for j = 1, . . . , r}.

Then there is an infinite set N ⊆ N such that
(
x∗j(xn)

)
n∈N is a converging sequence

for every j ≤ r. Hence there are n 6= k such that |x∗j(xn − xk)| < ε for every j ≤ r,

which means that (xn − xk)/2 ∈ V . On the other hand, Φ
(
(xn − xk)/2

)
≥ θ/4 which

demonstrates that Φ is not continuous at 0. �

6. Proof of Theorem 1.10 and final questions

In order to prove Theorem 1.10 we need the following two results also of independent
interest.
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Proposition 6.1 ([15]). Let E be a metrizable lcs. Then every bounded subset of E is
Fréchet–Urysohn in the weak topology of E if and only if every bounded sequence in E
has a Cauchy subsequence in the weak topology of E.

Proposition 6.2 ([32]). Let E be a complete lcs such that every bounded set in E is
metrizable. Then E does not contain a copy of `1 if and only if every bounded sequence
in E has a Cauchy subsequence in the weak topology of E.

Proof of Theorem 1.10. (i)⇒(ii): By Proposition 6.1 and Proposition 6.2 every bounded
set A in E is even Fréchet-Urysohn in the weak topology of E. The converse implication
(ii)⇒(i) follows from Theorem 1.9. �

We complete the paper with a few open questions. By Proposition 4.1, there is
a countable (hence Lindelöf) non-Ascoli space A. So A is homeomorphic to a closed
subspace of some Rκ. As Rκ is a kR-space, we see that a kR-space may contain a
countable closed non-Ascoli subspace. So the kR-space property and the Ascoli property
are not preserved in general by closed subspaces.

Question 6.3. Let X be an Ascoli space such that every closed subspace of X is Ascoli.
Is X a k-space?

Arhangelskii [9, 3.12.15] proved that a topological space X is a hereditarily k-space
if and only if X is Fréchet–Urysohn.

Question 6.4. Let X be a hereditarily Ascoli space. Is X Fréchet–Urysohn?

Let E = Cp(ω1) = Rω1 . Then the lcs E is a kR-space by [24, Theorem 5.6] and
is not a k-space by [18, Problem 7.J(b)]. So the kR-space property and the Ascoli
property are not equivalent to the k-space property for Cp-spaces, see the Pytkeev and
Gerlits–Nagy Theorem [1, II.3.7].

Question 6.5. For which Tychonoff spaces X the space Cp(X) is Ascoli (or a kR-
space)?

It is well-known (see [1, III.1.2]) that, for a compact space K, the space Cp(K) is a
k-space if and only if K is scattered. Below we generalize this result.

Proposition 6.6. Let K be a compact space. Then Cp(K) is a kR-space if and only if
K is scattered.

Proof. If K is scattered, then Cp(K) is Fréchet–Urysohn, and we are done, see [1,
Theorem III.1.2]. Now assume that K is not scattered. Then there is a continuous
map p from K onto [0, 1] by [34, 8.5.4]. Let λ be the Lebesgue measure on [0, 1]. Take
a measure µ on K such that p[µ] = λ (see Lemma 4.4). Note that the measure µ
vanishes on points. If we define

Ψ(g) =

∫
X

|g|
|g|+ 1

dµ,

then Ψ is easily seen to be sequentially continuous on Cp(K) by the Lebesgue theorem.
This implies that Ψ is continuous on every compact subset K of Cp(X) (recall that K is
Fréchet–Urysohn, see [1, Theorem III.3.6]). On the other hand, it is easy to construct
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a family G of functions g : K → [0, 1] such that
∫
K
g dµ ≥ 1/2 and the zero function

lies in the pointwise closure of G, see [1, Theorem II.3.5]). This means that Ψ is not
continuous on Cp(K). �

Remark 6.7. Let κ be a cardinal number endowed with the discrete topology. Then
Cp(κ) = Rκ is a kR-space by [24]. Recall also that in a model of set theory without
weakly inaccessible cardinals, any sequentially continuous function on Rκ is in fact
continuous, see [30] for further references.

Theorem 1.4 and Proposition 6.6 motivate the following problem.

Question 6.8. Does there exist X such that Ck(X) or Cp(X) is Ascoli but is not a
kR-space?

For a Tychonoff space X denote by L(X) (respectively, F (X) and A(X)) the free
locally convex space (the free or the free abelian topological group) over X.

Question 6.9. Let L(X) (F (X) or A(X)) be an Ascoli space. Is X Ascoli?

Question 6.10. For which metrizable spaces X, the groups F (X) and A(X) are As-
coli?

In [12] the first named author proved that the free lcs L(X) over a Tychonoff space
X is a k-space if and only if X is a discrete countable space.

Question 6.11. Let L(X) be an Ascoli space. Is X a discrete countable space?

We do not know the answer even if “Ascoli” is replaced by a stronger assumption
“L(X) is a kR-space” (see [12, Question 3.6]).

Acknowledgments. The authors are deeply indebted to Professor R. Pol who sent
to T. Banakh and the first named author a solution of Problem 6.8 in [3] (see Corollary
2.4). In [29], R. Pol noticed that it can be shown that the space Ck(M), where M is the
countable metric fan, contains a closed countable non-Ascoli subspace using ideas from
[28]. Using this fact and stratifiability of metric spaces, for a separable metric space X,
R. Pol proved that the space Ck(X) is Ascoli if and only if X is locally compact. We
provide another proof of a more general result by modifying the proof of the assertion
in Section 5 of [28] (see Proposition 2.3).
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R. Acad. Cien. Serie A. Mat. 97 (2003), 159–188.
6. C. R. Borges, On stratifiable spaces, Pacif. J. Math. 17 (1966), 1–16.
7. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1–15.



18 S. GABRIYELYAN, J. KA̧KOL, AND G. PLEBANEK

8. G. A. Edgar, R. F. Wheeler, Topological properties of Banach spaces, Pacific J. Math. 115 (1984),
317–350.

9. R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
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