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Abstract

Let n > 1 and let cp be given real numbers defined for all pairs of disjoint
subsets F,G C {1,...,n}. We characterize commuting n-tuples of operators T =
(Th,...,T,) acting on a Hilbert space H which have a commuting unitary dilation
U= (Uy,...,Uy,) € B(K)", K D H such that PyU*PU*H = cqupp asupp s PT"
for all o, 8 € Z",suppa Nsupp S = @. This unifies and generalizes the concepts
of p-dilations of a single operator and of regular unitary dilations of commuting
n-tuples. We discuss also other interesting cases.!

1 Introduction

There are many successful generalizations of the dilation theory of Hilbert space contrac-
tions.

Let p > 0. An operator T on a Hilbert space H is said to have a p-dilation if there
exists a Hilbert space K D H and a unitary operator U € B(K) such that T% = pPyU*|H
for all k > 1, where Py denotes the orthogonal projection onto H. It is known [4] that T’
has a p-dilation if and only if

IRl + 2(% ~1)Re {=Th, b + (1 - %) |Th|[2 > 0

forall h € H and z € D.

The most important particular cases are p = 1 (which reduces to the classical dilation
theory of Hilbert space contractions) and p = 2. An operator has a 2-dilation if and only
if its numerical range is contained in the closed unit disc, see [1], [4].

Let n > 1 and let T' = (Ty,...,T,) € B(H)"™ be a commuting n-tuple of operators.
T is said to have a unitary dilation if there exists a Hilbert space K’ D H and an n-tuple of
commuting unitary operators U = (Uy,...,U,) € B(K)" such that T* = PyU*| H for all
a € Z7 . Tt is well known that every pair of commuting contractions has a unitary dilation
(the Ando dilation). However, the Ando dilation is not unique, its structure is not clear
and in general such a dilation does not exist for more than two commuting contractions.
The main difficulty is that the values of compressions PgU*|H for a = (o, ..., ) € 2",
min a; < 0, maxa; > 0 are not prescribed and can be chosen arbitrarily.

*Research was supported by grant No. 14-07880S of GA CR and RVO:67985840.
Keywords: p-dilation, regular unitary dilation
2010 Mathematics Subject Classification: 47A20, 47A13.



The theory of regular unitary dilations overcomes this difficulty by requiring that
PyU*PUYH = T*°T* for all o, 3 € Z", supp aNsupp 3 = . It is known that an n-tuple
T = (T1,...,T,) has a regular unitary dilation if and only if

pILIN T

for all B C {1,...,n} and h € H, see [4], [2].

The aim of this paper is to unify and generalize these two approaches.

Let n > 1 and let cp ¢ be a system of real numbers defined for pairs of disjoint subsets
F,G C {1,...,n} satisfying natural conditions ¢py = 1 and cg r = cp¢ for all F,G. We
characterize the n-tuples of commuting operators T' = (T3,...,T,) € B(H)™ which have
a commuting unitary dilation U = (Uy,...,U,) € B(K)" satisfying

PHU*ﬂUQ’H = Csuppa,supp 8 * T

for all o, 8 € Z, suppa Nsupp S = (. This includes the above described cases of p-
dilations of a single operator and of regular unitary dilations. We describe also other
interesting cases.

2 Notations

We denote by Z and Z, the set of all integers and non-negative integers, respectively.
Denote by D and T the open unit disc and the unit circle in the complex plane, respectively.
Let n € N. We use the standard multiindex notation. For «, 8 € Z7 we write o < 3
if aj < By forallj=1,....n |a| =37 a5 a+p = (a1 +B,...,a, + B,) and
suppa = {j : o; # 0}. For o € Z" write ap = (max{as,0},..., max{a,,0}) and
a_ = (max{—a1,0},..., max{—a,,0}).

For F C {1,...,n} wedefineer € Z} by (ep); =1 (j € F)and (ep); =0 (j¢&F).
We denote by |F'| the cardinality of F.

Let T = (Ty,...,T,) € B(H)™ be a commuting n-tuple of operators acting on a Hilbert
space H. For a € Z} we write T* = [[/_, T;”. For F C {1,...,n} write Tr = [,z T}-
In particular, Ty = I, the identity operator on H.

Let cpe (F,G C{l,...,n}, FNG = 0) be a system of real numbers such that

cpp =1 and cgr=cpe forall F,G. (1)

Let T'= (Ty,...,T,) € B(H)" be a commuting system of operators. We say that 7" has
a dilation determined by the system (cF,G) if there exist a Hilbert space K D H and an
n-tuple U = (Uy,...,U,) € B(K)" of commuting unitary operators such that

({Uh,UPg) = csuppasupps - {Th, T9) (2)
for all h,g € H and «, § € Z'} with supp o Nsupp 3 = (). In particular,
<Uah7 g) = Csuppa,®<Tah7 g>
for all h,g € H and a € Z7}. Clearly (2) is equivalent to

PHUQ_B|H = Csuppa,suppBT*BTa
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for all o, 3 € Zt, supp a Nsupp 5 = 0.

This definition includes the p-dilations of a single operator 7} (for n =1 and cg1y9 =
p~') and the regular unitary dilations (for ¢y = 1 for all F, G) of n-tuples of commuting
operators.

If we assume the natural minimality condition K =\/ ;. U*H then it is easy to see
that conditions (2) determine the dilation uniquely up to a unitary equivalence.

The aim of this paper is to characterize the n-tuples T" = (T3,...,7,) which have
dilation determined by (2). This will generalize the cases of p-dilations of single operators
as well as the case of regular unitary dilations of commuting contractions.

3 Necessary conditions

In this section we fix a Hilbert space H, an n-tuple T' = (T1,...,T,) € B(H)" of com-
muting operators, real numbers cpe (F,G C {1,...,n},F NG = 0) and a dilation
U= (U,...,U,) € B(K)" satistying (1) and (2).

For AC {1,...,n}let D4 : H— K be defined by Dy = > ;. 4(—1)!FIUs\ Tp. Thus
Dy is the isometrical embedding of H into K and Dy, = U; — Tj for all j € {1,...,n}.
If j € Athen Dy = UjDA\{j} — DA\{j}Tj~

Write for short [1,n] = {1,...,n}.

Note that in the classical dilation theory for n = 1 the space (U; —T1)H plays an
important role — it is a copy of the defect space (I — T7T1)/2H and it is a wandering
subspace for the unitary dilation U;. For p-dilations this space is not exactly wandering
any more but it is 7almost” wandering: U{(U; — T1)H L UF(U, — Ty)H if |j — k| > 2, see
[3].

In our situation the space Dy ,) H may be viewed on as an analogy of this defect space.

Note that if o, 8 € Z7}, suppaNsupp 5 =0, j € [1,n], o; > 2 and h,g € H then

(U“h, Uﬁg> = CsuppmsuppB(Tah) Tﬁg> = Csuppavsupp»B(Ta_ejTjhv TﬁQ)
= (U*“T;h,U").

Consequently,

(U Dy pijyhs U D 39) = (U9 Dy 53 Tihs U2 Diy o (539) (3)

The next proposition shows that in our situation the space Dy, [ is also ”almost”
wandering in the following sense:

Proposition 1. Let o, 3 € Z, suppa Nsupp 3 = (). Suppose that max{a;,[; : j =
1,...,n} > 2. Then
(U*Dyy yh, U Dy yg) = 0

for all h,g € H.

Proof. Without loss of generality we may assume that a; > 2 for some j € [1,n]. We
have

(U*Dpi,mh, U Dpy i g)
=(U*(U; Dy apvi5y — Dy L) s UP (U D5y — Py 75) 9)
=(U* Dy giyhs U D i39) — (U Dian iy Tk U Dy 539)
— (U Dy b, U2 Dy (53 T39) + (U Dy 3y T U2 Dy 53 Tg) = 0



by (3). O

Let @ € Z7 and max{a; : 1 < j < n} < 1. Then U* = Up, where F' = supp .
For F,G C [1,n], F NG = ( the spaces UpDp nyH and UgDypy ) H are not orthogonal in
general. However, we can express their "angle”.

Lemma 2. Let F,G,AC [1,n], FNG =10, h,g € H. Then

(UpD ah,UgDag) = Z <_1)|F1‘+|G1‘<UF\F1DA\(FUG)TF1ha Ueney, Dav(rueyTe, 9)-

FiCFNA
G1CGNA

Proof. The statement is trivial if (FUG)NA = (). We prove it by induction on |(FUG)NA|.

Let (FUG) N A # () and suppose that the statement is true for all F',G’, A’ with
F'NG =0 and |(FFUG)NA| < |[(FUG)N A|. Without loss of generality we may
assume that FN A # (. Let j € FN A. We have

(UrDah,UsDag) = (Ur(UsDavsy = DavgyTy) b U (UsDin iy = DaviayT3)9)
=(UrDaijph, UcDavy9) — (UrD o Tih, UcU; D avgjy9)
— (UrU; Davgyh, Us Davip Tig) + (Ur Davgy Tih, Uc Dy Ts9)
=(UrDa\iph, UaDavy9) — (Ur\iy Daviiy Tih, Us Dav39)-

By the induction assumption this is equal to

Z (—)PHEN U 5, D av(rocoyn T b Usva Dayrocuiin Ten 9)

F1C(FnA)\{j}
G1C(GNAN{}

— Y (=IO U oy Danrucoin Tr Tihs Uae, Davrucun T, 9)

F1c(FnA)\{j}
G1C(GNA\{5}

= ) (=)FHON T gy Dy roey T by Uaven Daruey T, 9)-

F)CFNA
G1CGNA

Lemma 3. Let R, S, B C [1,n] be mutually disjoint sets, h,g € H. Then

(UrDgh,UsDpg) = > (Troah,Toua) Y (=1)H%lep e, suc,.
ACB Cl,CQCI?A
C1NCo=

Proof. We have

(UrDph,UsDgg) = Z (1) PR R U, T g, b, UsUp, T\ 5,9)

B1,B2CB

= Z (= 1)/ BB URpUp g, T\, s UsUp\ 5, T\ 5,9)

Bl,BQCB

= Z (_1)‘81‘—"_‘32‘<TRTB\(BlﬂBg)haTSTB\(BlﬁBg)g>cRU(Bl\Bg),SU(Bg\Bl)
B1,B2CB

= Z (Truah, Tsuag) Z (_1)|Bl‘+|B2‘CRU(Bl\Bg),SU(Bg\Bl)'

ACB B1,BaCB

A=B\(B1NB3)



Setting C} = By \ B, = BN Aand Cy = By \ By = B, N A we have

(UrDph,UsDpg) = Z<TRuAh7TGuA> Z (D) %len 00 sue,-

ACB C1,C5CA
C1NCoy=0

Proposition 4. Let F,G C [1,n], FNG = (. Let h,g € H. Then
(UrDpnih, UaDpnyg) = Z (Tpuah, Tauag)TrG A,
AC[1,n)\(FUG)

where
~ _ C1|+|Co|+| F\F'|+|G\G’
Fraa = E : E ( (_1)| 1+ Ce |+ F\F'|+|G\ lCF’UCl,G’UCg

F/'cF C1,C9CA
G'cG C1NCy=0

(note that the subsets F,G, A C {1,...,n} are mutually disjoint).
Proof. We have

(UrDimh, UaDpimg) = Z (=) Uy D (ro6y Ty By Uy D g (ruc) T, 9)

FCF
G1CG
= Z (—1)lFFG] Z (TirryoaTr b, Tieveyuale, 9)
5132 AC[1,n]\(FUG)
Z (= 1)1l o p oo (@vanues
Cq1,CoCA
ClﬂCZZV)

= Z (Truah, Tauag)Tre.a,
AC[1,n)\(FUG)

where
- _ C1|+|Ca|+| F\F'|+|G\G’
Fraa = E E (_1>\ 11+ C2 |+ F\F'|+|G\ ‘CF'UCLG/UCQ'

F/'cF C1,CoCA
G'cG C1NCy=0

O
Theorem 5. Let T = (T3,...,T,) € B(H)™ have a dilation U = (Uy,...,U,) € B(K)"
satisfying (2). Then
Z fFvG:A<TFuAh,TGUAh> >0

F,G,AC[1,n]
mut.disjoint

forall h € H.
Proof. Let h € H and N € N. Consider the element

Tr = Z UO{D[Ln]h € K.

aeZm

Then
0< anHxHZ _ N Z <U(a*ﬁ)+D[1’n]h7 U(ﬂ*a)+D[17n]h>_



Setting v = min{«, #} one gets

O< N Z (UpD1njh, UgDp ) - card {7 €Zy :y+ep,y+teq< (N,...,N)}

F,GC[1,n]
FNG=0

=N Z <UFD[1,n]h7 UGD[I,n]h> . N‘FUG‘(N—i— 1)n—|FuG|.

F,GC[1,n]
FNG=0

Letting N — oo, we have

0< Z (UrDpnih, UgDpnih) = Z Trc,a{Troah, Tauah).

F,GC[1,n] F,G,AC[1,n]
FNG=0 mut.disjoint

]

Instead of considering triples of pairwise disjoint subsets F,G, A C {1,...,n} it is
possible to simplify the notation by considering two sets FFU A and G U A in a general
position.

For F,G C {1,...,n} let

TRG = TR\G.O\F.FNG = Z (—1)/ FIHIGHIFVE . (@)

FICF,G'CG
FINnG’'=0

Then the condition from the previous theorem becomes

> rre(Trh,Tgh) > 0 (5)

F,GC[1,n]

forall h e H.
Let ¢ = (e1,...,6,) € T". The n-tuple €T = (&114,...,e,1,,) has dilation eU =
(e1Un, .. .,e,U,) satisfying (2). Thus we have

Theorem 6. Let ' = (T3,...,T,) € B(H)" have a dilation U = (Uy,...,U,) € B(K)"
satisfying (2). Then
> rrc{(eT)ph, (eT)gh) > 0

F,GC[1,n]
foralle € T" and h € H.

Note that rpe = r¢ r for all subsets F,G C {1,...,n}. So one can write

T‘F’G<€T)Fh, (6T)Gh> + T‘G’F<(€T)Gh, (6T)Fh>
=2rpcRe ((eT)ph, (eT)ch)

foralle € T" and h € H.

4 Sufficient conditions

We show that if the operators 17, ..., T, satisfy the vanishing condition Tf — 0 in the
strong operator topology for j = 1,...,n, then the condition in Theorem 6 is also suffi-
cient.



Theorem 7. Let T' = (T1,...,1,) € B(H)" be a commuting n-tuple of operators satis-
fying SOT —limy oo Tf = 0 for j =1,...,n. Let cpe (F,G C{1,....},FNG =0) be
real numbers satisfying cgyp = 1 and cgp = cp for all F,G. The following statements
are equivalent:

(i) T has a dilation U = (Uy, ..., U,) € B(K)" such that
PyUh, U°g|H = Coupp asupp s T

for all a, § € Z, supp a N supp B = 0;

(ii)
> rpa((eT)ph, (eT)gh) > 0 (6)
F,GC[1,n]

foralle € T" and h € H.

Proof. The implication (i)=-(ii) was proved in the previous section.

Let T satisfy (ii). It is sufficient to show that the function ® : Z" — B(H) defined
by ®(a) = Couppa suppa_ LT+ is a positive definite function on the group Z", i.e., for
each finite system (hq)aca Of vectors in H we have

S (B — o her) 0,

a,a’ €A

see [4].

Let (ha)aca be a finite system of vectors in H. Let N € N satisfy N > 2max{|o;] :
aelNj=1,...,n}

For e = (ey,...,&,) € T™ consider the vector

:Z Z e?=2Th,,.

aEA ,BGZ+

Let m be the Lebesgue measure on T". Using (6) we have

rec((ET) pan(e), (eT)can(€))dm(e)

T F,GC[1,n]

rre Y.y ebretergtatiea (TLrip TET ho)dm(e).

" FGC1n) aa/€N  ppleny

All terms with f — a +ep # ' — &' + eg will disappear in the integration. For the
remaining terms let vy = 3 —a+ep = — o' + eg.
Thus we have

0 S Z rra Z Z <T7+aha, T7+a/ha/>

F,GC[1,n] o,/ €A 7:(0,....0)<y+a—ep<(N,...,N)
(0, 0) vt —eG < (N, N)

= Z (Qn(a, &)ha, har),

a,a’ EA



where

Qn(a,a) = Z TEG Z Tyl e

F,GC[1,n] viep <yt+a<(N,..,N)+ep
eg <+’ <(N,....N)Feg

Write & = min{eo, o’} and o = G+, o = a@+¢'. Then 0,0 € Z" and supp dNsupp ¢’ = (.
Setting n = v + & we have

F,GC[1,n] niep<n+3<(N,...,N)+ep
eG<n+6'<(N,...,N)+eqg
— #1468’ rpm+6
= E T T s,
n€ezy

n+6+68' <(N+1,...,N+1)

8,7 = Z T’F7g. (7)

{jm;+6;=N+1}CFCsupp (1+9)
{3inj+8}=N+1}CGCsupp (n+5')

where

We need the following lemma:

Lemma 8. Let 7,0,8" € Z1, suppd Nsuppd’ = 0, max{n; + d;,m; + 95,5 = 1,...,n} <
N + 1. Write for short D = supp (n +9), D' =supp(n+9'), E={j:n;+0; = N + 1},
E' ={j:n;+0;=N+1}. Then:

(i) if there exists j € {1,...,n} such that j € (DN D)\ (EUE') then

Y rpe=0;

ECFCD
E'CcGcD’

(ii) if DN D' = () then

E rG = CD,D’-

FCD
GcD’

Proof. (i) Using (4) we have

E TrG = E CMm,LAM,L,

ECFCD McD,LcD’/
E'CcGcD’ MNL=0

where

am, = Z (—1)MULI(_1)IFIHIE]

MUECFCD

LUE/'cGcD’

=DM ) (Y (D).
MUECFCD LUE'CGCD’!

Let j e (DND')\(EUE). Since MNL =1, either j ¢ M or j ¢ L. If j ¢ M then

> (=) =0, and so app, = 0. Similarly, if j ¢ L then Y (=1)I¢l =0,
MUECFCD LUE'CGCD’
and so apr,r, = 0. Hence



(ii) Let DN D' = (. Again

E TrG = E CMm,LAM,L,

FCD McD,LCD’
GcD’ MNL=0
where
ava = (DM () (YD ().
MCFcD LCGCD)
If M # D then > (=Dl = 0 and so ap, = 0. Similarly, if L # D’ then

MCFCD
(=1)!¢I' =0, and so aprr, = 0. If M = D and L = D’ then ayrz = 1. So

LCGcD!
g rG = CD,D’-

FCD
GcD’

Continuation of the proof of Theorem 7: Recall that

QN(OZ, O.//) _ Z T*n—i—é’Tn—i-(SSm

nGZ'i
n+64+6'<(N+1,...,N+1)

Sp = E rea-

{j:”]j +5j:N+1}CFCsupp (n+9)
{3 +5;. =N+1}CGCsupp (n+8')

where

If there exists j € suppn with max{n; +d;,n; +9;} < N, then s, = 0 by Lemma 8 (i). So

QN(O[, O{/) _ Z T*n+5/Tn+6Sn,

where the sum is taken over all n € Z} such that max{n; + d;,7; + d;} = N + 1 for all
j € suppn. Note that the number of nonzero terms in this sum does not depend on N (for
N large enough). Moreover, the coefficients s, are bounded independently of N. Since

TjN — 0 in the strong operator topology for j = 1,...,n, we have

Nnm (Qn (e, &), har) = 500,00 (T T°heys hor) = Couppssupps (T T°h, h).
Hence

0< lim > (Qn(a,a)he, har)

N—oo
a,a/ €A

= ) Capp(aar)ysupp (a—ar) (T TV g hyr).

a,a’ €A

Hence the function
(@) = Csuppay suppa I T

defined on the group Z" is positive definite and there exists a unitary dilation U =
(Uy,...,U,) € B(K)" such that

(Uh, Uﬁg> = Csupp a,supp #{T 1, TﬁQ)
for all h,g € H and «, 3 € Z" with supp a Nsupp 8 = 0. O

9



Remark 9. Conditions T) — 0 (SOT) in Theorem 7 are necessary. Even in the classical
case of regular unitary dilations condition (6) is not sufficient (for details see below).

If we do not assume that 7 — 0, then it is possible to modify condition (6) in the
following way:

Theorem 10. Let cpg (F,G C {1,...,},F NG = ) be real numbers satisfying (1).
Let T'= (Ty,...,T,) € B(H)"™ be a commuting n-tuple of operators. Suppose that

Z T’F7g<(ZT)Fh, (ZT)G]Z> Z 0 (8)

F,GC[1,n]

forall h € H,z = (21,...,2,) € D". Then T has a dilation U = (Uy,...,U,) € B(K)"
such that
(U*h, Uﬁg> = Csuppa,supp 8 * (TN, TﬁQ)

for all h,g € H, a,3 € Z, suppa Nsupp 5 = (.

Proof. Let 0 < r < 1. The n-tuple T = (rT},...,rT,) satisfies conditions of Theorem 7.
Therefore the function @, (o) = Csuppay suppa_ (rT)** (rT)** is positive definite on the
group Z". Letting » — 1_ we get that the function

X0 — (67
() = Csupp oy suppa— 1 L

is positive definite on the group Z". So T has a unitary dilation satisfying (T“h, T?g) =
Csupp a,supp 8 U R, UPg) for all h,g € H,a, 3 € 7" supp o Nsupp = . O

Recall that a commuting n-tuple 7" = (11, ...,T,,) € B(H)" is polynomially bounded
if there exists a constant K > 0 such that

(D) < K]lpl|

for all polynomials p of n variables, where ||p|| = sup{|p(z)| : z € D"}.

Theorem 11. Let cpg (F,G C {1,...,n},F NG = ) be real numbers satisfying
cgp = 1, cpg # 0 and cgp = cpg for all F,G. Let T = (T3,...,T,) € B(H)" be a
commuting n-tuple of operators having a unitary dilation U determined by the system
(¢rg). Then T is polynomially bounded.

Proof. Let p(z) = Zaem be a polynomial in n variables. For F' C {1,...,n} let

=Y

an"
supp aCF

Clearly ||pr|| < ||p||. We have

Yo Y V- Y Y Y Wt Y ()9,

FCl1,n] FCGC[1,n] FC[l,n] F'CF supp a=F' G:FCGC[1,n]
a -1 G\F
=2 2wl (X @ > )
C[1,n] supp a=F’ G:F'CGC[1,n] F:F'CFCG

Z Z a,U” c;,lﬁ.

C[1,n] a:supp a=F"

10



So

||p || - HPH Z Z CLaUa suppa(Z)’HH

F’'C[1,n] supp a=F"’
< H Z Z a,U%c suppa@ ‘ = H Z pF Z <_1)|G\F‘Ca}@

F'C[1,n] supp a=F" FC[1l,n] G:FCGC[I,n}

<hl- S| 3 oGy

FcC[1,n] G:FCGC[1,n]

Hence T' is polynomially bounded with the polynomial bound

K< S| S o)

FC[l,n] G:FCGC[1,n]

5 Examples

1. Let n=1and p > 0. Set cQ1y,0 = Cp, {1} = p~t. We have T{1},0 = T0{1} = C{1},0 — Cpp =
% —land rgymy =1-— %. Clearly rpy = 1. Hence condition (6) becomes

1 2
IR + 2(— - 1>Re (eTh, h) + (1 - —) ITh|? > 0
p p
for all h € H,|e| = 1. Similarly condition (8) becomes
1 2
2 i _ & 2 S
I1R]2 + z(p 1)Re (zTh, h + (1 p>||zTh|| >0

for all h € H, z € D, which is the well-known characterization of p-contractions.

The condition becomes simpler for either p = 1 or p = 2. For p = 1 it reduces to
|R||> = ||TR|*> > 0, i.e., T is a contraction. For p = 2 it reduces to ||h||> —Re (zTh, h) > 0,
i.e., the numerical range of T is contained in the closed unit disc.

2. Let n = 1. The parameter c{1} ¢ may be any real number, not only positive.
The case cq1y,9 = 0 is rather trivial. In this case rp ¢ = (—1)F*I¢. Condition (8) then

becomes
|R||?> — 2Re (2Th, h) + ||zTh|* > 0,

which is satisfied for any operator T' € B(H). The corresponding dilation is U = Iy ® S
acting in the space H ® (5(Z), where S is the bilateral shift in ¢5(Z).
If ciyp <0, then iy g = cpyp — 1 and 7y 1y = 1 — 2¢q13,9. Thus (8) becomes
121" +2(cqay0 — 1)Re (zTh, h) + (1 — 2cqay 0) TR = 0.

This enables to define p-contractions for negative values of p := c{_ll} 0

3. Let n > 1 and cpe = 0 for all F,G with F UG # 0. This case is again trivial. We
have rp g = (—1)FHE and condition (8) becomes

> ()T ph, (2T)ah) 2 0

F,GC[1,n]

11



forall h € H and z € D". However, this condition is satisfied for any commuting n-tuple T’
since the left-hand side of the condition is equal to

| 3 vrien
]

FC[l,n
4. Let n > 1 and cpg =1 for all F,G C [1,n], FNG = (. Then

TF7G:(—1)|F‘+‘G| Z (_1)|F’UG’|

F/'CF,G'CcG
F'NnG'=0
:(_1)|F|+\G\< Z (_1)|F1|>< Z (_1)|Gl|>< Z (_1)|F2uG’2|>‘
FiCF\G G1CG\F Fy,GoCFNG

FonGo=0

If F # G then either F'\ G # (0 or G\ F # (). In both cases rpc = 0.

Furthermore,
TEF = Z (—1)|F2UG2I = (_1)|F|-

Fo,GoCF
FonGo=0

Hence condition (6) becomes

> D Twh|? > 0 (9)

FcCl1,n]

for all h € H. So if T saisfies (9) and T} — 0 in the strong operator topology for all j,
then T has the regular unitary dilation. However, condition (9) is satisfied for example
if one of the operators 7T is an isometry and the remaining operators are arbitrary. The
classical Brehmer conditions state that 7" has a regular unitary dilation if and only if

> D)FTeR|? > 0 (10)

FCcB

for all h € H, B C [1,n]. This is in fact equivalent to (8) which becomes

Y CYENET) e 2 0 (11)

FC[1,n]

for all h € H,r € [0,1]". Indeed, if (11) is satisfied and B C [1,n], then set r; = 1 for all
j € B and let r; =0 for all j ¢ B. Thus one gets (10).

Conversely, suppose that T satisfy (10). Let r, € [0,1] and S := (T4, ..., Th_1,7:T0).
Then

Y CDFNSeRP = Y (CO)FNTRRE Y ()FI TR = a b,

FC[1,n] n¢FC[1,n] neFC[1,n]

where

a= > (=) Tph|* >0

n¢ FC[1,n]

and
b= > (=D)FNTphP = > (—)FFYTRTLA| < 0.

neFC[1,n] FcCl1,n—1]
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Since T satisfies (10), we have a+b > 0, and so a+72b > 0 for all r,, € [0,1]. Thus (11) is
satisfied for r = (1,...,1,r,). Inductively, we get that T" satisfies (11) for any r € [0, 1]™.

5. Let p1,...,pn > 0. Set cpg = HjeFqu;1 (F,G C [1,n], FNG = (). Then

(—1)FIHGlp o = Z (=1l H p;!

F/CF,GG’CQG JEFUG!
FInG! =
=( X ORI VT ( Y e T o)
FiCF\G JEF G1CG\F JEG1 Fy,GoCFNG JEFUG2
FonGo=0
1 2
L)L)
jEF=G Pi’ iérna Pj

where '+ G = (F'\ G) U (G \ F) denotes the symmetrical difference of F' and G. Hence
1 2
o= 11 (5-1) 11 (1-7))
jersg Pi JEFNG Pi

Conditions (6) and (8) then unify the characterizations of p-dilations of single contractions
and of regular unitary dilations of n-tuples.

6. The previous conditions get simplified if py = --- = p,, = 1: this is the case of regular
unitary dilations. Another interesting case is for p; = --- = p, = 2. In this case rpg =0
if FNG#0. If FNG =0 then

1 1\ [FUG|
e TG - ()"
jerug P 2

Condition (6) then becomes

> 271G (eT) ph, (eT)gh) > 0

F,.GC[1,n],FNG=0

for all h € H and € € T".
7. Let pr,...,pn>0,let cpg=0if F #0 # G, and cpg = Hjerj_l. Then

(_1)|F|+\G|TF’G _ Z (_1)|F’| H Pj_l + Z (—1)|G’\ H pj—l -1

F'CcF JEF! G'cG jeG’
1 1
10 -—)+II(--) -1
ieF Pj jeG Pj
Condition (6) becomes simpler if p; = -+ = p, = 1. Then rpg = (—1)FIFIC+L if

F#0#G, rpyg=01if F # 0 and rgp = 1. For details see Example 10 below.
8. Let p>0and cpg=p 'foral F,GC[l,n], FNG =0, FUG # (). Then

(D) =t Y (=D)FHIT (1= p),

F/'CcF,G'cG
F'NnG’'=0

13



If F\G#0or G\ F # 0 then rpg = (1 — p ) (=1)FIHCLIf F 2 0 then rpp =
p L (=1)Fl 4+ (1 — p71). Then

S rralTen Toh) = = p )| 3 ()FTeR|| + o7 3 ()T

F,GC[1,n] FC[1,n] FC[1,n]

Condition (6) then becomes

S Enerl| w0 X DT > 0

FC[1,n] FC[1,n]

(1—p")

for all h € H and € € T™.
In particular, if p = 1 then this reduces to

> D TER|P =0
FC[1,n]
for all h € H, which is again condition (9) for regular unitary dilations.
9. Let p>0and cpg=p ' (F#0),cre=0 (F#0+#G@G). Then
(1)l = 5 37 (<1 3 (1) (1257
FICF G'ca

If F# 0 +#G then (—1)FHClrpe =1 —-2p7L If F % () then (—=1)flrpy =1 - p7L.
Finally, 7pp = 1 as in all cases.
Hence condition (6) becomes

B> +21=p") > (=) Re((eT)rh, h)

0£FC[1,n]
+(1=2p7") Y (=) (T)ph, (T)ah) > 0,
F,GC[1,n]
F#04G
or, equivalently,
2
IR +2(1 = p~)Re (S (T)ph,h) + (1 - 257" (T)eh| =0 (12)
0£FC[1,n] FC[1,n],F#0

for all h € H and € € T". Clearly (12) is the multivariable analogy of the characterization
of p-dilations of single operators.

10. Condition (12) becomes simpler for p =1 and p = 2.
For p =1 we have the following characterization:

Theorem 12. Let 7' = (T3,...,T,) € B(H)" be a commuting n-tuple of operators
satisfying Tf — 0 (SOT) for j =1,...,n. The following conditions are equivalent:

(i) there exists a unitary dilation U = (U, ...,U,) € B(K)", K D H such that
T = PyU|H  (a€Z")
and

PyUU|H =0 (a, 8 € Z2,suppa Nsupp 8 = 0, |a + 5] # 0);

14



(i) |

> (5T)FhH < ||| for all h € H and ¢ € T".

FC[1,n],F#£0

If‘

> (zT)FhH < ||h]| for all h € H and z € D" then it is possible to omit the
FC[1,n],F#0
condition 7} — 0 (SOT) for j =1,...,n.

For p = 2 condition (12) becomes

IBP+ Y Re((eT)ph,h) >0
FC[1,n],F#0

for all h € H and € € T". Equivalently,

Re((I+eTh) (I +e,Tn)h,h) >0
for all h € H and € € T". Similarly, (8) becomes

Re ((I+z1Th) (I + z,T0)h,h) >0

for all h € H and z € D".

This condition seems to be the proper generalization of operators with 2-dilation, i.e.,
with numerical radius < 1.

Thus we have

Theorem 13. Let T = (T1,...,T,) € B(H)" be a commuting n-tuple of operators
satisfying Tf — 0 (SOT) for j =1,...,n. The following conditions are equivalent:

(i) there exists a unitary dilation U = (Uy,...,U,) € B(K)", K D H such that
T° = 2PgU\H  (a€Zm)
and

PyUPUH =0 (o, € Z,suppaNsupp 8 = 0, o + B8] # 0);

(i) Re((I +&/T1) - (I +&,T,)h,h) > 0 for all h € H and £ € T".

If Re<([ +27h) - (I + z,1,)h, h> > (0 for all h € H and z € D" then it is not
necessary to assume the conditions Tf — 0 (SOT) for the existence of the unitary
dilation satisfying (i).

6 Concluding remarks.

Remark 14. It is possible to consider complex values of numbers cp ¢, such that cpyp =1
and cq p = Cpg for all F,G. However, this more general setting does not bring anything
new. One can show that r¢ p = Frg. So conditions (6) and (8) remain unchanged if we
replace the values ¢y by their real parts Recpg.

15



Remark 15. The vanishing conditions Tf — 0 (SOT) appear frequently in the dilation
theory and usually simplify the situation. In our situation, without this assumption we
proved that conditions (8) are sufficient for the existence of the unitary dilation satisfying
(2). We do not know whether (8) is also necessary. Equivalently, suppose that T =
(Ty,...,T,) has a dilation U satisfying (2) and r = (ry,...,7,) € [0,1]™. Does it follow
that rT' = (r11,...,r,T,) has also a unitary dilation satisfying (2)? This is the case for
p-dilations of single operators as well as for regular unitary dilations. We do not know if
it is true in general in our setting.
Another possibility is to consider condition (6) for all subsets of {1,...,n}, i.e.,

> rec{(eT)rh, (eT)ag) > 0 (13)

for all B C {1,...,n},h € H,e € T™. Such a condition is usually considered for regular
unitary dilations. Condition (13) is clearly necessary. We do not know if it is also
sufficient.
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