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MATCHING POLYTONS

MARTIN DOLEŽAL AND JAN HLADKÝ

Abstract. Hladký, Hu, and Piguet [Tilings in graphons, preprint] introduced the notions

of matching and fractional vertex covers in graphons. These are counterparts to the corre-

sponding notions in finite graphs.

Combinatorial optimization studies the structure of the matching polytope and the frac-

tional vertex cover polytope of a graph. Here, in analogy, we initiate the study of the

structure of the set of all matchings and of all fractional vertex covers in a graphon. We call

these sets the matching polyton and the fractional vertex cover polyton.

We also study properties of matching polytons and fractional vertex cover polytons along

convergent sequences of graphons.

1. Introduction

Hladký, Hu, and Piguet in [4] translated the concept of vertex-disjoint copies of a fixed

finite graph F in a (large) host graph to graphons. Following preceding literature on this

topic, they use the name F -tiling (in a graph or in a graphon). This allows them to introduce

the F -tiling ratio of a graphon. They also translate the closely related concept of (fractional)

F -covers in finite graphs to graphons which is a dual concept to F -tilings. The case when

F is an edge, F = K2, is the most important. Then F -tilings are exactly matchings, the

F -tiling ratio is just the matching ratio1, and (fractional) F -covers are exactly (fractional)

vertex covers.

In this paper we deal exclusively with the case F = K2 and from now on we specialize

our description to this case. Some of our results, however, generalize to other F -tilings. We

discuss the possible generalizations in Section 5.3.

Hladký, Hu, and Piguet give transference statements between the finite (i.e., graph) and

limit (i.e., graphon) versions of the said notions. They mostly study the numerical quantities

provided by the theory they develop, that is, the matching ratio and the fractional vertex

cover ratio. Given a graphon W , we denote these two quantities (which we define in Sec-

tion 2.3) by match(W ) and fcov(W ). One of the main results from [4] is the counterpart

of the prominent linear programming duality between the fractional matching number of a
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1the matching ratio is just the matching number divided by the number of vertices

1



2 MARTIN DOLEŽAL AND JAN HLADKÝ

graph and its fractional vertex cover number. Since — as Hladký, Hu, and Piguet argue — in

the graphon world there is no distinction between matchings and fractional matchings, their

LP duality has the form match(W ) = fcov(W ). In [4] and [3] they give applications of this

LP duality in extremal graph theory.2

In this paper, on the other hand, we study the sets of all fractional matchings, and of

all fractional vertex covers. In the case of a finite graph G, these sets are known as the

fractional matching polytope and the fractional vertex cover polytope. We shall denote them

by MATCH(G) and FCOV(G). Study of MATCH(G) and FCOV(G) (and study of related

polytopes such as the (integral) matching polytope and the perfect matching polytope) is

central in polyhedral combinatorics and in combinatorial optimization. From the numerous

results on the geometry of these polytopes, let us mention integrality of the fractional matching

polytope and fractional vertex cover polytope of a bipartite graph, or the Edmonds’ perfect

matching polytope theorem. Here, we initiate a parallel study in the context of graphons.

While in the finite case we have MATCH(G) ⊆ RE(G) and FCOV(G) ⊆ RV (G), given a

graphon W : Ω2 → [0, 1], for the corresponding objects MATCH(W ) and FCOV(W ) it turns

out that we have MATCH(W ) ⊆ L1(Ω2) and FCOV(W ) ⊆ L∞(Ω). So, while MATCH(G)

and FCOV(G) is studied using tools from linear algebra, in order to study MATCH(W ) and

FCOV(W ) we need to use the language of functional analysis. We employ the -on word

ending used among others for graphons and for permutons and call the limit counterparts to

polytopes (such as MATCH(W ) and FCOV(W )) polytons.

1.1. Overview of the paper. In Section 2 we recall the necessary background concerning

graphons and the theory of matchings/tilings in graphons developed in [4].

In Section 3 we treat (half)-integrality of the extreme points of the fractional vertex cover

polyton of a graphon. As an application, we deduce a graphon version of the Erdős–Gallai

theorem on matchings in dense graphs. In Section 4 we show that if a sequence of graphons

(Wn)n converges to a graphon W then “MATCH(Wn) asymptotically contains MATCH(W )”.

This result is dual to results from [4] on the relation between FCOV(Wn) and FCOV(W ),

which we recall in Section 4.1.

Section 5 contains some concluding remarks.

2. Notation and preliminaries

2.1. Measure theory.

Lemma 1. Let (Ω, ν) be a probability space and let A,B ⊆ Ω be given. Let D ⊆ A×B be a

set of positive ν⊕2 measure. Then for every ε > 0 there is a measurable rectangle R ⊆ A×B
such that ν⊕2(R \D) < εν⊕2(R).

2These applications become particularly interesting when general F -tilings are considered.
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Proof. Let us fix ε > 0. By the definition of the product measure, we can find measurable

rectangles R1, R2, . . . ⊆ A×B such that D ⊆
∞⋃
i=1

Ri and

ν⊕2

( ∞⋃
i=1

Ri \D

)
< εν⊕2(D) ≤ εν⊕2

( ∞⋃
i=1

Ri

)
.

Then there is a natural number m such that

ν⊕2

(
m⋃
i=1

Ri \D

)
< εν⊕2

(
m⋃
i=1

Ri

)
. (1)

Now the finite union
m⋃
i=1

Ri can obviously be decomposed into finitely many pairwise disjoint

measurable rectangles S1, . . . , Sl. Then the inequality (1) can be rewritten as

l∑
i=1

ν⊕2(Si \D) < ε
l∑

i=1

ν⊕2(Si) .

Thus there is some i ∈ {1, . . . , l} such that ν⊕2(Si \D) < εν⊕2(Si). The corresponding Si is

the wanted measurable rectangle R. �

2.2. Graphon basics. Our notation follows [6]. Throughout the paper we shall assume that

Ω is an atomless Borel probability space equipped with a measure ν (defined on an implicit

σ-algebra). We denote by ν⊕k the product measure on Ωk.

Let us recall that a graphon W : Ω2 → [0, 1] is bipartite if there exists a partition Ω =

ΩA t ΩB into two sets of positive measure such that W is zero almost everywhere on (ΩA ×
ΩA) ∪ (ΩB × ΩB).

Suppose that F is a graph on vertex set [k]. Then the density of F in a graphon W is

defined as

t(F,W ) =

∫
x1

∫
x2

· · ·
∫
xk

∏
ij∈E(F )
i<j

W (xi, xj) .

Recall that the cut-norm ‖ · ‖� and the cut-distance dist �(·, ·) are defined by

‖U‖� = sup
S,T⊆Ω

∣∣∣∣∫
S×T

U

∣∣∣∣ , U ∈ L1(Ω2), and

dist �(U,W ) = inf
φ
‖U −W φ‖� , U,W ∈ L1(Ω2) ,

where the infimum in the definition of the cut-distance ranges over all measure-preserving

bijections on Ω, and W φ is defined by W φ(x, y) = W (φ(x), φ(y)).
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2.3. Introducing matchings and vertex covers in graphons. We introduce the notion

of matchings in a graphon. Our definitions follow [4], where they were given in the more

general context of F -tilings.

Definition 2. Suppose that W : Ω2 → [0, 1] is a graphon. We say that a function m ∈ L1(Ω2)

is a matching in W if

(1) m ≥ 0 almost everywhere,

(2) supp m ⊆ suppW up to a null-set, and

(3) for almost every x ∈ Ω, we have
∫
y m(x, y) +

∫
y m(y, x) ≤ 1.

In [4] we argued in detail why this is “the right” notion of matchings. We do not repeat this

discussion here and only briefly mention that the requirements in Definition 2 are counterparts

to fractional matchings in finite graphs. Namely, a fractional matching in a graph G can be

represented as a function f : V (G)2 → R such that

(1) f ≥ 0,

(2) if f(x, y) > 0 then xy ∈ E(G), and

(3) for every x ∈ V (G), we have
∑

y f(x, y) +
∑

y f(y, x) ≤ 1.

(Note that usually fractional matchings are represented using symmetric functions. This is

however only a notational matter.3)

Remark 3. As said already in the Introduction, even though Definition 2 is inspired by frac-

tional matchings in finite graphs, the resulting graphon concept is referred to as “matchings”.

This is because in the graphon world every function m from Definition 2 behaves in many

ways as an integral matching.

Given a matching m in a graphon W we define its size, ‖m‖ =
∫
x

∫
y m(x, y). The matching

ratio of W , denoted by match(W ), is defined as the supremum of the sizes of all matchings

in W .

We write MATCH(W ) ⊆ L1(Ω2) for the set of all matchings in W . It is straightforward to

check that this set is convex (like the set of fractional matchings in a finite graph) and closed

(if we consider the norm topology on L1(Ω2)). But — unlike the finite case — it need not

be compact. To see this consider the graphon U : [0, 1]2 → [0, 1] defined as U(x, y) = 1 for

x + y ≤ 1 and U(x, y) = 0 for x + y > 1. This example was first given in [4] in a somewhat

different context. For ε positive, consider a matching mε defined to be 1/(2ε) on a stripe of

width ε along the diagonal x + y = 1 and zero otherwise. This is shown on Figure 1. It is

clear that the matchings mε do not contain any convergent subsequence, as we let ε → 0+.

Considering the weak topology on the space L1(Ω2) (that is the topology generated by the

3The current choice for these functions being not-necessarily symmetric is adopted from [4]. There, this

choice was dictated not by matching, but rather by creating a general concept of F -tilings even for graphs

which are not vertex-transitive.
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Figure 1. The graphon U discussed in the text. A matching mε shown in

dark gray. The support of U is shown in light gray.

dual space L∞(Ω2)) does not help as the same counterexample easily shows. Therefore

considering the set MATCH(W ) as a subset of the second dual of L1(Ω2) equipped with its

weak∗ topology seems to be the only reasonable way to have a natural compactification of

MATCH(W ). However, we did not need go that far.

We can now proceed with the definition of fractional vertex covers of a graphon. First,

recall that a function c : V (G) → [0, 1] is a fractional vertex cover of a finite graph G if we

have c(x) + c(y) ≥ 1 for each xy ∈ E(G). Thus, the graphon counterpart is as follows.

Definition 4. Suppose that W : Ω2 → [0, 1] is a graphon. We say that a function c ∈ L∞(Ω)

is a fractional vertex cover of W if 0 ≤ c ≤ 1 almost everywhere and the set

suppW \ {(x, y) : c(x) + c(y) ≥ 1}

has measure 0.

A fractional vertex cover is called an integral vertex cover if its values are from the set

{0, 1} almost everywhere.

Given a fractional vertex cover c of a graphon W we define its size, ‖c‖ =
∫
x c(x). The

fractional cover number, fcov(W ) is the infimum of sizes of all fractional vertex covers of W .

We write FCOV(W ) ⊆ L∞(Ω) for the set of all fractional vertex covers of W . It is straight-

forward to check that this set is convex. Further, as was first shown in [4, Theorem 3.14], it

is also compact in the space L∞(Ω) equipped with the weak∗ topology.

3. Extreme points of fractional vertex cover polytons

3.1. Digest of properties of fractional vertex cover polytopes. Let G be a finite graph.

Then the set FCOV(G) ⊆ [0, 1]V (G) is a polytope. It is a fundamental fact in combinato-

rial optimization that all the vertices of this polytope are half-integral (i.e., in the form

{0, 1
2 , 1}

V (G)), [7, Theorem 30.2]. Furthermore, all its vertices are integral if and only if G is

bipartite, [7, Theorem 18.3].
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Figure 2. By joining a half-circle and a rectangle in R2 we get an extreme

point that is not exposed.

3.2. Graphon counterparts. Suppose that L is a vector space, and suppose that X ⊆ L
is a convex set. Recall that a point x ∈ X is called an extreme point of X if the only pair

x′, x′′ ∈ X for which x = 1
2(x′+x′′) is the pair x′ = x, x′′ = x. We shall write E(X) to denote

the set of all extreme points of X.

When L is finite-dimensional and X is a polytope in L then the extreme points of X are

exactly its vertices. The importance of the notion of extreme points comes from the Krein–

Milman theorem which states that in a locally convex topological vector space, each compact

convex set equals to the closed convex hull of its extreme points.

Thus, the graphon counterparts to the results described in Section 3.1 will be expressed in

terms of E(FCOV(W )). Let us now state these counterparts.

Theorem 5. Suppose that W : Ω2 → [0, 1] is a bipartite graphon. Then all the extreme points

of FCOV(W ) are integral.

Theorem 6. Suppose that W : Ω2 → [0, 1] is a graphon. Then all the extreme points of

FCOV(W ) are half-integral, i.e. with values from the set {0, 1
2 , 1} almost everywhere.

Theorem 7. Suppose that W : Ω2 → [0, 1] is a graphon. If all the extreme points of

FCOV(W ) are integral then W is bipartite.

The notion of extreme points is not the only generalization of vertices of a polytope.

Another basic notion from convex analysis is that of exposed points. Its stronger variant, the

notion of strongly exposed points, can be used for a characterization of the Radon–Nikodym

property of Banach spaces which is an extensively studied topic. A point x in a convex set X

is exposed if there exists a continuous linear functional for which x attains its strict maximum

on X.

It is easy to see that every exposed point is extreme. The converse does not hold; a well-

known counterexample in R2 is shown in Figure 2. We see, however, that every extreme

point of the fractional vertex cover polyton of a bipartite graphon is exposed. Indeed, let

φ ∈ E(FCOV(W )) for some bipartite graphon W : Ω2 → [0, 1]. Then Theorem 5 tells us that

the sets A = φ−1(0) and B = φ−1(1) partition Ω. It is now clear that the linear functional f ,

f(ψ) :=

∫
B
ψ(x)dx−

∫
A
ψ(x)dx



MATCHING POLYTONS 7

is strictly maximized at φ on FCOV(W ). We leave it as an open question whether every

extreme point of the fractional vertex cover polyton is also exposed even for non-bipartite

graphons.

3.3. Proof of Theorem 5. For the proof of Theorem 5 we shall need the following easy fact.

Fact 8. Suppose that x, y ∈ [0, 1] are two reals which satisfy x + y ≥ 1. Define ∂(x) =

min(x, 1− x) and ∂(y) = min(y, 1− y). Then the numbers x+ = x+ ∂(x) and y− = y − ∂(y)

satisfy x+, y− ∈ [0, 1] and x+ + y− ≥ 1.

Proof. The fact that x+, y− ∈ [0, 1] is obvious. To prove that x+ + y− ≥ 1, we distinguish

three cases. First, suppose that 0 ≤ x ≤ 1
2 ≤ y ≤ 1. Then ∂(x) = x, ∂(y) = 1 − y, and

consequently, x+ + y− = 2x + 2y − 1 ≥ 1. Second, suppose that 0 ≤ y ≤ 1
2 ≤ x ≤ 1. Then

∂(x) = 1 − x, ∂(y) = y, and consequently, x+ + y− = 1. Third, suppose that 1
2 ≤ x, y ≤ 1.

Then ∂(x) = 1− x, ∂(y) = 1− y, and consequently, x+ + y− = 2y ≥ 1. �

Proof of Theorem 5. Let Ω = ΩA t ΩB be a partition into two sets of positive measure such

that W is zero almost everywhere on (ΩA × ΩA) ∪ (ΩB × ΩB). Suppose that c ∈ FCOV(W )

is not integral. Using the notation from Fact 8, define two functions c′, c′′ : ΩA t ΩB → R by

c′(a) = c(a)+, c′(b) = c(b)−, c′′(a) = c(a)−, c′′(b) = c(b)+, for each a ∈ ΩA and b ∈ ΩB. By

Fact 8, we have that c′, c′′ ∈ FCOV(W ). Further c = 1
2(c′ + c′′). As c is not integral, we have

that c is distinct from c′ and c′′. We conclude that c is not an extreme point of FCOV(W ). �

3.4. Proof of Theorem 6. The proof of Theorem 6 is very similar to that of Theorem 5.

We first state the counterpart of Fact 8 we need to this end. We omit the proof as it is almost

the same as that of Fact 8.

Fact 9. Suppose that x, y ∈ [0, 1] are two reals which satisfy x + y ≥ 1. Define ∂•(x) =

min(x, 1− x, |12 − x|) and ∂•(y) = min(y, 1− y, |12 − y|). Then the numbers x+• = x+ ∂•(x)

and y−• = y − ∂•(y) satisfy x+•, y−• ∈ [0, 1] and x+• + y−• ≥ 1.

Proof of Theorem 6. Suppose that c ∈ FCOV(W ) is not half-integral. Consider the sets

ΩA = {x ∈ Ω : 0 ≤ c(x) ≤ 1
2} and ΩB = {x ∈ Ω : 1

2 < c(x) ≤ 1}. Using the notation

from Fact 9, define two functions c′, c′′ : ΩA t ΩB → R by c′(a) = c(a)+•, c′(b) = c(b)−•,

c′′(a) = c(a)−•, c′′(b) = c(b)+•, for each a ∈ ΩA and b ∈ ΩB. By Fact 9, we have that

c′, c′′ ∈ FCOV(W ). Further c = 1
2(c′ + c′′). As c is not half-integral, we have that c is distinct

from c′ and c′′. We conclude that c is not an extreme point of FCOV(W ). �

3.5. Proof of Theorem 7. Lemmas 10 and 11 are key for proving Theorem 7. These lemmas

(and the generalization of Lemma 10 given in Proposition 21) may be of independent interest.

Lemma 10. Suppose that W : Ω2 → [0, 1] is a graphon. Then W is bipartite if and only if

for every odd integer k ≥ 3 it holds t(Ck,W ) = 0.



8 MARTIN DOLEŽAL AND JAN HLADKÝ

Proof. Suppose first that there is an odd integer k ≥ 3 such that t(Ck,W ) > 0. Let Ω =

Ω0 tΩ1 be an arbitrary decomposition of Ω into two disjoint measurable subsets. Then there

exists (ij)
k
j=1 ∈ {0, 1}k such that

∫
x1∈Ωi1

∫
x2∈Ωi2

· · ·
∫

xk∈Ωik

W (x1, x2)W (x2, x3) . . .W (xk, x1) > 0 .

As k is odd, there is j ∈ {1, . . . , k} such that ij = ij+1 (here we use the cyclic indexing, i.e.

k + 1 = 1). By Fubini’s theorem

∫
xj∈Ωij

∫
xj+1∈Ωij+1

W (xj , xj+1) > 0 ,

in other words
∫

Ω2
i
W > 0 for some i ∈ {0, 1}. As the decomposition Ω = Ω0 tΩ1 was chosen

arbitrarily, this proves that W is not bipartite.

Now suppose that t(Ck,W ) = 0 for every odd integer k ≥ 3. By transfinite induction we

define a transfinite sequence {(Aα, Bα) : α ≤ γ} (for some countable ordinal γ) consisting of

pairs of measurable subsets of Ω such that

(i) Aα ⊆ Aβ and Bα ⊆ Bβ, α ≤ β ≤ γ,

(ii) ν(Aα ∪Bα) < ν(Aβ ∪Bβ) ≤ ν(Aγ ∪Bγ) = 1, α < β ≤ γ,

(iii) W �A2
α
= 0 a.e. and W �B2

α
= 0 a.e., α ≤ γ,

(iv) W �(Aα∪Bα)×(Ω\(Aα∪Bα))= 0 a.e., α ≤ γ,

(v) ν(Aα ∩Bα) = 0, α ≤ γ.

Once we are done with the construction, the bipartiteness of W immediately follows by the

equation ν(Aγ ∪Bγ) = 1 together with (iii) and (v).

We start the construction by setting A0 = B0 = ∅. Now suppose that we have already

constructed {(Aα, Bα) : α < α0} for some countable ordinal α0 such that conditions (i)-(v)

hold. If α0 is a limit ordinal then we set Aα0 =
⋃
α<α0

Aα and Bα0 =
⋃
α<α0

Bα. This

clearly works. Otherwise, α0 = α + 1 for some ordinal α < α0. If ν(Aα ∪ Bα) = 1 then

the construction is finished (with γ = α). So suppose that ν(Aα ∪ Bα) < 1 and denote

Ω′ = Ω \ (Aα ∪ Bα). If W �Ω′×Ω′= 0 a.e. then it suffices (by (iv)) to set Aα0 = Aα ∪ Ω′ and

Bα0 = Bα. Otherwise there is x0 ∈ Ω′ such that ν ({y ∈ Ω′ : W (x0, y) > 0}) > 0. By Fubini’s

theorem, we may also assume that for every odd integer k ≥ 3 it holds

∫
Ωk−1

W (x0, x1)W (x1, x2) . . .W (xk−1, x0) = 0 . (2)
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We set

D0 = {y ∈ Ω′ : W (x0, y) > 0} , and

D` =

y ∈ Ω′ :

∫
Ω`

W (x0, x1)W (x1, x2) . . .W (x`, y) > 0

 , for ` ≥ 1 .

Then we set

A =
⋃
` even

D` and B =
⋃
` odd

D` .

Finally, we define Aα0 = Aα ∪ A and Bα0 = Bα ∪ B. The conditions (i) and (ii) are clearly

satisfied, so let us verify only (iii), (iv) and (v).

As for (iii), suppose for a contradiction that W �A2
α0

is positive on a set of positive measure.

By the induction hypothesis, the same is true for W �A2 . So there are even integers `1, `2 ≥ 0

such that W �D`1×D`2 is positive on a set of positive measure. But then a simple application

of Fubini’s theorem leads to a contradiction with (2) for k = `1+`2+3. So we have W �A2
α0

= 0

a.e. Similarly, we get W �B2
α0

= 0 a.e. This proves (iii).

As for (iv), suppose for a contradiction that W �(Aα0∪Bα0 )×(Ω\(Aα0∪Bα0 )) is positive on a set

of positive measure. By the induction hypothesis, the same is true forW �(A∪B)×(Ω\(Aα0∪Bα0 ))=

W �(A∪B)×(Ω′\(A∪B)). By Fubini’s theorem, there is z ∈ Ω′ \ (A ∪B) such that

ν ({y ∈ A ∪B : W (y, z) > 0}) > 0 .

So there is an integer ` ≥ 0 such that

ν ({y ∈ D` : W (y, z) > 0}) > 0 .

By Fubini’s theorem, we easily conclude that z ∈ C`+1. But this contradicts the fact that

z /∈ A ∪B.

As for (v), suppose for a contradiction that ν(Aα0∩Bα0) > 0. By the induction hypothesis,

we also have ν(A ∩ B) > 0. So there are an even integer `1 and an odd integer `2 such that

ν(D`1 ∩ D`2) > 0. But then an application of Fubini’s theorem leads to a contradiction

with (2) for k = `1 + `2 + 2.

To finish the proof, it suffices to observe that for some countable ordinal γ we get ν(Aγ ∪
Bγ) = 1, and then the construction stops. �

Lemma 10 is a graphon counterpart to the well-known fact that a graph is bipartite if and

only if it does not contain odd-cycles.

Lemma 11. Suppose that W : Ω2 → [0, 1] is a graphon. If W is not bipartite then there

exists an odd integer k ≥ 3 with the following property. For each ε > 0 there exist pairwise

disjoint sets A1, . . . , Ak ⊆ Ω of the same positive measure α, such that for each h ∈ [k], W is

positive everywhere on Ah × Ah+1 except a set of measure at most εα2. Here, we use cyclic

indexing, Ak+1 = A1.
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Proof. Suppose that W is not bipartite. By Lemma 10 there is an odd integer k ≥ 3 such

that

t :=

∫
Ωk

W (x1, x2)W (x2, x3) . . .W (xk, x1) > 0 . (3)

We find a natural number n such that

n >
k2

t
. (4)

We fix a decomposition Ω =
n⋃
i=1

Ωi of Ω into pairwise disjoint sets of the same measure 1
n .

We also set

D =
{

(x1, . . . , xk) ∈ Ωk : there are i, j ∈ {1, . . . , k} and ` ∈ {1, . . . , n}

such that i 6= j and xi, xj ∈ Ω`

}
.

(5)

Then we have

ν⊕k (D) ≤
∑

i,j=1,...,k
i6=j

1

n
≤ k2

n

(4)
< t ,

and so ∫
D

W (x1, x2)W (x2, x3) . . .W (xk, x1) ≤ ν⊕k(D) < t . (6)

By (3) and (6), we get ∫
Ωk\D

W (x1, x2)W (x2, x3) . . .W (xk, x1) > 0 .

By this and (5) there are pairwise distinct integers `1, . . . , `k ∈ {1, . . . , n} such that∫
Ω`1

∫
Ω`2

· · ·
∫

Ω`k

W (x1, x2)W (x2, x3) . . .W (xk, x1) > 0 , (7)

and so the set

E := {(x1, x2, . . . , xk) ∈ Ω`1 × Ω`2 × . . .× Ω`k : W (x1, x2)W (x2, x3) . . .W (xk, x1) > 0} (8)

is of positive measure.

Now let us fix ε > 0, and let δ > 0 be such that

ν⊕k(E)− δ
ν⊕k(E) + δ

≥ 1− ε

2
. (9)

Recall that the σ-algebra of all measurable subsets of Ω`1 × . . . × Ω`k is generated by the

algebra consisting of all finite unions of measurable rectangles. Thus there is a finite union

S =
m⋃
i=1

Ri of measurable rectangles R1, . . . , Rm in Ω`1 × . . .× Ω`k such that

ν⊕k(E4S) = ν⊕k(E \ S) + ν⊕k(S \ E) ≤ δ .
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Without loss of generality, we may assume that the measurable rectangles R1, . . . , Rm are

pairwise disjoint. Then we have

ν⊕k(E ∩ S)

ν⊕k(S)
≥ ν⊕k(E)− ν⊕k(E \ S)

ν⊕k(E) + ν⊕k(S \ E)
≥ ν⊕k(E)− δ
ν⊕k(E) + δ

(9)

≥ 1− ε

2
. (10)

Now the left-hand side of (10) can be expressed as

ν⊕k(E ∩ S)

ν⊕k(S)
=

m∑
i=1

ν⊕k(Ri)

ν⊕k(S)
· ν
⊕k(E ∩Ri)
ν⊕k(Ri)

,

i.e. as a convex combination of ν⊕k(E∩Ri)
ν⊕k(Ri)

, i = 1, . . . ,m. Therefore by (10), there is an index

i0 ∈ {1, . . . ,m} such that

ν⊕k(E ∩Ri0)

ν⊕k(Ri0)
≥ 1− ε

2
. (11)

Let Ri0 be of the form Ri0 = B1 × . . .×Bk. Find a natural number p such that

p ≥ 2k

εν⊕k(Ri0)
. (12)

For every i = 1, . . . , k, we fix a finite decomposition Bi = B0
i ∪

qi⋃
j=1

Bj
i of Bi into pairwise

disjoint sets, such that ν(B0
i ) ≤ 1

p and ν(Bj
i ) = 1

p for j = 1, . . . , qi. Then we clearly have

ν⊕k

Ri0 \ k∏
i=1

qi⋃
j=1

Bj
i

 ≤ k

p
, (13)

and so

ν⊕k

(
E ∩

k∏
i=1

qi⋃
j=1

Bj
i

)

ν⊕k

(
k∏
i=1

qi⋃
j=1

Bj
i

) (13)

≥
ν⊕k(E ∩Ri0)− k

p

ν⊕k(Ri0)

(11)

≥ 1− ε

2
− k

pν⊕k(Ri0)

(12)

≥ 1− ε . (14)

The left-hand side of (14) can be expressed as the following convex combination:

ν⊕k

(
E ∩

k∏
i=1

qi⋃
j=1

Bj
i

)

ν⊕k

(
k∏
i=1

qi⋃
j=1

Bj
i

) =

q1∑
j1=1

· · ·
qk∑
jk=1

ν⊕k
(

k∏
i=1

Bji
i

)
ν⊕k

(
k∏
i=1

qi⋃
j=1

Bj
i

) · ν⊕k
(
E ∩

k∏
i=1

Bji
i

)
ν⊕k

(
k∏
i=1

Bji
i

) .

Therefore by (14), there are ji ∈ {1, . . . , qi}, i = 1, . . . , k, such that

ν⊕k
(
E ∩

k∏
i=1

Bji
i

)
ν⊕k

(
k∏
i=1

Bji
i

) ≥ 1− ε ,
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or equivalently

ν⊕k
(

k∏
i=1

Bji
i \ E

)
ν⊕k

(
k∏
i=1

Bji
i

) ≤ ε . (15)

We set Ai = Bji
i for i = 1, . . . , k. Then A1, . . . , Ak are pairwise disjoint (as Ai ⊆ Bi ⊆ Ω`i for

every i), and each of these sets has the same measure α = 1
p . Let us fix h ∈ [k] and suppose

towards a contradiction that

ν⊕2 ({(xh, xh+1) ∈ Ah ×Ah+1 : W (xh, xh+1) = 0}) > ε

p2
.

Then we clearly have

ν⊕k ({(x1, x2, . . . , xk) ∈ A1 ×A2 × . . .×Ak : W (x1, x2)W (x2, x3) . . .W (xk, x1) = 0}) > ε

pk
.

But this is a contradiction with (8) and (15). �

Proof of Theorem 7. We shall prove the counterpositive. Suppose that W is not bipartite.

Let COV(W ) be the closure (in the weak∗ topology) of the convex hull of all integral vertex

covers of W . Clearly, we have COV(W ) ⊆ FCOV(W ), and each integral vertex cover of

FCOV(W ) is contained in COV(W ). Below, we shall show that

FCOV(W ) \ COV(W ) 6= ∅ . (16)

The Krein–Milman Theorem then tells us that E
(
FCOV(W )

)
\ COV(W ) 6= ∅. It will thus

follow that there exists a non-integral fractional vertex cover in E
(
FCOV(W )

)
, as was needed

to show.

Take c : Ω → [0, 1] to be constant 1
2 . Clearly, c ∈ FCOV(W ). In order to show (16),

it suffices to prove that c /∈ COV(W ). Let k be the odd integer given by Lemma 11. Let

ε = 1
32k2

, and let the sets A1, . . . , Ak of measure α > 0 be given by Lemma 11.

In order to prove that c is not in the weak∗ closure of the convex hull of integral vertex

covers, consider an arbitrary `-tuple of integral vertex covers c1, . . . , c` of W , and numbers

γ1, . . . , γ` ≥ 0 with
∑
γi = 1.

Consider an arbitrary i ∈ [`]. We say that ci marks the set Ah (where h ∈ [k]) if ci restricted

to Ah attains the value 0 on a set of measure at most α
4k . Put equivalently, ci marks the set

Ah if ci restricted to Ah attains the value 1 on a set of measure at least α(4k−1)
4k .

Claim 1. For each i ∈ [`], the vertex cover ci marks at least k+1
2 many of the sets A1, . . . , Ak.

Proof of Claim 1. Suppose that this is not the case. Recall that k is odd. We can find

an index h ∈ [k] that that Ah and Ah+1 are not marked (again, using the cyclic notation

Ak+1 = Ak). Therefore, the ci-preimages Bh ⊆ Ah and Bh+1 ⊆ Ah+1 of 0 have both measures

more than α
4k . It follows from Lemma 11 and the way we set ε that W is positive on a set of

positive measure on Bh ×Bh+1. This contradicts the fact that ci is a vertex cover. �
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Let us write A =
⋃
hAh. It follows from Claim 1 that∫

A
ci ≥

k + 1

2
· α(4k − 1)

4k
≥ α

(
k

2
+

1

6

)
. (17)

By convexity, we can replace
∫
A ci by

∫
A (
∑

i γici) in (17).

We now have∫
A

(∑
i

γici(x)− c(x)

)
dx =

∫
A

(∑
i

γici(x)

)
dx−

∫
A
c(x) dx

(17)

≥ α
(
k

2
+

1

6

)
− kα · 1

2
=
α

6
.

(18)

Since neither the set A nor the bound on the right-hand side of (18) depend on the choice of

the number `, the vertex covers ci, and the constants γi, we get that c is not in the weak∗

closure of convex combinations of integral vertex covers, as was needed. �

3.6. An application: the Erdős–Gallai Theorem. In this section, we prove a graphon

counterpart to the following classical result of Erdős and Gallai, [2].

Theorem 12 (Erdős–Gallai, 1959). Suppose that n and ` are positive integers that satisfy

` ≤ n/2. Then any n-vertex graph with more than max{(` − 1)(n − ` + 1) +
(
`−1

2

)
,
(

2`−1
2

)
}

edges contains a matching with at least ` edges.

The bound in Theorem 12 is optimal. Indeed, when ` ≤ 0.4(n + 1), the extremal graph

(denoted by ExG(n, `)) is the complete graph K`−1,n−`+1 together with the complete graph

inserted into the (`−1)-part. When ` ≥ 0.4(n+ 1), the extremal graph is the complete graph

of order 2`− 1 with n+ 1− 2` isolated vertices padded.

Motivated by this, for e ∈ [0, 1
2 ] we define a graphons Ψe and Φe as a graphon as follows.

We partition Ω = B1 tB2 so that ν(B1) = 1−
√

1− 2e and ν(B2) =
√

1− 2e. We define Ψe

to be constant 0 on C2×C2 and 1 elsewhere. We partition Ω = C1tC2 so that ν(C1) = (2e)2

and ν(C2) = 1 − (2e)2. We define Φe to be constant 1 on C1 × C1 and 0 elsewhere. These

definition uniquely determine Ψe and Φe, up to isomorphism. Thus, our graphon version of

the Erdős–Gallai theorem reads as follows.

Theorem 13. Suppose that W : Ω2 → [0, 1] is a graphon. Let e = 1
2

∫
x,yW (x, y). Then

fcov(W ) ≥ min{
√

1
2e, 1 −

√
1− 2e}. (The maximum is attained by the former term for

e ≤ 0.32 and by the latter term for e ≥ 0.32).

Furthermore, we have an equality if and only if W is isomorphic to Ψe (if e ≤ 0.32) or to

Φe (if e ≥ 0.32).

This version of the Erdős–Gallai Theorem implies an asymptotic version of the finite state-

ment. Furthermore, it provides a corresponding stability statement.
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Theorem 14. For every ε > 0 there exists numbers n0 ∈ N and δ > 0 such that the following

holds. If G is a graph on n > n0 vertices with more than max{(`−1)(n−`+1)+
(
`−1

2

)
,
(

2`−1
2

)
}

edges, then G contains a matching with at least `− εn edges.

Furthermore, G contains a matching with at least `+ δn edges, unless G is εn2-close to the

graph ExG(n, `) as above in the edit distance.

The way of deriving Theorem 14 from Theorem 13 is standard, and we refer the reader

to [3] where this was done in detail in the context of a tiling theorem of Komlós, [5], which is

a statement of a similar flavor.

Let us emphasize that the original proof of Theorem 12 is simple and elementary (and

the corresponding stability statement would not be difficult to prove with the same approach

either). While our proof is not long, it makes use of the heavy machinery of graph limits,

and in particular the results from [4] and from Section 3.2. However, we think that our proof

offers an interesting alternative point of view on the problem.

For the proof of Theorem 13 we shall need the following fact.

Fact 15. Suppose that D ∈ [0, 1
2 ] is fixed. Then the maximum of the function g(a, b) =

a2

2 + b− b2

2 on the set {(a, b) : 0 ≤ a, b, a2 + b = D} is attained for a = 0, b = D if D ≤ 0.4 and

a = 2D, b = 0 if D ≥ 0.4.

Proof. We transform this into an optimization problem in one variable by considering the

function h(b) = g(2(D−b), b). The function h is quadratic with limit plus infinity at −∞ and

at +∞. Thus, the maximum of h on the interval [0, D] will be either at b = 0 or at b = D.

We have h(0) = 2D2 and h(D) = D − D2

2 . A quick calculation gives that the latter is bigger

for D < 0.4 while the the latter is bigger for D > 0.4. �

Proof of Theorem 13. By Theorem 6 we can fix a half-integral vertex cover of size fcov(W ).

Then we get a partition Ω = A0 t A1/2 t A1 given by the preimages of 0, 1/2 and 1. Let us

write α0 = ν(A0), α1/2 = ν(A1/2), and α1 = ν(A1). We have fcov(W ) = 1
2ν(A1/2) + ν(A1).

Note that W�A0×(A0∪A1/2) = 0. Therefore,

e ≤
α2

1/2

2
+ α1(

1

2
α1 + α1/2 + α0) =

α2
1/2

2
+ α1 −

α2
1

2

≤ max

{
2fcov(W )2, fcov(W )− fcov(W )2

2

}
,

(19)

where the last part follows from Fact 15. Pedestrian calculations show that this is equivalent

to the assertion of the theorem.

We now look at the furthermore part. If fcov(W ) = max{e − e2

2 , 2e
2}, then the first

inequality in (19) is at equality. This means that W must be 1 on A1/2×A1/2 and on A1×Ω.

Furthermore, Fact 15 tells us that for the second inequality in (19) to be at equality, we must

have α1/2 = 0 or α1 = 1. We conclude that W is isomorphic to Ψe or to Φe. �
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4. Convergence of polytons

4.1. Fractional vertex cover polytons of a convergent graphon sequence. Suppose

that a sequence of graphons (Wn)n converges to a graphon W . We want to relate the polytons

FCOV(Wn) to the polyton FCOV(W ). First, observe that the polytons FCOV(Wn) do not

converge to FCOV(W ) in any reasonable sense in general. Indeed, for example, take Wn

to be a representation of a sample of the Erdős–Rényi random graph G(2n, 1/ log n). It is

well-known that almost surely almost all these graphs contain a perfect matching. Thus,

FCOV(Wn) contain only fractional vertex covers of size 1
2 and more. On the other hand,

almost surely, the zero graphon W = 0 is the limit of (Wn)n, and so FCOV(W ) consists of

all [0, 1]-valued measurable functions on Ω.

However, Theorem 16 below shows that FCOV(W ) asymptotically contains the polytons

FCOV(Wn). This theorem is a special case of [4, Theorem 3.14].

Theorem 16. Suppose that (Wn)n is a sequence of graphons on Ω that converges to a graphon

W : Ω2 → [0, 1] in the cut-norm. Suppose that cn ∈ FCOV(Wn). Then any accumulation

point of the sequence (cn)n in the weak∗ topology lies in FCOV(W ).

4.2. Matching polytons of a convergent graphon sequence. The main new result of

this section concerns convergence properties of the matching polytons. This result is dual to

Theorem 16: ifWn converges toW then “MATCH(Wn) asymptotically contain MATCH(W )”.

Theorem 17. Suppose that W : Ω2 → [0, 1] is a graphon on a probability space Ω, and

let m ∈ MATCH(W ) be fixed. Then for every ε > 0 there is δ > 0 such that whenever

U : Ω2 → [0, 1] is a graphon with ‖U −W‖� < δ then there is mU ∈ MATCH(U) such that

‖mU −m‖� < ε.

Since the cut-norm topology is stronger than the weak∗ topology, we get the following

corollary.

Corollary 18. Suppose that (Wn)n is a sequence of graphons on a probability space Ω that

converges to a graphon W : Ω2 → [0, 1] in the cut-norm. Suppose that m ∈ MATCH(W ).

Then there exists a sequence mn ∈ MATCH(Wn) such that (mn)n converges to m in the

cut-norm. In particular, the sequence (mn)n converges to m in the weak∗ topology.

In the proof of Theorem 17, we will need the following technical lemma.

Lemma 19. Let (Ω, ν) be a probability space. Then for every pair (F1, F2) ∈ L1(Ω2)×L1(Ω2)

and every ε > 0 there exists a partition of Ω into finitely many pairwise disjoint subsets

Ω1, . . . ,Ωk (for a suitable natural number k), each of measure 1
k , such that

k∑
i,j=1

∫
Ωi×Ωj

|F1 − F ij1 | < ε and

k∑
i,j=1

∫
Ωi×Ωj

|F2 − F ij2 | < ε , (20)
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where

F ij1 =
1

ν(Ωi)ν(Ωj)

∫
Ωi×Ωj

F1 and F ij2 =
1

ν(Ωi)ν(Ωj)

∫
Ωi×Ωj

F2 , i, j = 1, . . . , n .

Proof. Let L be the family of all pairs (F1, F2) ∈ L1(Ω2)× L1(Ω2) such that for every ε > 0

there exist a partition of Ω into finitely many pairwise disjoint subsets B1, . . . , Bm (for a

suitable natural number m), and real numbers Dpq
1 , Dpq

2 , p, q = 1, . . . ,m, such that

m∑
p,q=1

∫
Bp×Bq

|F1 −Dpq
1 | < ε and

m∑
p,q=1

∫
Bp×Bq

|F2 −Dpq
2 | < ε .

It is easy to verify that L is a closed subspace of L1(Ω2)×L1(Ω2) containing all pairs consisting

of characteristic functions of measurable rectangles. Therefore it holds L = L1(Ω2)×L1(Ω2).

Now let us fix (F1, F2) ∈ L1(Ω2) × L1(Ω2) and ε > 0. As (F1, F2) ∈ L, we can find a

partition of Ω into finitely many pairwise disjoint subsets B1, . . . , Bm, and real numbers Dpq
1 ,

Dpq
2 , p, q = 1, . . . ,m, such that

m∑
p,q=1

∫
Bp×Bq

|F1 −Dpq
1 | <

1

4
ε and

m∑
p,q=1

∫
Bp×Bq

|F1 −Dpq
2 | <

1

4
ε . (21)

By the absolute continuity of the Lebesgue integral there is δ > 0 such that
∫
E

|F1| < 1
4ε and∫

E

|F2| < 1
4ε, whenever E ⊆ Ω× Ω is such that ν⊕2(E) < δ. We fix a natural number k such

that m
k < 1

2δ. For every p = 1, . . . ,m, we find a decomposition Bp = B0
p t B1

p t . . . t B
np
p

of Bp into finitely many pairwise disjoint subsets such that ν(Br
p) = 1

k for r = 1, . . . , np, and

ν(B0
p) ≤ 1

k . We set F =
m⋃
p=1

B0
p . Then ν(F ) is smaller that 1

2δ, and so

∫
(F×Ω)∪(Ω×F )

|F1| <
1

4
ε and

∫
(F×Ω)∪(Ω×F )

|F2| <
1

4
ε . (22)

Moreover, ν(F ) is a multiple of 1
k , and so it can be decomposed into finitely many disjoint

subsets B̃1, . . . , B̃l (for a suitable natural number l), each of measure 1
k . Let Ω1, . . .Ωk be

some enumeration of the sets B̃1 . . . , B̃l and Br
p, r = 1 . . . , np, p = 1, . . . ,m. For every

i, j = 1, . . . , k, we define real numbers Cij1 and Cij2 as follows. If Ωi ×Ωj = Br
p ×Bs

q for some

p, q ∈ {1, . . . ,m}, r ∈ {1, . . . , np} and s ∈ {1, . . . , nq} then we set Cij1 = Dpq
1 and Cij2 = Dpq

2 .
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Otherwise, we set Cij1 = Cij2 = 0. Let us fix t ∈ {0, 1}. Then we have

k∑
i,j=1

∫
Ωi×Ωj

|Ft − Cijt |

=
m∑

p,q=1

∑
r=1,...,np
s=1,...,nq

∫
Brp×Bsq

|Ft −Dpq
t |+

∫
(F×Ω)∪(Ω×F )

|Ft|

(21),(22)
<

1

4
ε+

1

4
ε =

1

2
ε .

(23)

Claim 2. For every i, j = 1, . . . , k, we have that∫
Ωi×Ωj

|Ft − F ijt | ≤ 2

∫
Ωi×Ωj

|Ft − Cijt | .

Proof. Let us fix i, j ∈ {1, . . . , k}. It holds∫
Ωi×Ωj

|Ft − F ijt | =
∫

(x,y)∈Ωi×Ωj

Ft(x,y)<F ijt

(F ijt − Ft) +

∫
(x,y)∈Ωi×Ωj

Ft(x,y)>F ijt

(Ft − F ijt ) , (24)

and the two integrals on the right hand side of (24) equals each other (by the definition of F ijt ).

Therefore it is enough to show that one of these integrals is less or equal to
∫

Ωi×Ωj

|Ft − Cijt |.

Assume for example that Cijt ≥ F
ij
t (the complementary case is similar). Then we have∫

(x,y)∈Ωi×Ωj

Ft(x,y)<F ijt

(F ijt − Ft) ≤
∫

(x,y)∈Ωi×Ωj

Ft(x,y)<Cijt

(Cijt − Ft) ≤
∫

Ωi×Ωj

|Ft − Cijt | ,

as we wanted. �

Inequality (23) combined with Claim 2 gives us (20). �

4.3. Proof of Theorem 17. Let ε > 0 be fixed. By basic properties of L1-functions there

is M > 0 (which we fix now) such that if we define

m̃(x, y) = min {m(x, y),M}

then we have

‖m̃−m‖L1(Ω2) <
1

2
ε . (25)

Moreover, it is obvious that such defined function m̃ is still a matching in the graphon W .

We fix ε̃ > 0 such that

3ε̃+ 6
√
ε̃M + 2ε̃

3
2 <

1

2
ε . (26)
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Claim 3. There is r > 0 such that whenever Θ ⊆ Ω2 is of positive measure such that
1

ν⊕2(Θ)

∫
Θ

W < r then

ν⊕2 (supp (W ) ∩Θ) <
1

2M
ε̃ .

Proof. By basic properties of measurable functions, there is s > 0 such that

ν⊕2{(x, y) ∈ Ω2 : 0 < W (x, y) < s} < 1

4M
ε̃ . (27)

We will prove that r = 1
4M ε̃s works. Suppose for a contradiction that there is Θ ⊆ Ω2 of

positive measure with 1
ν⊕2(Θ)

∫
Θ

W < r such that

ν⊕2 (supp (W ) ∩Θ) ≥ 1

2M
ε̃ . (28)

Then we have

r >
1

ν⊕2(Θ)

∫
Θ

W ≥ 1

ν⊕2(Θ)
ν⊕2 ({(x, y) ∈ Θ: W (x, y) ≥ s}) · s

(27)
>

1

ν⊕2(Θ)

(
ν⊕2 (supp (W ) ∩Θ)− 1

4M
ε̃

)
s

(28)

≥ 1

ν⊕2(Θ)
· 1

4M
ε̃s ≥ 1

4M
ε̃s ,

which is the desired contradiction with the definition of r. �

Now we fix r > 0 from Claim 3, and we set

η =
1

2
ε̃ · 1

1 + 2M + 2Mr
. (29)

By Lemma 19 there is a natural number k and a partition of Ω into pairwise disjoint subsets

Ω1, . . . ,Ωk, each of measure 1
k , such that

k∑
i,j=1

∫
Ωi×Ωj

|W −W ij | < η2 and
k∑

i,j=1

∫
Ωi×Ωj

|m̃−mij | < η2 , (30)

where

W ij =
1

ν(Ωi)ν(Ωj)

∫
Ωi×Ωj

W and mij =
1

ν(Ωi)ν(Ωj)

∫
Ωi×Ωj

m̃ , i, j = 1 . . . , n .

The first inequality from (30) easily implies that for all but at most ηk2 pairs (i, j) we have∫
Ωi×Ωj

∣∣W −W ij
∣∣ ≤ 1

k2
η . (31)

Similarly, the second inequality from (30) implies that for all but at most ηk2 pairs (i, j) we

have ∫
Ωi×Ωj

∣∣m−mij
∣∣ ≤ 1

k2
η . (32)
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We now set

δ =
1

k2
η , (33)

and we will show that this choice of δ works. So let U : Ω2 → [0, 1] be a graphon such that

‖U −W‖� < δ. Let A ⊆ [k]× [k] denote the set of all those pairs (i, j) for which either (31)

or (32) fails. We have that |A| ≤ 2ηk2. We define

t(x, y) =


mij

W ij
· U(x, y) if (i, j) /∈ A and W ij ≥ r,

0 otherwise,
(x, y) ∈ Ωi × Ωj , i, j = 1, . . . , k .

Claim 4. We have that ‖t− m̃‖� ≤ ε̃.

Proof. We need to show that for every measurable sets S, T ⊆ Ω it holds

∣∣∣∣∣ ∫S×T (t− m̃)

∣∣∣∣∣ ≤ ε̃.

So let us fix the sets S, T ⊆ Ω. Let ΘA denote the union of all the sets Ωi × Ωj for which

(i, j) ∈ A. Similarly, let ΘB denote the union of all the sets Ωi × Ωj for which (i, j) /∈ A and

W ij < r, and let ΘC denote the union of all the sets Ωi×Ωj for which (i, j) /∈ A and W ij ≥ r.
The bulk of the work is in proving the following three subclaims.

Subclaim 1. We have ∣∣∣∣∣∣∣
∫

(S×T )∩ΘA

(t− m̃)

∣∣∣∣∣∣∣ ≤ 2ηM .

Subclaim 2. We have ∣∣∣∣∣∣∣
∫

(S×T )∩ΘB

(t− m̃)

∣∣∣∣∣∣∣ <
1

2
ε̃ .

Subclaim 3. We have ∣∣∣∣∣∣∣
∫

(S×T )∩ΘC

(t− m̃)

∣∣∣∣∣∣∣ < η

(
1 + 2

M

r

)
.

Indeed, Subclaims 1–3 complete the proof of Claim 4 as then∣∣∣∣∣∣
∫

S×T

(t− m̃)

∣∣∣∣∣∣ < η

(
1 + 2M + 2

M

r

)
+

1

2
ε̃

(29)

≤ ε̃ .

Proof of Subclaim 1. Recall that by the definition of the set A, it holds ν⊕2(ΘA) ≤ 2η, and

so we have ∣∣∣∣∣∣∣
∫

(S×T )∩ΘA

(t− m̃)

∣∣∣∣∣∣∣ =

∫
(S×T )∩ΘA

m̃ ≤
∫

ΘA

m̃ ≤ ν⊕2(ΘA)M ≤ 2ηM .

�
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Proof of Subclaim 2. If ν⊕2(ΘB) = 0 then trivially

∣∣∣∣∣∣∣
∫

(S×T )∩ΘB

(t− m̃)

∣∣∣∣∣∣∣ = 0 .

So suppose that ΘB is of positive measure. Note that then it clearly holds 1
ν⊕2(ΘB)

∫
ΘB

W < r,

and so we have

∣∣∣∣∣∣∣
∫

(S×T )∩ΘB

(t− m̃)

∣∣∣∣∣∣∣ =

∫
(S×T )∩ΘB

m̃ ≤ ν⊕2(supp (m̃) ∩ΘB) ·M

≤ ν⊕2(supp (W ) ∩ΘB) ·M
Claim 3
<

1

2
ε̃ .

�

Proof of Sublclaim 3. It is enough to show that whenever a pair (i, j) /∈ A is such that W ij ≥ r
then

∣∣∣∣∣∣∣
∫

(S×T )∩(Ωi×Ωj)

(t− m̃)

∣∣∣∣∣∣∣ <
1

k2
η

(
1 + 2

M

r

)
.



MATCHING POLYTONS 21

So let us fix such a pair (i, j). Then we have∣∣∣∣∣∣∣
∫

(S×T )∩(Ωi×Ωj)

(t− m̃)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫

(S×T )∩(Ωi×Ωj)

(
mij

W ij
U −mij

)∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∫

(S×T )∩(Ωi×Ωj)

(
mij − m̃

)∣∣∣∣∣∣∣
≤m

ij

W ij

∣∣∣∣∣∣∣
∫

(S×T )∩(Ωi×Ωj)

(
U −W ij

)∣∣∣∣∣∣∣+

∫
(S×T )∩(Ωi×Ωj)

|mij − m̃|

≤M
r

∣∣∣∣∣∣∣
∫

(S×T )∩(Ωi×Ωj)

(
(U −W ) + (W −W ij)

)∣∣∣∣∣∣∣+

∫
(S×T )∩(Ωi×Ωj)

|mij − m̃|

≤M
r

∣∣∣∣∣∣∣
∫

(S×T )∩(Ωi×Ωj)

(U −W )

∣∣∣∣∣∣∣+
M

r

∫
(S×T )∩(Ωi×Ωj)

|W −W ij |+
∫

(S×T )∩(Ωi×Ωj)

|mij − m̃|

(i, j) /∈ A ≤M
r

∣∣∣∣∣∣∣
∫

(S∩Ωi)×(T∩Ωj)

(U −W )

∣∣∣∣∣∣∣+
M

r
· 1

k2
η +

1

k2
η

by (33) <
M

r
· 1

k2
η +

M

r
· 1

k2
η +

1

k2
η

=
1

k2
η

(
1 + 2

M

r

)
.

�

�

Let B1 denote the set of all those x ∈ Ω for which
∫

y∈Ω

t(x, y) >
∫

y∈Ω

m̃(x, y)+
√
ε̃. Similarly,

let B2 denote the set of all those x ∈ Ω for which
∫

y∈Ω

t(y, x) >
∫

y∈Ω

m̃(y, x) +
√
ε̃. Then we

have ν(B1) <
√
ε̃, as otherwise

ε̃
Claim 4
≥ ‖t− m̃‖� ≥

∫
B1×Ω

(t− m̃) > ν(B1)
√
ε̃ ≥ ε̃ ,

which is not possible. In the same way, we conclude that ν(B2) <
√
ε̃. Now we are ready to

define mU by setting

mU (x, y) =

0 if x ∈ B1 ∪B2 or y ∈ B1 ∪B2,

1
1+2
√
ε̃
t(x, y) otherwise,

(x, y) ∈ Ω2 . (34)
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Claim 5. We have that ‖mU − t‖L1(Ω2) < 6
√
ε̃M + 2ε̃+ 2ε̃

3
2 .

Proof. We set B = ((B1 ∪B2)× Ω) ∪ (Ω× (B1 ∪B2)). Then we have

‖mU − t‖L1(Ω2) =

∫
B

|mU − t|+
∫

Ω2\B

|mU − t| =
∫
B

t+

(
1− 1

1 + 2
√
ε̃

) ∫
Ω2\B

t

=

∫
(B1∪B2)×Ω

t+

∫
Ω×(B1∪B2)

t+

(
1− 1

1 + 2
√
ε̃

) ∫
(Ω\(B1∪B2))2

t

Claim 4 ≤
∫

(B1∪B2)×Ω

m̃ + ε̃+

∫
Ω×(B1∪B2)

m̃ + ε̃+

(
1− 1

1 + 2
√
ε̃

) ∫
(Ω\(B1∪B2))2

m̃ + ε̃


≤ν⊕2((B1 ∪B2)× Ω) ·M + ν⊕2(Ω× (B1 ∪B2)) ·M + 2ε̃+

2
√
ε̃

1 + 2
√
ε̃

(M + ε̃)

<4
√
ε̃M + 2ε̃+ 2

√
ε̃(M + ε̃) = 6

√
ε̃M + 2ε̃+ 2ε̃

3
2 .

�

Now we have

‖mU −m‖� ≤ ‖mU − t‖� + ‖t− m̃‖� + ‖m̃−m‖�
≤ ‖mU − t‖L1(Ω2) + ‖t− m̃‖� + ‖m̃−m‖L1(Ω2)

by (25), Claims 4 and 5 <
1

2
ε+ 3ε̃+ 6

√
ε̃M + 2ε̃

3
2

(26) < ε .

So it remains to show that mU is a matching in the graphon U .

The fact that mU is a nonnegative function from L1(Ω2) is obvious, and we also have

supp (mU ) ⊆ supp (t) ⊆ supp (U). So we only need to show that for almost every x ∈ Ω it

holds ∫
y∈Ω

mU (x, y) +

∫
y∈Ω

mU (y, x) ≤ 1 . (35)

This is trivially satisfied for every x ∈ B1 ∪B2 as then the left-hand side of (35) equals 0. So

let us fix x ∈ Ω \ (B1 ∪B2). We may assume that∫
y∈Ω

m̃(x, y) +

∫
y∈Ω

m̃(y, x) ≤ 1 , (36)
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as m̃ is a matching (in the graphon W ). Then it holds

∫
y∈Ω

mU (x, y) +

∫
y∈Ω

mU (y, x)
(34)

≤ 1

1 + 2
√
ε̃

 ∫
y∈Ω

t(x, y) +

∫
y∈Ω

t(y, x)


x /∈ B1 ∪ B2 ≤ 1

1 + 2
√
ε̃

 ∫
y∈Ω

m̃(x, y) +

∫
y∈Ω

m̃(y, x) + 2
√
ε̃

 (36)

≤ 1 ,

which completes the proof of Theorem 17.

5. Concluding remarks

5.1. Bipartiteness from the matching polyton. Theorems 5 and 7 characterize bipar-

titeness of a graphon in terms of its fractional vertex cover polyton. For finite graphs there is

another characterization in terms of the matching polytope: a graph is bipartite if and only

if MATCH(G) is integral. Recall that there seems to be no counterpart to the concept of

integrality of a graphon matching (c.f. Remark 3). So, we leave it as an important question

to provide a characterization of bipartiteness in terms of MATCH(W ).

5.2. Perfect matching polyton. Many variants of the above polytopes are considered in

combinatorial optimization. As an example, let us mention the perfect matching polytope

PerfMATCH(G) and the fractional perfect matching polytope FPerfMATCH(G) of a graph

G. The corresponding graphon polyton is4

PerfMATCH(W ) = {m ∈ MATCH(W ) : ‖m‖ = 1} .

It might be interesting to study this, and similar polytons. That said, let us emphasize that

many basic results, like Edmonds’ perfect matching polytope theorem, seem not to have a

graphon counterpart as they concern integrality-related properties of the polytope.

5.3. Generalizing the results to F -tilings. Results in Section 3 are specific to matchings

— even in the finite setting. Even though we have not worked out details, we believe that

our second main result, Theorem 17, extends to general F -tilings as introduced in [4] (and so

does its proof).
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Appendix A. Characterization of partite graphons

In Lemma 10 we proved by transfinite induction that a graphon is bipartite if and only if

it has zero density of each odd cycle. In the finite world there is a more general but equally

trivial statement: a graph is r-partite if and only if it has zero density of each graph of

chromatic number r + 1 (or higher). In Proposition 21 we give a graphon version of this

statement. Its proof stems from discussions with András Máthé.

We shall first need the following lemma, which can be found as [3, Lemma 2.2] (though it

appears to be folklore).

Lemma 20. Let W : Ω2 → [0, 1] be a graphon. Suppose that (An)∞n=1 is a sequence of sets

in Ω with the property that ∫
(x,y)∈An×An

W (x, y)
n→∞−→ 0 .

Suppose that the indicator functions of the sets An converge weak∗ to a function f : Ω→ [0, 1].

Then supp f is an independent set in W .

Proposition 21. Suppose that k ∈ N and W : Ω2 → [0, 1] is a graphon which has zero density

of each finite graph of chromatic number at least k + 1. Then W is k-partite.

Proof. Let (Gn)n be samples of the inhomogeneous random graphs G(n,W ). It is well-

known that the graphs Gn converge to W in the cut-distance almost surely, see e.g., [6,

Lemma 10.16]. We can therefore map the vertices {1, 2, . . . , n} ofGn to sets Ω
(1)
n ,Ω

(2)
n , . . . ,Ω

(n)
n

which partition Ω into sets of measure 1
n each, in a way that this partition witnesses εn-

closeness ofGn toW in the cut-distance (where εn → 0+). In particular, wheneverO ⊆ V (Gn)

is an independent set, we have∫
x∈

⋃
v∈O Ω

(v)
n

∫
y∈

⋃
v∈O Ω

(v)
n

W (x, y) < εn .
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Also, observe that almost surely, each graph Gn has zero density of each finite graph of

chromatic number at least k + 1. In particular Gn is k-colorable. Let us fix a partition

Ω = V
(1)
n t V (2)

n t . . . t V (k)
n according to one fixed k-coloring of Gn.

Consider now a weak∗ accumulation point (f1, f2, . . . , fk) of the sequence of k-tuples of

functions (
1
V

(1)
n

, 1
V

(2)
n

, . . . , 1
V

(k)
n

)
n
.

(Such an accumulation point exists by the sequential Banach–Alaoglu theorem.) We have

f1 + f2 + . . . + fk = 1 almost everywhere on Ω. Consequently we can find measurable sets

Ai ⊆ supp fi so that Ω = A1 tA2 t . . . tAk. Lemma 20 tells us that A1 tA2 t . . . tAk is a

k-coloring of W . �

Let us note that in [1] a result in a similar direction was proven.

Theorem 22 ([1]). Suppose that W is a graphon, and H is a finite graph with the property

that t(H,W ) = 0. Then W is countably partite.

Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, Praha. The Institute
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