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WEIGHTED ITERATED HARDY-TYPE INEQUALITIES
AMIRAN GOGATISHVILI AND RZA MUSTAFAYEV

ABsTRACT. In this paper a reduction and equivalence theorems for the boundedness of the composition of a
quasilinear operator T with the Hardy and Copson operators in weighted Lebesgue spaces are proved. New
equivalence theorems are obtained for the operator 7' to be bounded in weighted Lebesgue spaces restricted
to the cones of monotone functions, which allow to change the cone of non-decreasing functions to the
cone of non-increasing functions and vice versa not changing the operator 7. New characterizations of the
weighted Hardy-type inequalities on the cones of monotone functions are given. The validity of so-called
weighted iterated Hardy-type inequalities are characterized.

1. INTRODUCTION

The well-known two-weight Hardy-type inequalities

(1.1) (fom(fox f(r) dr)qw(x) dx)l/q < c( fom fP(x)v(x) dx)l/p

and

(1.2) ( fo Oo( f " ) dr)qw(x) dx)l/q < c( fo " v dx)l/p

for all non-negative measurable functions f on (0, o), where 0 < p, g < oo with ¢ being a constant
independent of f, have a broad variety of applications and represents now a basic tool in many parts of
mathematical analysis, namely in the study of weighted function inequalities. For the results, history and
applications of this problem, see [33, 34, 36].

Throughout the paper we assume that / := (a, b) C (0, o). By 9t(/) we denote the set of all measurable
functions on /. The symbol 9t*(7) stands for the collection of all f € Mi(/) which are non-negative on
I, while M*(I; |) and Mi*(7; T) are used to denote the subset of those functions which are non-increasing
and non-decreasing on I, respectively. When I = (0, o), we write simply 9! and MM instead of M*(1; |)
and IM*(I; 7), accordingly. The family of all weight functions (also called just weights) on I, that is,
locally integrable non-negative functions on (0, o), is given by W([).

For p € (0, 0] and w € M* (1), we define the functional || - ||,,.,.; on 9(]) by

i (rorswa)” i peos
pw, esssup; | f(x)|w(x) if p = .

If, in addition, w € ‘W([), then the weighted Lebesgue space L”(w, I) is given by
LPw, D) ={f € MUA) : |Ifllpw.s < o0},
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2 A. GOGATISHVILI AND R.CH.MUSTAFAYEV

and it is equipped with the quasi-norm || - ||, ;.
When w = 1 on I, we write simply LP(I) and || - ||,; instead of L?(w, I) and || - ||,,,.;, respectively.
Suppose f be a measurable a.e. finite function on R". Then its non-increasing rearrangement f* is
given by
f@O=inf{la>0:{xeR": |f(x)|> )] <t}, te(0,00),

and let /** denotes the Hardy-Littlewood maximal function of f, i.e.

7 = %f f ()dr, t>0.
0

Quite many familiar function spaces can be defined using the non-increasing rearrangement of a function.
One of the most important classes of such spaces are the so-called classical Lorentz spaces.

Let p € (0,0) and w € “W. Then the classical Lorentz spaces A”(w) and I'’(w) consist of all functions
f € M for which || f][ar¢w < o0 and || fllrrow < o0, respectively. Here it is

Ilf ”Al’(w) =f *”p,w,(0,00) and Ilf ||FP(W) =f **Hp,w,(O,oo)-

For more information about the Lorentz A and I" see e.g. [| 1] and the references therein.

There has been considerable progress in the circle of problems concerning characterization of bound-
edness of classical operators acting in weighted Lorentz spaces since the beginnig of the 1990s. The
first results on the problem A?(v) — I”(v), 1 < p < oo, which is equivalent to inequality (1.1) re-
stricted to the cones of non-increasing functions, were obtained by Boyd [5] and in an explicit form by
Arino and Muckenhoupt [3]. The problem with w # vand p # g, 1 < p, g < oo was first successfully
solved by Sawyer [40]. Many articles on this topic followed, providing the results for a wider range of
parameters. In particular, much attention was paid to inequalities (1.1) and (1.2) restricted to the cones
of monotone functions; see for instance [3,4, 10, 12, 15,22-32,35,37,40,43,45-47], survey [11], the
monographs [33, 34], for the latest development of this subject see [27], and references given there. The
restricted operator inequalities may often be handled by the so-called “reduction theorems”. These, in
general, reduce a restricted inequality into certain non-restricted inequalities. For example, the restriction
to non-increasing or quasi-concave functions may be handled in this way, see e.g. [24-27,42]. At the
initial stage the main tool was the Sawyer duality principle [40], which allowed one to reduce an L” — L?
inequality for monotone functions with 1 < p, ¢ < oo to a more manageable inequality for arbitrary
non-negative functions. This principle was extended by Stepanov in [46] to the case 0 < p < 1 < g < 0.
In the same work Stepanov applied a different approach to this problem, so-called reduction theorems,
which enabled to extend the range of parameters to 1 < p < 00,0 < g < oo. Thecase p < ¢, 0 < p <1
was alternatively characterized in [8, 12,35,46,47]. Later on some direct reduction theorems were found
in [10,23,27] involving supremum operators which work for the case 0 < g < p < 1.

In this paper we consider operators 7" : " — Mi* satisfying the following conditions:

(1) T(Af) = AT f forall A > 0 and f € M*;

(1) T f(x) < cTg(x) for almost all x € R, if f(x) < g(x) for almost all x € R,, with constant ¢ > 0
independent of f and g;

(1) T(f + A1) < (T f + AT1) for all f € M* and A > 0, with a constant ¢ > 0 independent of f and A.

Given a operator 7 : I+ — M, for 0 < p < oo and u € M, denote by

Tpu(g) = (T(g"w)'"”,  ge M.
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Hence T3 = T. When p = 1, we write T, instead of T ,.
Denote by

A
Hg(1) := f g(s)ds, geM,
0
and
H'g(t) := f g(s)ds, geMm,
t

the Hardy operator and Copson operator, respectively.

In the paper we prove a reduction and equivalence theorems for the boundedness of the composition
operators T o H or T o H* of a quasiliear operator T : " — N with the operators H and H* in weighted
Lebesgue spaces. To be more precise, we consider inequalities

0
and
<c ||h||s,v,(0,oo), he 9]E+.

(1.4) "T( f h)
X B.w,(0,00)

Using these equivalence theorems, in particular, we completely characterize the validity of the iterated

(13) <c ”h”s,v,((),oo), h € SIR+»

B:w,(0,00)

Hardy-type inequalities

(15) ‘m%fh) < clllsncoeon
0 q,w,(0,00)

and

(1.6) ‘m@j‘@ < clllsnoeo
X q.w,(0,00)

where 0 < p < 00,0 < g < 00,1 <5 <00, u, wand v are weight functions on (0, co).
It is worth to mentoin that the characterizations of ’dual” inequalities

(17) ‘ H;u( f h) <c ”h”s,v,(0,00),
X q.w,(0,00)

and

(1.8) ‘@Afh) < el 000
0 q,w,(0,00)

can be easily obtained from the solutions of inequalities (1.5) - (1.6), respectively, by change of variables.
In the case when p = 1, using the Fubini Theorem, inequalities (1.5) and (1.6) can be reduced to the
weighted L* — L? boundedness problem of the Volterra operator

(Kh)(x) := f k(x,y)h(y)dy, x>0,
0
with the kernel
k(x,y) := f u®)dt, 0<y<x<oo,
y

< h(t)dt
= | —2——,
(2)x) ﬁ U + UG

respectively, and consequently, can be easily solved. Indeed:

and the Stieltjes operator
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By the Fubini Theorem, we see that

fx (f h(7) dT) u(t)dt = fx k(x, T)h(7) d, h € M (0, o).
o \Jo 0

On the other hand, it is easy to see that

f (f h(s) ds) u(t)dt = U(x) - S(hU)(x), h € M*(0, o).
0o \Jr

Note that the weighted L* — L7 boundedness of Volterra operators K, that is, inequality
(19) ”Kh”q,w,(O,OO) < C”h”s,v,(O,OO)a h € ‘Jﬁ+(0, OO)’

is completely characterized for 1 < 5 < 00, 0 < g < oo (see [27] and references given there).
The usual Stieltjes transform is obtained on putting U(x) = x. In the case U(x) = x*, 1 > 0, the
boundedness of the operator S between weighted L° and L? spaces, namely inequality

(1.10) IS Allgw,0.00) < CllAllsy 0,005 1 € MO, 00),

was investigated in [2] (when 1 < s < g < 00),in [4]] (when 1 < g < s < 00), in [13] (see also [14])
(when 1 < 5 < 00, 0 < g < o), where the result is presented without proof. This problem also was
considered in [16] and [20, 21], where completely different approach was used, based on the so called
“gluing lemma” (see also [17]). It is proved in [19] (when 1 < 5 < 00, 0 < g < 00) that inequality (1.10)

holds if and only if
A f 1)

(1.11) ‘
holds, and the solution of (1.10) is obtained using characterization of inequality (1.11).

< cllhUllsv .00y 7 € M0, 00),
4w, (0,09)

Note that inequality (1.6) has been completely characterized in [18] and [19] in the case 0 < p < oo,
0 < g < 00,1 < s < oo by using difficult discretization and anti-discretization methods. Inequalities (1.5)
- (1.6) and (1.7) - (1.8) were considered also in [38] and [39], but characterization obtained there is not
complete and seems to us unsatisfactory from a practical point of view.

We pronounce that the characterizations of inequalities (1.5)-(1.6) and (1.7)-(1.8) are important be-
cause many inequalities for classical operators can be reduced to them (for illustrations of this important
fact, see, for instance, [19]). These inequalities play an important role in the theory of Morrey-type
spaces and other topics (see [6], [7] and [9]). It is worth to mention that using characterizations of
weighted Hardy inequalities we can show that the characterization of the boundedness of bilinear Hardy
inequalities, namely of the inequality

(112) ”Tlf : TZg”w,q,(O,oo) < C”f”pl,v1,(O,W)llg”pz,vz,(o,oo)’

for all f € LP'(v,(0,00)) and g € LP*(v,, (0, 00)) with constant ¢ independent of f and g, where 7; =
HorH*,i =1, 2, are equivalent to inequalities (1.5)-(1.6) and (1.7)-(1.8) (see, for instance, [1]).

It is well-known that when T is a integral operator then by substitution of variables it is possible to
change the cone of non-decreasing functions to the cone of non-increasing functions and vice versa, when
considering inequalities

(1.13) T fllg0.00) < €llfllsv 0,005 f e M0, ),

and

(1.14) T fllgw,0,000 < €l fl5,,(0,00)5 fe€ EJJtT(O, 00),
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but this procedure changes T also as usually to the ”dual” operator. Theorems proved in Section 4 allows
to change the cones to each other not changing the operator 7. This new observation enables to state that
if we know solution of one inequality on any cone of monotone functions, then we could characterize the
inequality on the other cone of monotone functions.

The paper is organized as follows. Section 2 contains some preliminaries along with the standard
ingredients used in the proofs. In Section 3 we prove the reduction and equivalence theorems for the
boundedness of the composition operators 7 o H or T o H* in weighted Lebesgue spaces. In Section 4 the
equivalence theorems which allow to change the cones of monotone functions to each other not changing
the operator 7 are proved. In Section 5 we obtain a new characterizations of the weighted Hardy-type
inequalities on the cones of monotone functions. In Section 6 we give complete characterization of
inequalities (1.5) - (1.6) and (1.7) - (1.8).

2. NOTATIONS AND PRELIMINARIES

Throughout the paper, we always denote by c or C a positive constant, which is independent of main
parameters but it may vary from line to line. However a constant with subscript or superscript such as ¢,
does not change in different occurrences. By a < b, (b > a) we mean that a < Ab, where 4 > 0 depends
on inessential parameters. If a < b and b < a, we write a = b and say that a and b are equivalent. We
will denote by 1 the function 1(x) = 1, x € (0,0). Unless a special remark is made, the differential
element dx is omitted when the integrals under consideration are the Lebesgue integrals. Everywhere in
the paper, u, v and w are weights.

Convention 2.1. We adopt the following conventions:

(1) Throughout the paper we put 0 - co = 0, co/co = 0 and 0/0 = 0.

@11) If p € [1, +o0], we define p’ by 1/p+ 1/p" = 1.

i) If0<g<p<oo,wedefinerby l/r=1/g—1/p.

@iv) If I = (a,b) C R and g is monotone function on /, then by g(a) and g(b) we mean the limits
lim,_,,;+ g(x) and lim,_,,_ g(x), respectively.

To state the next statements we need the following notations:
t 00

U@ = f[ju, U.0):= [ u,

V@ = [iv, V= [T,

W) = [ w, W)= [ w.

Theorem 2.2 ([27], Theorem 3.1). Let0 < B < oo and 1 < s < oo, and let T : M* — M* be a positive
operator. Then the inequality

(2.1) 7 f ”,B,w,(O,oo) <dlf ||s7v,(0,oo), fE€ iml((), 00)

implies the inequality
< Allloysnsoeys 1€ MO, 00).

MR
X 3,w,(0,00)

If V(o) = oo and if T is an operator satisfying conditions (1)-(ii), then the condition (2.2) is sufficient for
inequality (2.1) to hold on the cone M. Further, if 0 < V(o) < oo, then a sufficient condition for (2.1) to
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hold on M is that both (2.2) and

(2.3) N7 lg,,0,00) < ClIL]5,1,(0,00)

hold in the case when T satisfies the conditions (1)-(ii1).

Theorem 2.3 ([27], Theorem 3.2). Let 0 < f§ < o and 1 < s < oo, and let T : M* — M satisfies
conditions (1) and (ii). Then a sufficient condition for inequality (2.1) to hold is that

(2.4) HT(V%(X) fo ) hV)

Moreover, (2.1) is necessary for (2.4) to hold if conditions (1)-(iii) are all satisfied.

< cllAlls y1-5,0.005 h € M*(0, c0).
B,w,(0,00)

Theorem 2.4 ([27], Theorem 3.3). Let 0 < S < oo and 1 < s < oo, and let T : MY — M* be a positive

operator. Then the inequality

(2.5) IT fllgavoo0) < cllfllsnoers S € MO, 00)
< cllhllsys-s o0, B € MT(0, 00).

implies the inequality
( f ) o0
0 B,w,(0,00)

If V.(0) = o and if T is an operator satisfying the conditions (1)-(1), then the condition (2.6) is sufficient
for inequality (2.5) to hold. If 0 < V.(0) < oo and T is an operator satisfying the conditions (1)-(iii), then
(2.5) follows from (2.6) and (2.3).

(2.6)

Theorem 2.5 ([27], Theorem 3.4). Let 0 < f < oo and 1 < s < oo, and let T : M* — " satisfies
conditions (1) and (i1). Then a sufficient condition for inequality (2.5) to hold is that

o bl )

Moreover, (2.5) is necessary for (2.7) to hold if conditions (1)-(iii) are all satisfied.

< C“h”s,vl”,(o,oo)’ ]’l € er(O, OO)
B.w,(0,00)

3. REDUCTION AND EQUIVALENCE THEOREMS
In this section we prove some reduction and equivalence theorems for inequalities (1.3) and (1.4).

3.1. The case 1 < s < oo. The following theorem allows to reduce the iterated inequality (1.3) to the
inequality on the cone of non-increasing functions.

Theorem 3.1. Let 0 < S <00, 1 < s <00, and let T : M™ — IM* satisfies conditions (1)-(iii). Assume
that u, w € W(0, o0) and v € W(0, o) be such that

(3.1) f VI () dt <o forall  x>0.
0

Then inequality (1.3) holds iff

(3.2) T2 fllg0.00) < Cllflls 0000 S € MY,

holds, where

S
s’ +

’
Py
v (x)

d(x) = @[v; s|(x) := (f VI () dt)_

0

and 1
s/ +1

D(x) = O[v; s](x) = fx o(t)dt = (fx vl""/(t) dt)
0 0
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Proof. Note that ®5¢'~* ~ v. Inequality (1.3) is equivalent to the inequality
1 X
ol ), 1)
“@wﬁ
Obviously, (3.3) is equivalent to

Tq,z(q)%(x) fo ) hd))

By Theorem 2.3, inequality (3.4) is equivalent to

T2 fllgar0.00) < Cllf 0,005 f € ML

This completes the proof. O

(3.3)

S C”h”s,q)’s(ﬁl’s,((),oo)’ h (S g)’t*—.
Bw,(0,00)

(3.4)

S C”hlls,tf)]_",(o,w)’ h S 9:R+.
B,w,(0,00)

We immediately get the following equivalence statements.

Corollary 3.2. Let0 << o0, 1 <s<00,0< <, andletT : M — M* satisfies conditions (1)-(iii).
Assume that u, w € W(0, ) and v € W(0, 00) be such that (3.1) holds. Then inequality (1.3) holds iff

both
o0 1/6
(35) ‘ Tqﬂ( {f hé} ) < Cl|h||S’q)s/6¢1—s/67(0700), ]’l S EIR-'—,
x 3,w,(0,00)
and
(3.6) 1T w2 (D)llg 0,000 < ClILl5.6,(0,00)
hold.

Proof. By Theorem 3.1, inequality (1.3) is equivalent to

(3.7) 1702 fllpan0.000 < ellfllsp0, f € M.
Since (3.7) is equivalent to

(3.8) ||Tf I8 /6.,(0,00) < Cé”f Ils/5.6,0,000» f € M,
with

T(f) = T/

it remains to apply Theorem 2.2. O

Corollary 3.3. Let0 << o0, 1 <s<00,0<d <, andletT : M — IM* satisfies conditions (1)-(iii).
Assume that u, w € ‘W(0, o) and v € W(0, ) be such that (3.1) holds. Then inequality (1.3) holds iff

x 1/6
Tq)z<1-1/5)({ f h5CI)} )
0

Proof. By Theorem 3.1, inequality (1.3) is equivalent to

< cllhlls g1-75, 0,000 1 € M

(3.9 ’
B.w,(0,00)

holds.

(3.10) T2 fllp 0,000 < Cllflsp0,0005 S € M.
We know that (3.10) is equivalent to

(3.11) IT Fllgssim0.000 < I flsss.0.0000 f € ML,
with

o
’

T(f) = {To (£
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By Theorem 2.3, we see that (3.11) is equivalent to

| X
Aot (0]
D(x) Jo 8/6,w.(0,00)

To complete the proof it suffices to note that (3.12) is equivalent to (3.9). O

(3.12) < ENlAllgssg1-555 0,00y B € MT(0, 00).

The following ”dual” version of the reduction and equivalence statements also hold true and may be
proved analogously.

Theorem 3.4. Let 0 < S < 00, 1 < 5 < oo, and let T : M™ — I satisfies conditions (1)-(iii). Assume
that u, w € W(0, o0) and v € W(0, o) be such that

(3.13) f V' (dt <o forall x> 0.
Then inequality (1.4) holds iff
(3.14) 1T fllpa0.00) < llf llsaroomy S € M

holds, where

Y(x) = ylv; s](x) :=( f vl‘“"(t)dt)_”lvl-f(x)

X
and

Y(x) = Y[v; s](x) := foo w(t)dt = (foo W (1) dt)m

Corollary 3.5. Let0 <8< 00, 1 < s <00,0< 6 <5, and let T : IM* — INT satisfies conditions (1)-(iii).
Assume that u, w € W(0, c0) and v € ‘W(0, 00) be such that (3.13) holds. Then inequality (1.4) holds iff

both
x N\ 1/6
(3.15) quz( {f h‘5} ) < cllhllspsrogi-sso 0,00)s 1 € M,
0 3,w,(0,00)
and
(3.16) 1792 118,000,000 < ClIL|5,0,0,00)»
hold.

Corollary 3.6. Let0 << o0, 1 <s<o00,0<d <, andletT : M — IM* satisfies conditions (1)-(iii).
Assume that u, w € ‘W(0, o) and v € W (0, o0) be such that (3.13) holds. Then inequality (1.4) holds iff

00 1/6
T\p2(l—l/6)({ f h(s\P} )

The following theorem allows to reduce the iterated inequality (1.3) to the inequality on the cone of

(3.17) < cllAlly g1 000y b € T

B.w.(0,00)

holds.

non-decreasing functions.

Theorem 3.7. Let 0 < S <00, 1 < s < 00, and let T : M" — IM* satisfies conditions (1)-(iii). Assume
that u, w € W(0, o) and v € W(0, o) be such that (3.1) holds. Then inequality (1.3) holds iff both

| Tortuestwotatvesiatssisosso f ||ﬂ,w,<o,oo) < cllflsropssoon-o:ss 000 f € D,

where 0 < 6 < s,

Y[ OLv; s1°¢Lv; s1'7%; 5/6](x)
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~ {ﬁm(ﬁlvl_S,)_
Y[O[v; s1°p[v; s1'77%; 5/6](x) ~ {foo ( ftvl‘sl)_
x “Jo

and (3.6) hold.

s +(s/8) 5/6) s +(s/6)

G _
1+s" , 1+(s/0)" , 1+s" ,
vIT () dt} (f pI=s ) vI= (%),
0

s +(s/8)

1
T+ , T+(s/0)
V=) dt} ,

Proof. By Corollary 3.2, (1.3) holds iff both (3.5) and (3.6) hold. It is easy to see that (3.5) is equivalent
to

o319 [lzo{ [T

Since

S C6||h||s/5’¢x/a‘¢l—s/b"(0’oo), ]’l € g)’t+,

5/0,w,(0,00)

Y[@[v; s1°¢Lv; s1'*7%; 5/6](x)

- Gy
= (f oLy s glvis1) T 0w s (01v: s10)

_(s/8)
(5/0) +1

< (@1 511 () = @l 51101 (00))

{
)

D[v; 517 (x)p[v; s1(x)

1=(s/6) (s/9) 5" +(s/8)

o’ 00 : _ /o) X _ S
s I+v’ ) 1+s" 1+(s/0) ) 1+s” )
(f ) (f Vl s) } (f vl s) Vl K ()C)
0 0

s sl8) G _ 4
1+s/ 1—s' 1+(s/56) 1—s 1+s/ 1 s
v () dt v (x),
0

P[D[v; s17°¢[v; 515 5/6](x)

B (fx“’ Of; 517 glv; s])(”‘sly+1

1
x ((D[V; s]l—(s/6)’(x) — D[v; S]]_(s/é)/(oo))@/a) 1

2

2

and

1-(s/8)" 1-(s/9)’

1
X 00 L .7 A0 S
v 1+s/ ) 1+s” 1+(s/6)
z{(‘f vls) _(f vls) }
0 0
0 / _ s+ (s/0)
z{f (f vls/)
X 0

1
1+s” ’ 1+(s/0)
el () dt} ,

by Theorem 3.4, we complete the proof. O

Corollary 3.8. Let 0 < B < o0, 1 < s < o0, and let T : M* — M satisfies conditions (1)-(iii). Assume
that u, w € W(0, o) and v € W (0, ) be such that (3.1) holds. Then inequality (1.3) holds iff both
||TCDZ[v;s]~‘{’4/“[@[v;s]zqﬁ[v;sj’l;2]f||ﬁ’w’(0’oo) < cllfllspropszons121.0.000 f € Mmr,

where

Y[@[v; sPPplv; s17'52](x)

AL

2+A 2 2+’

e S(t)dt} 3(f0xv1_s')_1+s'v1—s’(x)’
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00 ! —
P[D[v; s1*¢[v; s]‘1;2](x)%{f (f vl”)

X 0

Proof. The statement follows by Theorem 3.7 with 6 = s/2. O

2

+5’ 1
1+s" I—s 3
W (1) dt} ,

and (3.6) hold.

The following ”dual” statement also holds true and may be proved analogously.

Theorem 3.9. Let 0 < S <00, 1 < s < o0, and let T : M* — IM* satisfies conditions (1)-(iii). Assume
that u, w € W(0, c0) and v € W(0, o) be such that (3.13) holds. Then inequality (1.4) holds iff both

||T‘W[v;s]-(Dz/‘s[‘}’[v;s]‘/‘sw[v;s]1"'/‘5;s/6]f 8,1,(0,00) < c||f||s,¢[‘l’[v;s]‘/‘5w[v;s]1‘3/‘5;3'/(5],(0,00)’ f€ El]fl,

where 0 < 6 < s,

. 0 . o11-8/0.
o[ W[v; s1°wlv; s1'77%; 5/6](x)
_ s +(s/8) (s/6) _ s+ (s/8)

X 0 , T+s’ , T T+(s/0) 00 , T+s’ ,
ey {f (f vl—s ) vl—s (t) dt} (f Vl—s ) Vl—S (X),
0 t X

_ s +s/8)

cD[\If[v;s]“‘%[v;s]l-f/(*;s/a](x)z{ f ( f vl—s/) '“’Vl—s'(,)dt}”w,
0 t
and (3.6) hold.

Corollary 3.10. Let 0 < < 0o, 1 < s <00, and let T : M* — IN* satisfies conditions (1)-(iii). Assume
that u, w € W(0, c0) and v € W(0, o) be such that (3.13) holds. Then inequality (1.4) holds iff both

||T‘P2[v;s]-(1)4/3'[‘I’[V;s]21//[v;s]‘1;Z]f”ﬁw’(o’m) < Cl|f||s,¢[‘I’[v;s]2¢[v;s]‘l;2],(0,00)’ f € SDH,

where

o[ PLv; s1Pylv; s17'5 2] (x)

X 00 _2+s _2 00 245
N I—s' 1+s" I—s 3 -y 1+s" 1—s'
X v v (n)dt v v (x),
0 t X

_2+s" 1

O[¥[v; sPu[v: s]_1;2](x)z{ f ( f ) vl—S’) l”'vl—S’(t)dt}S,
0 t

3.2. The case s = 1. In this case we have the following results.

and (3.6) hold.

Theorem 3.11. Let 0 < B < oo, and let T : M* — IN* satisfies conditions (1)-(iil). Assume that
u, w € W(0, o0) and v € W(0, 00) be such that V(x) < oo for all x > 0. Then inequality

(3.19) ‘T(f h) < cllhlly-1 00 b €M,
0 B,w,(0,00)

holds iff

(3.20) ITv2 fllg 0000 < Cllfllv0.00 f € M

Proof. Inequality (3.19) is equivalent to the inequality

TVZ(VZL(X) fo th)

By Theorem 2.3, inequality (3.21) is equivalent to (3.20). O

(3.21)

< cllhlly .0y, b € MT.
B,w,(0,00)
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Corollary 3.12. Let 0 < < 00,0 < < 1, and let T : M* — M satisfies conditions (1)-(iii). Assume
that u, w € W(0, c0) and v € W(0, o0) be such that V(x) < oo for all x > 0. Then inequality (3.19) holds

iff both
o 1/6
(3.22) Tvz( {f h‘s} ) < cllhlly yiey-115 0,00y, 1 € mr,
X B,w,(0,00)
and
(3.23) 172 (D)l|g 0,000 < ClA10,0,005
hold.

Proof. By Theorem 3.11, inequality (3.19) is equivalent to (3.20). Since (3.20) is equivalent to
1/641° s )
(3.24) [, o S WMo, f € D,

it remains to apply Theorem 2.2. O

Corollary 3.13. Let0 < B < 00,0 <6 < 1, and let T : M* — IM* satisfies conditions (1)-(iii). Assume
that u, w € W(0, c0) and v € W(0, o) be such that V(x) < oo for all x > 0. Then inequality (3.19) holds

if
X 1/6
TV2<1—1/J>({f h6V} )
0

(325) < C”h”],vl—llé’((),oo), he m*

B.w.,(0,00)

holds.

Proof. By Theorem 3.11, inequality (3.19) is equivalent to (3.24). By Theorem 2.3, we see that (3.24) is
equivalent to

620 |rell [

To complete the proof it suffices to note that (3.26) is equivalent to (3.25). O

< lhlly 51100 0,00y 1 € MF(0, 00).
8/6.w,(0,00)

The following theorem allows to reduce the iterated inequality (3.19) to the inequality on the cone of
non-decreasing functions.

Theorem 3.14. Let 0 < B < oo, and let T : M* — I satisfies conditions (1)-(iil). Assume that
u, w € W0, o) and v € W(0, ) be such that V(x) < oo for all x > 0. Then inequality (3.19) holds iff
both

(327) | Tvesopvis-vo o fllg 00 < a1 o000, f € 0,

where 0 < 6 < 1,

sy

oV e x ([ v aer) T v o,

Prvop=t/9. 1/51(x) = (foo V—(l/é)’v)““’&)"

and (3.23) hold.
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Proof. By Corollary 3.12, inequality (3.19) holds iff both (3.22) and (3.23) hold. It is easy to see that
B
< Al sy1sgi-10 (0.00p 7t € M.

(3.22) is equivalent to
o \1/6
Tv2( {f h} )
x 8/6.w.(0,00)

By Theorem 3.4, inequality (3.28) is equivalent to

o
H[TVz\pZ/E[VI/évl—l/d;l/é] (fl/(s)] ‘

which is evidently equivalent to (3.27).

(3.28) H

5
< N hsurvisv-16:1/61,0.005 f € m,
B/6,w,(0,00)

It remains to note that
/9

w[vl/ﬁvl—l/é; 1/6](x) ~ (f V—(l/é)'v) T+(175) V—(l/&)/(x)v(x)’

o 1
T[Vl/évl_(l/é); 1/6]()6') ~ (f V_(l/é)/v)H(l/&)/ ‘

O
Corollary 3.15. Let 0 < B < oo, and let T : M" — M* satisfies conditions (1)-(iii). Assume that

u, w € W(0, o0) and v e W(0, ) be such that V(x) < oo for all x > 0. Then inequality (3.19) holds iff
both

N
(3.29) T agufy2,-1) () . < cllfllipvartan 00, f € M,
where
o -2/3
ovv iz = ( [ va) v
o 1/3

PIvi i 2l(x) = (f V‘zv) ,
and (3.23) hold.
Proof. The statement follows by Theorem 3.14 with 6 = 1/2. |

The following statement immediately follows from Theorem 3.11.

Corollary 3.16. Let 0 < B < oo, and let T : M* — IM* satisfies conditions (1)-(iii). Assume that
u, we W(0, o0) and v € W(0, 00) be such that V.(x) < oo for all x > 0 and V.(0) = co. Then inequality

(3.30) ”T( fo ) h)

< cllhll v, ©.00p B € MY,

Bw,(0,00)
holds iff
(3.31) 1Ty fllgw.0.000 < llfllvyv2 0,000 f € Rl
holds.

Proof. Since

it remains to apply Theorem 3.11. O
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Corollary 3.17. Let 0 < < 00,0 <6 < 1, and let T : M* — M satisfies conditions (1)-(iii). Assume
that u, w € W(0, o) and v € W(0, o) be such that V.(x) < oo for all x > 0 and V.(0) = co. Then
inequality (3.30) holds iff both

s

Corollary 3.18. Let 0 < < 00,0 <6 < 1, and let T : M* — M satisfies conditions (1)-(iii). Assume
that u, w € W(0,00) and v € W(0, 00) be such that V.(x) < oo for all x > 0 and V.(0) = oco. Then
inequality (3.30) holds iff

X 1/6
ol [
0

The following ”dual” statements also hold true and may be proved analogously.

(3.32)

< C”h”l’Vl/5—2V]—1/5’(0,00), heMm,
3,w,(0,00)

holds.

(3.33)

S C||h||1 V3/6—2v1_]/5 (0,00)? h (S EUE-'—
Bw,(0,00) o T

holds.

Theorem 3.19. Let 0 < B < oo, and let T : M — IN* satisfies conditions (i)-(iii). Assume that
u, w € W(0,o00) and v € W(0, 00) be such that V.(x) < oo for all x > 0. Then inequality

()
holds iff

(3.35) ||Tv3f||ﬂ,w,(o,oo) < cllflh 0.0 f € mr.

Corollary 3.20. Let 0 < B < 00,0 <6 < 1, and let T : M* — IM* satisfies conditions (1)-(iii). Assume
that u, w € W(0, 00) and v € W(0, ) be such that V.(x) < oo for all x > 0. Then inequality (3.34) holds

(3.34) < cllhllyv-1 0.0 B € mr,

B.w.(0,00)

iff both
X 1/6
(3.36) Tv*z({ f hé} ) < CllAlly yspovs g oy 7 € M,
0 B.w,(0,00) o o
and
(3.37) ITy2(Dllg.w.0,000 < €l 0,000
hold.

Corollary 3.21. Let 0 < B < 00,0 <6 < 1, and let T : M* — IM* satisfies conditions (1)-(iii). Assume
that u, w € W(0, 00) and v € W(0, o) be such that V.(x) < oo for all x > 0. Then inequality (3.34) holds

if
00 1/6
TV*Z(I—I/E) ({ f hév*} )

(3.38)

Theorem 3.22. Let 0 < B < oo, and let T : M* — IN' satisfies conditions (i)-(iil). Assume that
u, w € W(0, c0) and v € W(0, o) be such that V.(x) < oo for all x > 0. Then inequality (3.34) holds iff
both

< cllhlly y1-156 0,00y, 11 € MT
B,w,(0,00)

holds.

, !
(3.39) ||Tvldﬂ/ﬁ[v*‘/"vl*l/M/«ﬂf ||,B,w,(0,oo) < cllflly gpvro-is:1 /510,000 | € VT
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where 0 < § < 1,

asy

¢[V*1/6V1—1/5; 1/5]()6) ~ (f V*—(l/ts)'v) 1+(1/5) V*_(l/é)’(x)v(x)’
0

X %
(D[Vl/(svl—(l/ﬁ); 1/6]()() ~ (f V_(l/é);v)H(l/&) ’
0
and (3.37) hold.

Corollary 3.23. Let 0 < B < oo, and let T : M* — IM* satisfies conditions (1)-(iii). Assume that
u, w € W(0, 00) and v € W(0, 00) be such that V.(x) < oo for all x > 0. Then inequality (3.34) holds iff
both

< cllfll grvav121.0.000 f € m,
3,w,(0,00)

Tvzcb“[v,%rl;z] ()

where
X -2/3
¢[v3v-1;2]<x>z( f V;Zv) V2 (x)v(x)
0
X 1/3
DIV 152100 = f Vi)
0
and (3.37) hold.

Corollary 3.24. Let 0 < B < oo, and let T : M* — M* satisfies conditions (1)-(iii). Assume that
u, w e W(0, o00) and v € W(0, 00) be such that V(x) < oo for all x > 0 and V(o0) = co. Then inequality

(3.40) HT( f ) h)

holds iff

< c|lhll vy, b € MT,
B,w,(0,00)

(3.41) 1Ty fllgaw 000 < Cllflliyve. 000 f € V.

Corollary 3.25. Let 0 < < 00,0 <6 < 1, and let T : M* — M satisfies conditions (1)-(iii). Assume
that u, w € W(0,00) and v € W(0, 00) be such that V(x) < oo for all x > 0 and V(c0) = oco. Then
inequality (3.40) holds iff both

([ #)

Corollary 3.26. Let 0 < B < 00,0< 6 < 1, and let T : M* — IM* satisfies conditions (1)-(iii). Assume
that u, w € W(0, ) and v € W(0, ) be such that V(x) < oo for all x > 0 and V(co) = oco. Then
inequality (3.40) holds iff

00 1/6
TV2(1/6—1>({ f ]’lé} )

(3.42)

< C||h||1,V1/5—2V1—1/5,(0,0<,), h e Mm*,
B,w,(0,00)

holds.

(3.43) < C”h”17‘/3/6—2‘,1—1/6’(0’00), heMmr

B.w,(0,00)

holds.
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4. EQUIVALENCE THEOREMS FOR THE WEIGHTED INEQUALITIES ON THE CONES OF MONOTONE FUNCTIONS

As it is mentioned in the introduction, by substitution of variables it is possible to change the cone
of non-decreasing functions to the cone of non-increasing functions and vice versa, when considering
inequalities (2.1) and (2.5) for integral operators 7. But this procedure changes T also as usually to the
”dual” operator.

The following theorems allows to change the cones to each other not changing the operator 7.

Theorem 4.1. Let 0 < S < 00,0 < s < 00, and let T : M™ — IM* satisfies conditions (1)-(iii). Assume
that u, w € W(0, 00) and v € W(0, 00) be such that V(x) < oo for all x > 0 holds. Then inequality (2.1)
holds if and only if both

(4.1) (T ervssmvt-sisssonpo U] 0.0y < M lsptvsiont-siosssor 0.0 f € M,

where 0 < § < s and

o (s/8)

V_WV) Y (o), (x> 0),

ool < [
. -
\P[Vs/évl—s/é; 5/681(x) ~ (f V_(S/(S),V)(S/) 1’ (x> 0)

and (2.3) hold.
Proof. Inequality (2.1) is equivalent to

1/6y° 5 !
(4.2) PN o S €M Nsri000 f € .

By Theorems 2.2, (4.2) holds if and only if

o \1/6)°
(43) {T (f I’l) } < C6||h||S/5,Vx/6v1—x/5’(0’00), he E]J(‘.+,

8/6,w,(0,00)
and (2.3) hold. By Theorem 3.4, (4.3) is equivalent to
B
1/6 ) 1

(44) 7 o) RTINS U
with

¢[V.v/6vl—s/6; S/é] ~ (Vl—(s/(S)/ _ Vl—(s/é)/(OO))—(s/é)'/((s/(?)'+l)V—(s/ﬁ)/v

\P[Vs/évl—s/é; S/é] ~ (Vl—(S/(S)/ _ Vl—(s/(S)’(OO))I/((S/é)’+1).
Note that (4.4) is equivalent to (4.1), and this completes the proof. |

To state the next statements we need the following notations:

Vi(x) = (fw V‘Zv)m, (x > 0).

The following statement holds true.

Corollary 4.2. Let 0 < B < 00,0 < 5 < oo, and let T : MY — M satisfies conditions (i)-(iii). Assume
that u, w € W(0, ) and v € W(0, 00) be such that V(x) < oo for all x > 0 holds. Then inequality (2.1)
holds if and only if both

4.5) ||T{W[v2v*1;2]}4/x(f )”,B,W,(O,oo) <clf ”s,l//[Vzv‘l;Z],(O,DO)’ fe S)JET’
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where
YV 2100 = {Vi - VIPov(), (x> 0),
VT2 = Vi(x), (x> 0),
and (2.3) hold.
Proof. The statement follows by Theorem 4.1 with 6 = s/2. |

The following ”dual” statement also holds true and can be proved analogously.

Theorem 4.3. Let 0 < S < 00,0 < s < 00, and let T : M* — M* satisfies conditions (i)-(iii). Assume
that u, w € ‘W(0, o) and v € W(0, 00) be such that V.(x) < oo for all x > 0 holds. Then inequality (2.5)
holds if and only if both

(4.6) ' T < C||f||s,¢[Vf/dv1‘5/5;s/6],(O,oo)’ f € iUil’

{d)[V,f/dvl’S/é;S/é] }2/6 (f) 3,w,(0,00)

where 0 < § < s and
(s/6)

SV, 5/8)(x) ~ ( f v;“/(”’v) Y=Y oo, (x> 0),
0

oy sisico < ([ v ™ o
0
and (2.3) hold.

To state the next statement we need the following notations:

Vi(r) = (fo v;zv)m, (x> 0).

Corollary 4.4. Let 0 < B < 00,0 < 5 < 00, and let T : IM* — INT satisfies conditions (1)-(iii). Assume
that u, w € ‘W(0, 00) and v € W(0, 00) be such that V.(x) < oo for all x > 0 holds. Then inequality (2.5)
holds if and only if both

(4.7) 7 g gy o S g £
where
PV 2100 ~ {V] - V)P (ov(n), (x> 0),
V2V 2](0) ~ Vi), (x> 0),
and (2.3) hold.

5. THE WEIGHTED HARDY-TYPE INEQUALITIES ON THE CONES OF MONOTONE FUNCTIONS

In this section we consider weighted Hardy inequalities on the cones of monotone functions.
Note that inequality

(5.1) WHL(F)lga0.00) < Clfllpaoio0ys f € D

was considered by many authors and there exist several characterizations of this inequality (see, survey
paper [11], [4], [15], [10], and [27]).
Using change of variables x = 1/t, we can easily obtain full characterization of the weighted inequality

(5.2) IH, (Ollg0.00) < €llfllprgo.cors f € M.
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Our aim in this section is to give the characterization of the inequalities

(5.3) WH (0000 < €llfllp0.00p € M
and
(5.4) WHE (g 0.00) < €l llpv.000 S € M.

Inequality (5.3) was considered in [31] in the case when 1 < p, g < oo, and recently, completely
characterized in [29, 30] and [27] in the case 0 < p, g < co. It is worth to mention that in the most
difficult case when 0 < g < p < 1, the characterization obtained in [27, Theorem 3.12] involves additional
function ¢(x) := W~1(4W(x)), where W(¢) := inf{s > 0 : W(s) = 1} is the generalized inverse function
of W. Theorem 5.3 give us a another characterization of (5.3) and its proof does not use the discretization
technique.

Recall the following complete characterization of the weighted Hardy inequality on the cone of non-

increasing functions.

Theorem 5.1 ([27], Theorems 2.5, 3.15, 3.16). Let 0 < g, p < co. Then inequality (5.1) with the best
constant ¢ holds if and only if:
(1) 1 < p < g < oo, and in this case c ~ Ay + Ay, where

Ag: = sup(f U(t)w(T) dr)g V‘i(t),

0 \Jo
A= st1>1£) W*‘l’(t)( ‘[(%)p/\/(ﬂ dT)p],;

(i))g<p<ooand1 < p < oo, and in this case c ~ By + By, where
1

By : :( fo ) v—i(z)( fo t U%r)w(r)dr);Uq(t)w(z)dt)',

B, : :( j; ) Wf(r)( fo t(%)p,v(r)dr);’w(t)dt)l;

(i) g < p < 1, and in this case ¢ = By + Cy, where

e (fo °° (efig,%p l\]/Z(TT))) W2 (0w dt)l;

(iv) p < g < ooand p <1, and in this case ¢ = Dy, where

1

Dy := sup V—%(z)( f " Ut (minir, yw(r) dT)q;
0

>0
(v) p £ 1 and g = oo, and in this case c = E,, where
Ey := esssup V_;(t)( ess sup U(min{r, t})w(r));
>0 ™0

(vi) 1 < p < 00 and q = oo, and in this case ¢ = F,, where

Fy :=esssup w(t)( fot(ft u(y)V‘l(y) dy)p,V(T) dT)pl/;

>0 T

(vil) p =00 and 0 < g < oo, and in this case ¢ = Gy, where

1

Go = ( \fo ) ( fo | ess SZI?T}Z(:) V(1) )qw(t) dt)q;
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(viil) p = q = oo, and in this case ¢ = Hy, where

Hy := esssup ( f u) dy )w(t).
0

>0 €SS SUP,(q,y) V(T)

The following theorem holds true.

Theorem 5.2. Let 0 < g, p < co. Then inequality (5.2) with the best constant c holds if and only if:
(1) I < p < g < oo, and in this case ¢c =~ Aj + Aj, where

AL = sup( f T Ul om() dr)aV*_ (1),

50 \Ji
A= st1>1£) Wi(l)( ftm(‘li:((:)) )p/v(r) dr)pl,;

(i) g < p <ocoand 1 < p < oo, and in this case ¢ ~ B, + B}, where

= fo v o f Ui dr);U3<t>w(r> dr)i,

o ~ U, P o 7
B = ( f WE(I)( f ( (T)) W(7) dT) w(t) dt) :
0 t V*(T)
(iii) g < p < 1, and in this case ¢ ~ B, + C}, where

cis= ([ (e g whomoar

(iv) p < g < coand p < 1, and in this case ¢ = D, where

B

=%3

*

—_

1

_1 0 7
Dy := sup V. "(r)( f Ul (max{r, )w(r) dT) .
>0 0
(v) p < 1 and g = oo, and in this case ¢ = E,, where
_1
E;:=esssup V.’ (t)( ess sup U.(max{r, t})w(r));
>0 ™0

(vi) 1 < p < o0 and g = oo, and in this case ¢ = F;, where

F; = ess supw(t)( f w( f ) u(y)V;l(y)dy)p,v(T)dT);,;

>0

(vii) p = 00 and 0 < g < oo, and in this case ¢ = G, where

Go = ( jom ( f,m ess sjge)(jz) V(1) )qw(t) dt)q;

(viil) p = g = oo, and in this case ¢ = H;, where

Hj = esssup ( fm u(y) dy )w(t).

~0 €8S SUP ¢y, c0) v(T)

Proof. By change of variables x = 1/t, it is easy to see that inequality (5.2) holds if and only if
|H,20)| <cllfllpsoe, fe€M

q-w,(0,00) —

R DL LA

holds, where
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when 0 < p < 00,0 < g < o0, and

R L P S
ar=u 1) 00w} 0,1} 0.

ii(r) = u(%)tl2 W(t) = w(%) B(6) = v(%) t>0.

Using Theorem 5.1, and then applying substitution of variables mentioned above three times, we get

when p = g = oo, and

the statement. O

The following theorem is true.

Theorem 5.3. Let 0 < g < o0 and 0 < p < co. Assume that u, w € W(0, o0) and v € W(0, ) be such
that V.(x) < oo for all x > 0 holds. Recall that

Vix) = (fo v;zv)l/3, (x > 0).

Denote by

Ui(x) := fo u@®V:17 (0 dt, (x> 0).

Then inequality (5.3) with the best constant c holds if and only if:
(1) 1 < p < g < oo, and in this case

c= AO + Al + ||Hu(1)||q,w,(0,oo)/lllllp,v,(O,oo)a

where

Ay = sup(f (U1 (T)w(T) dT)q[Vl*]_’lJ(l),
>0 0

Ay = sup w2 o f i @@V @ dr)
0

>0

(il))g < p<ooandl < p < oo, and in this case

c= BO + Bl + ||Hu(1)||q,w,(0,00)/lllllp,v,(O,oo),

where
Bozz( f [vr]‘f?(r)( f [U;*]‘f(ﬂwmm)"[U;‘]‘fmw(t)dz)’,
0 0

r

B := ( f W (z)( f (U1 @IV @V @) dr)"'w(z) dt) :
0 0
(ii1)) g < p < 1, and in this case

c= BO + Cl + ||Hu(1)”q,w,(0,oo)/lllllp,v,(O,oo)’

where
1

€= (fom (eff[g,lﬁp [l‘jfll]:r(; ));W*; (winydr)
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(iv) p<g<ooand(0 < p < 1, and in this case

c= DO + ||Hu(1)”q,w,(0,oo)/lllllp,v,(O,oo)’

where 1
Do := sup[vr]—%(z)( f (U1 (min{r, r})w(r)dT)";
0

>0
(v) p < 1 and q = oo, and in this case

c= EO + ||Hu(1)||q,w,(0,oo)/”1||p,v,(0,oo)7
where
E, :=ess sup[V;k]_%(t)( ess sup [U]](min{r, t})w(r));

>0 ™0

(vi) 1 < p < 0o and q = oo, and in this case

c= FO + ||Hu(1)||q,w,(0,oo)/”1||p,V,(O,oo),

where

. t t 4p I’% ﬁ
Fy = esssupw(r)( fo ( f u(y)[vr]p<y)dy) [vr]-2<r>v;2<r>v<r)dr) .

>0

Proof. By Corollary 4.4 applied with 8 = ¢, s = pand T = H,, inequality (5.3) holds if and only if both

(5.5) Huavir O, 000y S Mty vern0omrs £ € ML,
and
(5.6) IH (Dl 0,0,00) < €l p,v,0,000
hold.
Now the statement follows by applying Theorem 5.1. O

Theorem 5.4. Let 0 < g < o0 and 0 < p < oo. Recall that

1

Vilx) = (fm v—zv)j, (x> 0).

Ui(x) := f“’ u(t)Vl’é’(t) dt, (x > 0).

Then inequality (5.4) with the best constant ¢ holds if and only if:
(1) 1 < p < g < oo, and in this case

Denote by

crAj+ A+ ||H;;(l)l|q,w,(0,oo)/lllllp,v,(O,oo),

where

00 1 1

Ay = sup(f U?(T)W(T) dT)qVI_F(t),
>0 t

1

Ap s =sup Wé(f)( f ) U (v, S @V () df)”';

>0 t

(il))g < p<ooandl < p < oo, and in this case

c = By + By + [[H,; (D)l g..0,00)/ 1L p..0.00)»
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where

B*

(=)

1

= fo v f U ow) dr);U$<r>w(z> dr):',

B = ( f ) Wi(t)( f ) U{"(T)v;@“”)(r)v—z(r)v(r)df)?w(t)dz) :

0 i
(ii1)) g < p < 1, and in this case

¢ = By + CT + |H,,(Dllgw.0.000/ Il p.0,0,00

where
p

ci:=( [ (o T wiowoal

(iv) p< g <oand p < 1, and in this case

¢ = Dy + [H;(Dllgw. 0,00/ 1Ll p.1,(0,00)5

where 1

D}, := sup Vl_;(t)( j:o U{(max{s, r})w(s) ds)q.

>0
(v) p < land q = oo, and in this case

¢ = Eo + [[H,(Dllg,0,00)/ 111 p.v,(0,00»

where 1
E; = ess sup Vl_”(t)( esssup U;(max{r, t})w(r));

>0 ™0
(vi) 1 < p < o0 and q = oo, and in this case

¢ = Fy + [H,(Dllgw,0,000/ 11 p,,0,00)5
where

. T v e
F: o= ess supw(t)( f ( f u(y)Vl_l(y)dy) VfZ(T)V_Z(T)v(T)dT) .

>0

Proof. By change of variables x = 1/¢, it is easy to see that inequality (5.4) holds if and only if
|H,.a(f) <clflproe, feW

q,w,(0,00) —

holds, where

when 0 < p < 00,0 < g < 0, and

o)1 s00=0(1) s = () 0

when 0 < p < 00, g = o0, and

=it 0 (1)) 10 =+{ 2} o,

(f) = u(%)% W) = w(;) ) = v(%) >0,

Using Theorem 5.3, and then applying substitution of variables mentioned above three times, we get

when p = g = oo, and

the statement. O
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6. THE WEIGHTED NORM INEQUALITIES FOR ITERATED HARDY-TYPE OPERATORS

In this section we give complete characterization of inequalities (1.5) - (1.6) and (1.7) - (1.8).

Using results obtained in the previous section we can reduce the characterization of inequality (1.5) to
the weighted Hardy inequality on the cones of non-increasing functions.

The following theorem is true.

Theorem 6.1. Let) < p < 00,0 < g <ocoand1 < s < co. Assume that u, w € ‘W(0, o) andv € W(0, c0)
be such that (3.1) holds. Recall that

1

D[v; s](x) = ( fo xvl—S’(t) dz)"'“, x> 0.

Denote by

Oy (1) = f @O s (x) dx = f ' u(x)( f R dt)de, 0.
0 0 0

Then inequality (1.5) with the best constant ¢, holds if and only if:
(1) p < s < g < oo, and in this case ¢y = Ay + Ay, where

1

Ay i= sup( fo [@1]F (w(r) dT)q(D[V; s,

>0
o 1 YD) N\, o
Al,z.—s;ggw*a)( fo (—q)[v;s]m) ¢[v,s]<r>dr) :

(i) g < s < oo and p < s, and in this case ¢, = By + By, where

529
as

Bui= f ofv: 5175 (0 f (@1 @wn dr) 1o own dr) "
0 0
q(s=p) s—q

oo [ 0o [ g o o

(1) g < s < p, and in this case ¢ = By + C, where

(T (@117 (1) \7a o S
Cl'_(fo (e§2<§,tu>p D[v; S](T)) W (t)w(t)dt) ’

(iv) s < g < oo and s < p, and in this case ¢, = Dy, where

1

D, := sup ®[v: s]-i(r)( f " 10,1 (min{r. /)w() dr)";
0

>0

(v) s < pand g = oo, and in this case ¢, = E, where

E, := esssup O[v; s]‘ﬁ(t)( ess sup @ (min{r, t})w(‘r))p;

>0 ™0

(vi) p < s and q = oo, and in this case c; = F, where

s—p

F = esssupw(t)( fo ( f u(y)O[v: s]_l(y)dy)ﬁrp[v; s](T)dT)W.

>0

Proof. By Theorem 3.1 (with the operator T = H,, ), ineqality (1.5) holds if and only if

(6.1) ” f ) fud[v; s1%
0

holds. Moreover, ¢; = C;. It remains to apply Theorem 5.1. O

< CV N\ flls/paivstoeo)s f € D
q/p.w,(0,00)
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We have the following statement when s = 1.

Theorem 6.2. Let 0 < p < co and 0 < g < oo. Assume that u, w € W(0, o0) and v € W(0, o) be such
that V(x) < oo for all x > 0. Denote by

Vo(1) = f u(x)V¥(x)dx, T > 0.
0
Then inequality
(6.2) ‘

|
H <l v-1 0.0y, B €M

X
A
0 q-w,(0,00)

with the best constant ¢ holds if and only if:
(1) p <1 < g < oo, and in this case c} r Ai’l + Ai,z’ where

Aj, = SUP( fo [Vz]%(T)W(T)dT)EV‘I(t),

>0
L " (Vo(T)\ T 5
Al =su W*"t(‘[(2 ) VTdT) ;
2RO e )
(1) g < 1 and p < 1, and in this case c{ ~ Bi’l + B},z’ where

1=q
q

B},l : :(L V”z‘(f)(f(;[Vz]Z(T)W(T)dT)lq[Vz]Z(t)w(t)dt) ,
P) 1

B, := (fom Wﬁq"(t)( fot(“’/z((:)))@v(T)dT)i’ﬂimw(t) dt);";

(1i1) g < 1 < p, and in this case c} e Bi |t C}, where

I
q

Cl1 T = (jom (eis(ggp [V‘Z/](};ET))]Z({WJZ"O)W(I) dt) ;

(iv) 1 < g < coand 1 < p, and in this case c; = D}, where

1

D! = sup v—l(z)( f "Vl (minfr, ()w() dr)a;

>0 0
(v) 1 < pand g = oo, and in this case ¢; = Ei, where
1

E} := ess sup V‘l(t)( esssup V,(min{r, t})w(‘r))p;

>0 ™0
(vi) p < 1 and q = 0, and in this case ¢} = F|, where

1-p

F| :=esssup w(t)zl’(ft(ft u(y)V2p—1(ydy))llpv(T) dT)T.
0o \Jr

>0

Proof. By Theorem 3.11 applied to the operator H,,, inequality (6.2) with the best constant c¢; holds if

and only if inequality
f fV2ry
0

holds. Moreover, ¢; = Cy. In order to complete the proof, it remains to apply Theorem 5.1. O

(6.3)

< Cf S U1/ p0.00)s S € ot
q/p.w.,(0,00)

The following theorems give us another more simpler and natural method for characterization of in-
equality (1.6), which is different from that one worked out in [18] and [19].
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Theorem 6.3. Let0 < p < 00,0 < g < ocoand1 < s < co. Assume that u, w € ‘W(0, o) andv € W(0, o)

be such that (3.13) holds. Denote by
2

Dy(7) := fT u(x)(‘I’[v; s| - ®[P[v; s1ylv; 1'% s]) p(x) dx, 7> 0.
0

Recall that

1

Plv; s](x) = ( f ) () dz)”', x>0,
o[ Pv; s1'wlv; s1'°; s](x)

z{f (f vl-s’) l”'vl-é"(z)dz} (f v‘—“")
0 t X
1

O[W[v; s]ulv; 5] s](x) { f ) ( f ) vl—f’)_&;’vl—f(t) dt}m/, x> 0.

0
Then inequality (1.6) with the best constant c, holds if and only if:

25"
1+s7 I—s
v(x), x>0,

(1) p < s £ g < oo, and in this case

cy ~ Agy + A + I wivssew 0.0 lgan0.00) /L5 1v:51,0,00)

where

Ay = sug)(f [(Dz]%(T)W(T) dT)Q(D[‘I’Sl//l_S;S]_%(f),
1> 0

. é t (I)Z(T) ﬁ s l=s. r,
Ana 2 = sup W fo (G Pyl

(i1) g < s < oo and p < s, and in this case

= BZ,l + Bz,z + |”ll”p,‘}’[v;s]zl’u,(o,t)”q,w,(0,00)/ ||1||s,w[v;s],(0,oo)’

where
—q

S
qs

32,11:( f @[‘I“wl”;s]ﬁ(t)( f [@ﬁ(r)w(r)dr) [cbz]%(r)w(r)dr) :
0 0
q(s—p)

By, = (fom Wﬁ%’ (1)( f(:(q)[\ysjzlg’) S](T))Xsp¢[‘1”z//1_s; s](r) dT)pM) w(r) a’t)xq;];

4
s—q

(ii) g < s < p, and in this case

=By +Cr+ ||||1||p,‘ﬂv;sj2ﬂu,(0,z)||q,w,(o,oo)/||1||s,w[v;s],(0,oo),

where
s=q

([ [@a]F () o st
Cz"(fo (eii(ggp (D[q,sl,,]_s;s](ﬂ) W owindr)

(iv) s < g < oo and s < p, and in this case

G = D2 + ||||1||p,‘P[v;s]21’u,(O,t)||q,w,(0,00)/||1||s,1//[v;s],(0,oo)’

where |

D := sup O Py~ s]*(r)( fo " [s1¢ (minr, hw(®) dr)a;

>0
(v) s < p and g = o, and in this case

c2 = Ey + 1Ll wiv:s12eu,0.0|lgw.0,00) /1 s,7v:57,(0,00)»
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where
1

E, := esssup ®[Py'™; s]_-lr(t)( ess sup @,(min{r, t})w(r))p ;
>0 ™0
(vi) p < s and q = oo, and in this case

c2 = Fy + 1], wiv:s120u,0.0|lgw.0,00) /I s,7v:57,(0,00)

where
s=p
Tsp

2= esssupwit [ ([ umorrut s o ay) ol )

>0

Proof. By Corollary 3.5 (applied to H,, with 6 = 1), inequality (1.6) with the best constant ¢, holds if
and only if both

X
(64) ‘ Hp,‘l’[v;s]zl’u (f h) < 21 ||h||s,‘{’[v;s]“xp[v;s]"-Y,(O,oo), h e gﬁ+9
0 4:w,(0,00)

and
(65) ||”1||p,‘P[v;s]2Pu,(0,t)”q,w,(O,DO) < C2,2||1||s,w[v;s],(0,oo)»
hold.

MOI'GOVCI', ) = C2,1 + ”||1||p,‘{’[v;s]21’u,(0,t)||q,w,(0,00)/||1||s,gb[v;s],(0,oo)~

Now the statement follows by Theorem 6.1. m|

We have the following statement when s = 1.

Theorem 6.4. Let 0 < p < o0 and 0 < g < oco. Assume that u, w € W(0, c0) and v € ‘W(0, 00) be such
that V.(x) < oo for all x > 0. Denote by

Vi(1) = f ' uQCV, - VI (x) dx, T > 0.
0
Recall that
X 1/3
Vi(n) = ( f V2 0w(r) dt) . (x>0
0

Hy f ) h)

with the best constant c; holds if and only if:
(1) p < 1 < g < oo, and in this case

Then inequality

(6.6) ‘

1
S C2 ||h||1,V;l,(0,0o)7 h S mt-'—
q:w,(0,00)

1 4l 1
Ay + A+ ||||1||p,V*2pu,(0,t)||q,w,(0,oo)/||1”l’Vv(O"X’)’

where

! 4 1/q :

Ayy = SUP( f [Vé‘]"/”(T)W(T)dT) Vi@,
>0 0

1. 0 AN -2 1%

A2z = sup W “)(fo (VT(T)) WV Vil e dr)

(1) g < 1 and p < 1, and in this case

1 _ pl 1
C = BZ,l + BZ,z + ||”1”1,"/317”’(0’,)||q,w’(0’oo)/”1”l,v,(O,oo),
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where
Bhy o= fo Vi o fo Vil dr) Vil ewo dr) "
i ([Tl (GO o
L= ([ w (’)(fo(vrm) Ve i@ de) " wad)

(iii)) g < 1 < p, and in this case

1 .. pl 1
¢y % By + Cy [, 20, 0| 0./ 10000

where

1—q

Cy:= ( j; m(eig(ggp %)&Wﬂ’ (Ow(r) a’t)T;

(iv) 1 < g <ooand1 < p, and in this case

1 _ 1
¢3 = Dy + 1, 22,0 0l 000 MU 0.000

where
1

D! = sup[Vf]-‘(t)( f [V:1# (min{r, t})w(r)dr)q;
0

>0

(v) 1 < pand g = oo, and in this case

1 _ 1
¢y = Ex + {111, y20, 0|, 0,00/ 0000

where
E; ‘= ess sup[Vl*]_1 (t)( ess sup [V3](min{r, t})w(r))p;

>0 ™0

(vi) p < 1 and q = oo, and in this case

1 _ 1
¢y = Fy + I, y20, 00 l], 0.0y Nvi0000

where
1-p

Fimesssupwi ([ [Cuvipr o) v v e )
> 0 T

Proof. By Corollary 3.23 applied to the operator H,,,, inequality (6.6) with the best constant ¢} holds if
and only if both

X
%7272
(6.7) f Ve - [IVITVPuf < G A pavevir2voes f € M,
0 q/pw,(0,00)
and
(6.8) LI v, 0l 0.0y < €220 0000

hold. Moreover, cé X Cy + ||||1||]7 /Il v0.00)- Applying Theorem 5.1 we obtain the state-

VP u,0,1) | |q,w,(0,oo)
ment. O

For the sake of completeness we give the characterizations of inequalities of (1.7) and (1.8) here.
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Theorem 6.5. Let0 < p < 00,0 < g < ocoand1 < s < oo. Assume that u, w € ‘W(0, o) andv € W (0, c0)
be such that (3.13) holds. Recall that

1

W[v; s](x) = ( f (0 dr)’“', x> 0.

Denote by

2p

V(1) = f O y: PP dx = f ) u(x)( f QERE dr)"'“ dx. 7> 0.

Then inequality (1.7) with the best constant c3 holds if and only if:
(1) p < s < g < oo, and in this case c3 = A31 + Az, where

Az := Sup(f [¥1]17 (1)w(r) dT)q‘I’[V; s17 (),

>0
Az = sup Wi(t)( ftw(ﬂ\i;—(s?m)ﬁlﬁ[w S](T)df)w;

(i) g < s < oo and p < s, and in this case c3 = B3, + Bs,, where

Bs;:= (L Y[v; S]qzé(t)(f [\PI]Z(T)W(T)CZT)W[\Pl]f’(l‘)w(t)dt)qS,
4(s=p) s=q

Buai=| fow W (0 ft w(\ﬂq;:—i?m)&eb[v; @) windr) "

(ii1) g < s < p, and in this case c3 = B3 + Cs, where

e (113 (@) ey
Ca: _(fo (ersesa,sog}) Py S](T)) v (t)w(t)dt) ’

(iv) s < g < ooand s < p, and in this case c3 = D3, where

1

Ds := sup ¥[v: s]—%(r)( f 1,1 (maxir, (hw(o) dr)a;
0

>0

(v) s < pand g = oo, and in this case c3 = E3, where

E; :=esssup ¥Y[v; s]_l(t)( ess sup ¥ (max{r, t})w(r))ﬁ;

>0 0

(vi) p < s and q = oo, and in this case c; = F3, where

s—p

Fy i= ess supw(n) f ( f W) 5T o) dy) ytv: sioar) "

>0

Proof. By change of variables x = 1/t, it is easy to see that inequality (1.7) holds if and only if

il [

< Al 5,5,0,00)
q,w,(0,00)

holds, where

when 0 < g < oo, and

. 11 _ 1\ _ 1y 1\"*

w0 = 7). w0 = (5} 70 = (F)(5) om0
when g = oco.
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Using Theorem 6.1, and then applying substitution of variables mentioned above three times, we get
the statement. O

Theorem 6.6. Let 0 < p < o0 and 0 < g < oo. Assume that u, w € W(0, ) and v € W(0, o) be such
that V.(x) < oo for all x > 0. Denote by

Vi(1) = f u(x)V*(x)dx, T > 0.

Hp( f ) h)

with the best constant ¢} holds if and only if:
(1) p <1< g < oo, and in this case cé = Aé,1 +A

Then inequality

(6.9) ‘

1
S C3 ||h||1’\/;l,(0,oo)’ h € EUt‘*’
q;w,(0,00)

1
30 where

ALy =sup( [ st @wmar) v

>0
Al,z = sup Wé(t)( foo (V;(T))llpv(r) dr)lpp;
- >0 t V*(T)
(1) g < 1 and p < 1, and in this case cé = Bé’l + Bé,z’ where

B=( [ vl [ witowmd) ko)
(1-p)

B!, :( j; ) quq(t)( ft Oo(“223)]_lpv(T)dT)Z(l_q)W(l)dt)l;q;

(i) g < 1 < p, and in this case cé ~ B§1 + C;, where

q 1
T-q

®:4lf@$?¥%§§”wwmmwf;

(iv) 1 < g < coand 1 < p, and in this case cy = D}, where

1

Dj := sup V*‘l(t)( foo[V;]Z(max{T, Hw(t) dr)q;
0

>0
(v) 1 < pand g = oo, and in this case cé = E;, where
1

Eé = ess sup V*_l(t)( esssup V;(max{r, t})W(T))p;

>0 ™0
(vi) p < 1 and q = o, and in this case ¢} = F3, where

1-p

F! = ess supw(t)tl’( f w( f ' u(y)pr_l(y)dy)llpv(T)dT) "

>0 t

Proof. By change of variables x = 1/¢, it is easy to see that inequality (6.9) holds if and only if

Hp,;,( fo ) h)

ii(7) = u(%)é W) = w(%)% (1) = fot V(%)yl_z dy, >0,

< clhllyp-1, 0,000, B € M
q,w,(0,00)

holds, where
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when 0 < g < o0, and

ii(r) = u(%)tlz Wt = w(%) V() = fot v(i)é dy, >0,

when g = oo.
Applying Theorem 6.2, and then using substitution of variables mentioned above three times, we get

the statement. O

Theorem 6.7. LetO < p < 00,0 <g<o0and1 < s < co. Assume that u, w € W(0, o0) and v € ‘W(0, 00)
be such that (3.1) holds. Denote by

0o 2
V(1) = f u(x)((D[v; 5] - W[O[v: s o[v: s]H;s]) "(dx, > 0.

Recall that

1

®[v; s|(x) = (fx V=) dt)“l, x>0,
0

Y[®[v; s [v; s1' %5 s](x)
li,S’ x s’ _12:;' Iy
( fo 4 ) v (X),

~ {‘fxm(j:vl_sl)_&;vl_s'(t)dt}_
P[DLv; s plv; 5175 s](x) = { fx oo( fo tvl“"')_ I2+X'V/vl“‘“(t) dt}”l“',

Then inequality (1.8) with the best constant c4 holds if and only if:

(1) p < s < g < oo, and in this case

c4 ~ Ay + Agn + I opsew 00 llgaw.0,00) /I g1v:51,00,000»

where

e :sug)( f [‘Pz]%(‘l’)w(‘l’)dT)g‘P[CDS(ﬁl_S;S]_%(I),

N VA T 2co NI
A4,2.-stgg>w<r>( f (T[(DS(PI_S;S](T)) B¢~ s)mydr) "

(i) g < s < oo and p < s, and in this case

Cy = B4,1 + B4,2 + ||”1||p,(l)[v;s]21’u,(t,oo)”q,w,(O,oo)/||1||5,¢[v;s],(0,oo)’

where
g

(¥ 1 () dr) "

a4
s=q

B, : :( j; \P[cpw—s;s]qqx(;)( f [‘I’Z]Z(T)W(T)d‘[')
q(s=p) s=q

o= fo | f ) (\P[qnj;ff;) s](T))S;w[@%ﬁ“; sodr) " wodr) "

(ii1) g < s < p, and in this case

c4 ~ Byy + Cy + 1]y o520, ,00)lgaw.0,00) / 1 5.61:51,0,00)»

where
q S=q

(" [WolP @)\
o= (] (e gtiam) Y omoa)
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(iv) s < g <ocoand s < p, and in this case

Cq = D4 + ||”1”p,(D[v;s]zl)u,(t,oo)||q,w,(0,00)/llllls,(p[v;s],(o,m),

where
1

D, = sup Y[0°9!~; s]‘ﬁ(t)( f [W,]# (max({r, t})w(7) df)a;
>0 0
(v) s < p and g = oo, and in this case

Cq = E4 + ||||1||p,¢)[v;s]2pu,(t,oo)||q,w,(0,00)/||1||S,¢[V;S],(0,00)7
where

E, := esssup P[D*p'; s]_%(t)( ess sup W,(max{r, t})w(r)); ;

>0 0
(vi) p < s and q = oo, and in this case

Cq = F4 + ||||1”p,(D[V;S]Zpu,([,oo)||q,w,(0,00)/||1||S,¢[V;S],(O,00)7

where
s=p
2

Fy o= esssupw(t)( f ( f u(y)‘I’[(I)"'(pl_“';s]_l(y)dy)wl//[(l)‘yrpl_s;s](T)dT)

>0

Proof. Obviously, inequality (1.8) holds if and only if

‘Hp,ﬁ( f ) h)

< 1Al s,5,0,00)
q,W,(0,00)

holds, where

when 0 < g < o0, and
5 1\1 1\ _ 1y/1\!=s
ur) = “(;)72’ W) = W(;)’ ) = V(;)(rz) > 1>0,

Using Theorem 6.3, and then applying substitution of variables mentioned above three times, we get

when g = co.

the statement. O

Theorem 6.8. Let 0 < p < o0 and 0 < g < oco. Assume that u, w € W(0, c0) and v € ‘W(0, 00) be such
that V(x) < oo for all x > 0. Recall that

1

Vi(x) = (fw v—zv)s, (x> 0).

V(1) := f ) u(x){V - Viy*(x)dx, t > 0.

H;,u( fo ) h)

with the best constant ¢} holds if and only if:
(1) p <1 < g < oo, and in this case

Denote by

Then inequality

(6.10) <c 1All1,v-1 (0,005

q-w,(0,00)

1 1 1
Cy = A4,1 + A4,2 + ||”lllp,Vzl’u,(t,oo)”q,w,(0,00)/”l”l,v,(0,00)a
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Azlt,l D= sup(f
>0 t

where

ALy = sup Wi f i (V3(T))']p{v Vv dr)

>0

[Va]F (0w() dr)"[vl]*(r),

1-p
P

Vi(1)

(i) g < 1 and p < 1, and in this case

1 1 1
¢y = By + By + Iy, varueollgmw.0.00) /1L 1.0.0.005

where

4
B‘lkl L= (f qu_l
0

o f ValHomw) a)

a4 1—q
1-g 4a q
VI (tw(D) dt) :
t
q(1-p)

Bl,: :( fo ) Wqu(t)( ft M(VB(T))IIP{V-[Vl]}_z(T)v(T)d‘r)p(lq)w(t)dt)

(i) g < 1 < p, and in this case

Vi(7)

1 1 1
¢y~ By + Cy + Ay, v2e i, 1,00 g 0,000 / 1L 1,0,0,009

where

Cl:=

"

1-q

)ﬁq W4 (H)w(z) dz)T :

(ess s [V3]7(7)
T€(t,00) Vi(7)

(iv) 1 £ g <ooand1 < p, and in this case

1 1
Cy = D4 + ||||1||p,V21’u,(t,oo)||q,w,(0,00)/||1||1,v7(0,00)7

where

DJ‘ = sup Vfl(t)( fom[VﬂZ(maX{T, tHw(T) dr)q;

>0

1

(v) 1 £ pand g = oo, and in this case

1 1
Cy = E4 + ||”lllp,Vzpu,(t,oo)”q,w,(0,00)/”l”l,v,(0,00)a

where

E}‘ = ess sup Vl_l(t)( ess sup [Vi3](max{r, t})w(r));;

>0

™0

(vi) p < 1 and q = oo, and in this case

1 1
¢4 = Fy + M p,v2ru,c.00)llgw, 0,00 /110,000

where

Fi = ess sup w(t)%

>0

1

(fw(ftru(y)Vlzp_l(y)dy)lip{V- V1}_2(T)v('r)d7-)_

Proof. Obviously, inequality (6.10) holds if and only if

H

p

|
o=}

holds, where

A

1
2"

<c ||h||1,‘~,;1’(0’oo), heMmt
q:w,(0,00)

(1) = w(%)tl2 V.(0) = ftw V(;)yl_z dy, 1 >0,

1=q
q

—p
P

2
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when 0 < g < o0, and

ii(t) = u(%)% W) = w(%) V.(1) = f,m v(i)yl2 dy, >0,

Applying Theorem 6.4, and then using substitution of variables mentioned above three times, we get

when g = co.

the statement. O

Remark 6.9. It is worth to mention that Theorem 6.3 - 6.8 can be proved by reducing corresponding
iterated inequality to the cone of monotone functions. For instance: inequality (1.7) with the best constant

¢3 holds if and only if inequality
< Cg ”f”s/p,xp[v;s],(o,oo)a f € EIRT

f fu¥[v; 5%
0 4q/p.w(0,00)
holds, and the statement of Theorem 6.5 immediately follows by Theorem 5.2.
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