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Introduction

Variational analysis encompasses “a broad spectrum of mathematical theory that has
grown in connection with the study of problems of optimization, equilibrium, control,
and stability of linear and nonlinear systems”.

R.T. Rockafellar and R.J.-B. Wets

This lecture is focused on the tools which have been developed for local analysis of
multifunctions (set-valued mappings) and on their usage in the investigation of
Lipschitzian stability of “solution maps” to parameterized equilibria.

Motivations:

Post-optimal analysis

Optimal control/design

Qualification conditions in generalized differential calculus
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Outline

(i) Basic notions from variational geometry and the theory of multifunctions

(ii) Generalized differential calculus

(iii) Lipschitzian single-valued localization

(iv) Aubin (Lipschitz-like) property

(v) Directional coderivatives and their applications

(vi) Conclusion
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Ad (i) - Basic notions from variational geometry and the theory of
multifunctions

Definition
Given a closed set A ⊂ Rn and x̄ ∈ A, we define

(i) the tangent (Bouligand) cone to A at x̄ by

TA(x̄) := Lim sup
ϑ↘0

A− x̄
ϑ

= {h ∈ Rn|∃hi → h, ϑi ↘ 0 : x̄ + ϑihi ∈ A ∀i};

(ii) the regular (Fréchet) normal cone to A at x̄ by

N̂A(x̄) := (TA(x̄))◦;

(iii) the limiting (Mordukhovich) normal cone to A at x̄ by

NA(x̄) := Lim sup
A

x→x̄

N̂A(x) = {ξ ∈ Rn|∃xi
A→ x̄ , ξi → ξ : ξi ∈ N̂A(xi ) ∀i}.

(iv) Finally, given a direction h ∈ Rn, the cone

NA(x̄ ; h) := {ξ ∈ Rn|∃hi → h, ϑi ↘ 0, ξi → ξ : ξi ∈ N̂A(x̄ + ϑihi ) ∀i}

is called the directional limiting normal cone to A at x̄ in the direction h.
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Ad (i) - Example: A is the graph of NR+ ⊂ R2
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Jiří V. Outrata 5 / 36



Ad (i) - Basic notions

Consider now a multifunction F : Rk ⇒ Rs. The domain and the range of F are defined
by

dom F := {u ∈ Rk |F (u) 6= ∅}, rge F := {v ∈ Rs|∃ u with v ∈ F (u)},

respectively, and the graph of F is the set

gph F := {(u, v) ∈ Rk × Rs|v ∈ F (u)}.
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Ad (i) - Basic notions

Definition
Consider a point (ū, v̄) ∈ gph F . Then

(i) the multifunction DF (ū, v̄) : Rk ⇒ Rs, defined by

DF (ū, v̄)(h) := {k ∈ Rs|(h, k) ∈ Tgph F (ū, v̄)}, h ∈ Rk ,

is called the graphical derivative of F at (ū, v̄);

(ii) the multifunction D̂∗F (ū, v̄) : Rs ⇒ Rk , defined by

D̂∗F (ū, v̄)(v∗) := {u∗ ∈ Rk |(u∗,−v∗) ∈ N̂gph F (ū, v̄)}, v∗ ∈ Rs,

is called the regular (Fréchet) coderivative of F at (ū, v̄).

(iii) the multifunction D∗F (ū, v̄) : Rs ⇒ Rk , defined by

D∗F (ū, v̄)(v∗) := {u∗ ∈ Rk |(u∗,−v∗) ∈ Ngph F (ū, v̄)}, v∗ ∈ Rs,

is called the limiting (Mordukhovich) coderivative of F at (ū, v̄).

If F is a continuously differentiable single-valued mapping, then
DF (ū, v̄)(h) = ∇F (ū)h and D̂∗F (ū, v̄)(v∗) = D∗F (ū, v̄)(v∗) = ∇F (ū)T v∗.
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Ad (ii) - Generalized differential calculus

R1) Let f : Rs → R be a continuously differentiable function, F : Rk → Rs be a locally
Lipschitz mapping, A ⊂ Rk be closed, and consider the minimization problem

minimize (f ◦ F )(x)
subject to

x ∈ A.
(1)

Assume that x̄ is a (local) solution of (1). Then one has

0 ∈ D∗F (x̄)(∇f (F (x̄)) + NA(x̄). (2)

R2) Let A = A1 ∩ A2 and x̄ ∈ A. Then

N̂A(x̄) ⊃ N̂A1 (x̄) + N̂A2 (x̄).

However, for the inclusion

NA(x̄) ⊂ NA1 (x̄) + NA2 (x̄) (3)

to be valid we need a qualification condition.
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Ad (ii) - Generalized differential calculus

Definition

We say that C : Rk ⇒ Rs is calm at (ū, v̄) ∈ gph C provided there exist a neighborhood
V of v̄ and a modulus κ > 0 such that

C(u) ∩ V ⊂ C(ū) + κ‖u − ū‖B ∀u.

Inclusion (3) in R2 holds provided the perturbation mapping

Ψ(p) := {x ∈ A1|x − p ∈ A2}
is calm at (0, x̄).
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NA(x̄) = R2

NA1 (x̄) + NA2 (x̄) = R× {0}

Figure: Ψ is not calm at (0, x̄).
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Problem formulation

In what follows we will consider a closed-graph multifunction M : Rl × Rn ⇒ Rm and
examine the two mentioned stability properties of the solution map S : Rl ⇒ Rn defined
implicitly via the relationship

S(p) := {x ∈ Rn|0 ∈ M(p, x)}. (4)

around a given reference pair (p̄, x̄) ∈ gph S. In (4), p plays the role of a
parameter/control and x is the decision/state variable.

This model has a distinguished special case called parameterized variational system:

M(p, x) = H(p, x) + Q(x), (5)

where H : Rl × Rn → Rn is continuously differentiable and Q : Rn ⇒ Rn has a closed
graph. The relation 0 ∈ H(p, x) + Q(x) is called generalized equation (GE). Q amounts
typically to N̂Γ(x) with some closed set Γ ⊂ Rm. If Γ is convex, then S is the solution
map to a parameterized variational inequality (VI) of the first kind.
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Ad(iii) - Lipschitzian single-valued localization

Definition.

We say that C : Rk ⇒ Rs has a Lipschitzian single-valued localization around
(ū, v̄) ∈ gph C provided there exist neighborhoods U of ū, V of v̄ , and a Lipschitzian
function σ : U → Rs such that

σ(ū) = v̄ and C(u) ∩ V = {σ(u)} ∀ u ∈ U .
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Figure: C has a Lipschitzian single-valued localization around (ū, v̄).
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Ad(iii) - Lipschitzian single-valued localization

This type of Lipschitzian continuity plays an important rule above all in

control of equilibria governed by variational systems or optimization problems via
control/design variables (optimum design problems in mechanics, optimal
production strategies of firms acting in an oligopolistic market, optimal design of
transportations networks etc.);

post-optimal analysis, i.e., analysis of the influence of "small" changes of some
problem data on equilibria computed with nominal values of these data. Can a
"small" change of problem data lead to an unproportional change of the respective
equilibrium?
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Ad (iii) - Lipschitzian single-valued localization

Consider now the case of M given by (5).

Theorem 1.
(Robinson 1980, Dontchev, Hager 1994). Let the mapping Σ : Rn ⇒ Rn defined by

Σ(b) := {x |b ∈ H(p̄, x̄) +∇x H(p̄, x̄)(x − x̄) + Q(x)} (6)

have a Lipschitzian single-valued localization around (0, x̄). Then S has a Lipschitzian
single-valued localization around (p̄, x̄). Moreover, one has for all w ∈ Rn the inclusion

D∗S(p̄, x̄)(w) ⊂ {(∇pH(p̄, x̄))T b|0 ∈ w + (∇x H(p̄, x̄))T b + D∗Q(p̄,−H(p̄, x̄))(b)}. (7)

Remark 1.
If H is not continuously differentiable, then the term H(p̄, x̄) +∇x H(p̄, x̄)(x − x̄) can be
replaced by another so-called strict estimator of H at (p̄, x̄) satisfying certain
conditions.

Remark 2.
This is an example of the so-called implicit function paradigm saying that if Σ
possesses a certain property around (0, x̄), then this property is inherited by S around
(p̄, x̄).
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Ad (iii) - Application of Theorem 1

Theorem 2.
(Robinson 1980). Assume that Q(·) = NΓ(·), where Γ is a convex polyhedron. Further
assume that the mapping Ξ : Rn ⇒ Rn defined by

Ξ(b) := {x |b ∈ ∇x H(p̄, x̄)y + NK (y)} with K = TΓ(x̄) ∩ [H(p̄, x̄)]⊥ (8)

is single-valued. Then S has a Lipschitzian single-valued localization around (p̄, x̄).
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Ad (iii) - Implicit programming (ImP) approach

Consider the mathematical program with equilibrium constraints (MPEC) given by

minimize f (p, x)
subject to

0 ∈ H(p, x) + Q(x)
p ∈ ω,

(9)

where p is the control variable, x is decision variable, f is a continuously differentiable
objective, ω is a closed set of admissible controls and mappings H,Q fulfill the
conditions from slide 11.
Let S : p 7→ x be the solution map defined by the GE in (9) and (p̄, x̄) be a local
solution of (9). Suppose that the GE in (9) satisfies the assumptions of Theorem 1.
Then (9) amounts locally (close to (p̄, x̄)) to the optimization problem

minimize J(p)
subject to

p ∈ ω,
(10)

where J(p) := f (p, σ(p)) with σ being the Lipschitzian single-valued localization of S
around (p̄, x̄).
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Ad (iii) - Optimality conditions

Theorem 3.

Under the posed assumptions there exists an MPEC multiplier b̄ such that

0 ∈ ∇pf (p̄, x̄) + (∇pH(p̄, x̄))T b̄ + Nω(x̄) (11)

0 ∈ ∇x f (p̄, x̄) + (∇x H(p̄, x̄))T b̄ + D∗Q(p̄,−H(p̄, x̄))(b). (12)

Sketch of the proof.
From the second statement of Thm.1 we know that

D∗S(p̄, x̄)(w) ⊂ {(∇pH(p̄, x̄))T b|0 ∈ w + (∇x H(p̄, x̄))T b + D∗Q(p̄,H(p̄, x̄))(b)}.

Then it suffices to apply R1. �

If ∇pH(p̄, x̄) is surjective, then we say that the GE in (9) is amply parameterized. In this
case,

D∗S(p̄, x̄)(w) = {(∇pH(p̄, x̄))T b|0 ∈ w+(∇x H(p̄, x̄))T b+D∗Q(p̄,−H(p̄, x̄))(b)}. (13)

It follows that in case of ample parameterization the optimality conditions of Theorem 4
are generally sharper (more selective).
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Ad (iii) - Computation of D∗NΓ

Given a convex polyhedral cone K ⊂ Rn, a set F ⊂ K is called a face of Γ if
F = K ∩ [v∗]⊥ for some v∗ ∈ K0.

Let K be the critical cone to Γ at x̄ with respect to H(p̄, x̄), i.e., K = TΓ(x̄) ∩ [H(p̄, x̄)]⊥.

Theorem 4.
(Dontchev, Rockafellar 1996). Let (z, z∗) ∈ gph NΓ. Then Ngph NΓ

(z, z∗) is the union of
all product sets V 0 × V associated with cones V of the form F1 − F2, where F1,F2 are
closed faces of the critical cone K satisfying

F2 ⊂ F1.

Example
Γ = R+, (z, z∗) = (0, 0),
K = TR+ (z) ∩ [z∗]⊥ = R+, F1 = R+,F2 = {0}. By Thm. 4 it follows that

Ngph NΓ
(z, z∗)

= (F1 − F1)◦ × (F1 − F1) ∪ (F1 − F2)◦ × (F1 − F2) ∪ (F2 − F2)◦ × (F2 − F2)

= ({0} × R) ∪ (R− × R+) ∪ (R× {0}).

4
Jiří V. Outrata 17 / 36



Ad (iv) - Aubin property

Definition

(Aubin 1984). We say that C : Rk ⇒ Rs has the Aubin property around (ū, v̄) ∈ gph C
provided there exist neighborhoods U of ū, V of v̄ and a modulus κ > 0 such that

C(u1) ∩ V ⊂ C(u2) + κ‖u1 − u2‖B ∀u1, u2 ∈ U .
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(ū, v̄)

gph C

Figure: C has the Aubin property around (ū, v̄).
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Ad (iv) - Aubin property

Applications

Post-optimal analysis: In contrast to the existence of Lipschitzian single-valued
localization, the Aubin property only ensures that for slightly perturbed problem
data there is an equilibrium whose distance from the original one is bounded by a
multiple of the norm of the difference between the data.

Construction of easily verifiable CQs in the generalized differential calculus. For
instance, in R3, inclusion (3) holds true provided the perturbation mapping

Ψ(p) := {x ∈ A1|x − p ∈ A2}

has the Aubin property around (0, x̄).

Close relationship with some nonlinear and set-valued generalizations of the
Banach open mapping theorem (e.g. Lyusternik 1934, Graves 1950). This
relationship facilitates significantly the respective proofs.

Close relationship with convergence theory for some numerical methods for the
solution of GEs and optimization problems (Newton method, SQP etc.).
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Ad (iv) - Aubin property

C has a Lipschitzian single valued localization around (ū, v̄).

⇓

C has the Aubin property around (ū, v̄).

⇓

C is calm at (ū, v̄).
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Ad (iv) - Mordukhovich criterion

Theorem 5.

(Mordukhovich 1992). Let C : Rl ⇒ Rn be a closed graph multifunction and
(ū, v̄) ∈ gph C. Then C has the Aubin property around (ū, v̄) iff D∗C(ū, v̄)(0) = {0}.

To apply this criterion to S given by (4) we associate with M the multifunction
Φ : Rm ⇒ Rl × Rn defined by

Φ(v) := {(p, x)|v ∈ M(p, x)}.

Theorem 6.
Let (p̄, x̄) ∈ gph S and assume that

1) Φ is calm at (0, p̄, x̄);

2) The implication
(q∗, 0) ∈ D∗M(p̄, x̄ , 0)(b∗)⇒ q∗ = 0

holds true.

Then S has the Aubin property around (p̄, x̄).
Assumptions 1), 2) can be replaced by the implication

(q∗, 0) ∈ D∗M(p̄, x̄ , 0)(b∗)⇒ q∗ = 0, b∗ = 0. (14)
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Ad (iv) - Mordukhovich criterion

Corollary.
Let M(p, x) = p − F (x), where F is continuously differentiable. Assume that ∇F (x̄) is
surjective. Then S has the Aubin property around (p̄, x̄).

Indeed, (14) attains the form

0 = (∇F (x̄))T b∗ ⇒ b∗ = 0 which amounts to 0 ∈ (R(∇F (x̄)))⊥.

Remark.
It follows that ∃ neighborhoods U of p̄ and V of x̄ such that for p ∈ U the equation
p = F (x) has a solution x ∈ V. This is a simplified variant of the Graves theorem.
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Ad (iv) - Mordukhovich criterion

Next we apply Theorem 6 to the parameterized variational system with M given by (5).

Theorem 7.
Let (p̄, x̄) ∈ gph S and assume that

1) The respective Φ is calm at (0, p̄, x̄);

2) The implication

0 ∈ (∇x H(p̄, x̄))T b∗ + D∗Q(x̄ ,−H(p̄, x̄))(b∗)⇒ b∗ ∈ ker(∇pH(p̄, x̄))T (15)

holds true.

Then S has the Aubin property around (p̄, x̄).
Assumptions 1), 2) can be replaced by the stronger requirement that the GE

0 ∈ (∇x H(p̄, x̄))T b∗ + D∗Q(x̄ ,−H(p̄, x̄))(b∗) (16)

has only the trivial solution b∗ = 0. This condition is also necessary for S to have the
Aubin property provided ∇pH(p̄, x̄) is surjective.

The GE on the left-hand side of (15) is called adjoint GE.
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Ad (iv) - Mordukhovich criterion

Example

Consider the GE given by GE (5) with Γ = R2
+ and

H(p, x) =

[
0 1
−2 3

] [
x1

x2

]
+

[
0
p + 2

]
,

which amounts to the linear complementarity problem (LCP)

0 ≤
[

0 1
−2 3

] [
x1

x2

]
+

[
0
p + 2

]
⊥
[

x1

x2

]
≥ 0.

Put (p̄, x̄) = (0, (1, 0)). The corresponding multifunction M is metrically subregular at
(p̄, x̄) and so we can make use of implication (14) which attains the form

0 ∈
[

0− 2b∗2
b∗1 + 3b∗2

]
+ D∗NR2

+
((1, 0),−(0, 0))(b∗)⇒ b∗ ∈ ker([0, 1]).

Since all solutions of the adjoint GE belong to R− × {0}, this implication holds true and
the respective S has the Aubin property around (p̄, x̄). This cannot be concluded on
the basis of the second statement in Theorem 7. 4
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Ad (v) - Directional coderivatives and their applications

If we examine the Aubin property of variational systems given by (5) and ∇pH(p̄, x̄) is
not surjective, then the conditions of Theorem 5 may be far from necessity. It turns out
that on the basis of the directional limiting normal cone one can derive a weaker yet
sufficient criterion.
Consider a multifunction F : Rk ⇒ Rs and a point (ū, v̄) ∈ gph F .

Definition.

(Gfrerer 2011). Given a pair of directions (h, k) ∈ Rk × Rs, the multifunction
D∗F ((ū, v̄); (h, k)) : Rs ⇒ Rk , defined by

D∗F ((ū, v̄); (h, k))(v∗) := {u∗ ∈ Rk |(u∗,−v∗) ∈ Ngph F ((ū, v̄); (h, k))}, v∗ ∈ Rs,

is called the directional limiting coderivative of F at (ū, v̄) in direction (h, k).

It holds that D∗F ((ū, v̄); (0, 0)) = D∗F (ū, v̄) and for any v∗ ∈ Rs

D∗F ((ū, v̄); (h, k))(v∗) 6= ∅,

whenever (h, k) 6∈ Tgph F (ū, v̄).
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Ad (v) - Application to the Aubin property

This new approach relies on the possibility to express the Mordukhovich criterion in
terms of the directional limiting coderivatives. The next result concerns S given by (4).

Theorem 8.
Assume that

Φ is calm at (0, p̄, x̄);

{u|0 ∈ DM(p̄, x̄ , 0)(v , u)} 6= ∅ for all v ∈ Rl . (17)

For every nonzero (v , u) ∈ Rl × Rn such that 0 ∈ DM(p̄, x̄ , 0)(v , u) the implication

(q∗, 0) ∈ D∗M((p̄, x̄ , 0); (v , u, 0))(b∗)⇒ q∗ = 0. (18)

holds true.
Then S has the Aubin property around (p̄, x̄) and DS(x̄ , ȳ)(·) admits the
representation

DS(p̄, x̄)(v) = {u|0 ∈ DM(p̄, x̄ , 0)(v , u)}, v ∈ Rl . (19)
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Ad (v) - Application to the Aubin property

Remark
Equality (19) means that the graphical derivative of S at (p̄, x̄) is implicitly given by the
graphical derivative of M at (p̄, x̄ , 0). This directly generalizes the classical formula for
the derivative of the implicit functions (U. Dini, 1877).

Remark
Since condition (17) is necessary for S to have the Aubin property and the directional
limiting coderivatives are typically much smaller than the standard ones, the conditions
of Theorem 8 are typically less restrictive than the conditions of Theorem 6.

Theorem 9.
Let us omit the first assumption of Theorem 8 and strengthen the implication (18) to

(q∗, 0) ∈ D∗M((p̄, x̄ , 0); (v , u, 0))(b∗)⇒ q∗ = 0, b∗ = 0. (20)

Then the assertions of Theorem 8 remain valid.
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Ad (v) - Variational systems

Let Γ be convex and closed and

M(p, x) = H(p, x) + NΓ(x). (21)

Theorem 10.
Assume that (p̄, x̄) ∈ gph S and

The respective Φ is calm at (0, p̄, x̄);

{u|0 ∈ ∇pH(p̄, x̄)v +∇x H(p̄, x̄)u + DNΓ(x̄ ,−H(p̄, x̄))(u)} 6= ∅ for all v ∈ Rl ;

For every nonzero (v , u) ∈ Rl × Rn such that

0 ∈ ∇pH(p̄, x̄)v +∇x H(p̄, x̄)u + DNΓ(x̄ ,−H(p̄, x̄))(u) (22)

the implication

0 ∈ (∇x H(p̄, x̄))T b∗+
D∗NΓ((x̄ ,−H(p̄, x̄)); (u,−∇pH(p̄, x̄))v −∇x H(p̄, x̄)u))(b∗)

}
⇒

⇒ b∗ ∈ ker(∇pH(p̄, x̄))T
(23)

holds true. Then S has the Aubin property around (p̄, x̄) and

DS(p̄, x̄)(v) = {u|0 ∈ ∇pH(p̄, x̄)v +∇x H(p̄, x̄)u + DNΓ(x̄ ,−H(p̄, x̄))(u)}.
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Ad (v) - Variational systems

The relation on the left-hand side of (23) is called directional adjoint GE.

Remark
If Γ is polyhedral, then

DNΓ(x̄ ,−H(p̄, x̄))(u) = NK (u),

where K := KΓ(x̄ ,H(p̄, x̄)) = TΓ(x̄) ∩ [H(p̄, x̄)]⊥ (critical cone to Γ at x̄ with respect to
H(p̄, x̄)).

Theorem 11.
Let (z, z∗) ∈ gph NΓ and (v , u) ∈ Tgph NΓ

(z, z∗) be given. Then Ngph NΓ
((z, z∗); (v , u)) is

the union of all product sets V 0 × V associated with cones V of the form F1 − F2,
where F1,F2 are closed faces of the critical cone KΓ(z, z∗) satisfying

v ∈ F2 ⊂ F1 ⊂ [u]⊥. (24)

Clearly for (v , u) = (0, 0), Theorem 11 reduces to Theorem 4.
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Ad (v) - Variational systems

Example

Γ = R+, (z, z∗) = (0, 0) ∈ gph NΓ

KΓ(z, z∗) = TΓ(z) ∩ [z∗]⊥ = R+, F1 = R+,F2 = {0}

By virtue of Theorem 4,

Ngph NΓ
(z, z∗)

= (F1 − F1)◦ × (F1 − F1) ∪ (F1 − F2)◦ × (F1 − F2) ∪ (F2 − F2)◦ × (F2 − F2)

= ({0} × R) ∪ (R− × R+) ∪ (R× {0}).

For (v , u) = (1, 0), by Theorem 11, one obtains

Ngph NΓ
((z, z∗); (v , u)) = (F1 − F1)◦ × (F1 − F1) = {0} × R,

because F2 does not contain v .
Likewise for (v , u) = (0, 1) one has

Ngph NΓ
((z, z∗); (v , u)) = (F2 − F2)◦ × (F2 − F2) = R× {0},

because F1 is not contained in {u}⊥. 4
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Ad (v) - Variational systems - Example
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NA(x̄;h)

For h ∈ {0} × R+

For h ∈ R+ × {0}

x̄

A

0

0 0

0

0

TA(x̄)

N̂A(x̄) NA(x̄)
NA(x̄;h)
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Ad (v) - Variational systems

Consider the case (21), where NΓ is replaced by N̂Γ, Γ = g−1(D) with g : Rn → Rs

twice continuously differentiable and D ⊂ Rs closed. We assume that
(A1): There exists a closed set Θ ⊂ Rd along with a twice continuously differentiable

mapping h : Rs → Rd and a neighborhood V of g(x̄) such that ∇h(g(x̄)) is
surjective and

D ∩ V = {z ∈ V|h(z) ∈ Θ};
(A2):

rge∇g(x̄) + ker∇h(g(x̄)) = Rl . (25)
Note that conditions (A1), (A2) amount to the reducibility of D to Θ at g(x̄) and the
nondegeneracy of x̄ with respect to Γ and the mapping h in the sense of Bonnans,
Shapiro (2001), provided the sets D,Θ are convex.

Theorem 12.

Let assumptions (A1), (A2) be fulfilled, x̄∗ ∈ N̂Γ(x̄) and λ̄ be the (unique) multiplier
satisfying

λ̄ ∈ N̂D(g(x̄)), ∇g(x̄)T λ̄ = x̄∗. (26)

Then

Tgph N̂Γ
(x̄ , x̄∗) =

{(u, u∗)|∃ξ : (∇g(x̄)u, ξ) ∈ Tgph N̂D
(g(x̄), λ̄), u∗ = ∇g(x̄)T ξ +∇2〈λ̄, g〉(x̄)u}.

(27)
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Ad (vi) - Conclusion

We have introduced the graphical derivative, the limiting coderivative, and the
directional limiting coderivative and shown how these notions can be used in analysis
of Lipschitzian behavior of implicitly defined multifunctions. In addition to the
Lipschitzian single-valued localization and to the Aubin property these notions can be
employed also in analysis of other Lipschitzian properties like calmness and tilt/full
stability.
Among further research goals in this area one could list

1) a deeper study of calmness which seems to be the most important qualification
condition in generalized differential calculus;

2) an investigation of more complicated parameterized equilibria like problems with
conic constraints (SDPs), QVIs, semi-infinite programming, evolutionary equilibria
etc;

3) application to various concrete models of practical relevance
(Cournot-Nash-Walras equilibria modeling, e.g., the market with emission
permits).
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