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Abstract. This paper is concerned with the behaviour of solutions to a system of coupled

Schrödinger equations (1.1) which has applications in many physical problems, especially in non-

linear optics. In particular, when the solution exists globally, we obtain the growth of the solutions

in the energy space. Finally, some conditions are also obtained in order to have blow-up in this

space.

1. Introduction

In this work, we consider the following initial value problem (IVP) for two coupled nonlinear

Schrödinger equations (NLS):
iut + ∆u+ (α|u|2p + β|u|q|v|q+2)u = 0,

ivt + ∆v + (α|v|2p + β|v|q|u|q+2)v = 0,

u(x, 0) = u0(x), v(x, 0) = v0(x),

(1.1)

where x ∈ Rn, α, β ∈ R, p > 0 and q > 0.

For β a real positive constant, α = 1 and q = p − 1, the system (1.1) leads to the following

model 
iut + ∆u+ (|u|2p + β|u|p−1|v|p+1)u = 0,

ivt + ∆v + (|v|2p + β|v|p−1|u|p+1)v = 0,

u(x, 0) = u0(x), v(x, 0) = v0(x).

(1.2)

This kind of problem arises as a model for propagation of polarized laser beams in birefringent

Kerr medium in nonlinear optics (see, for example, [4, 16, 24, 27, 35, 36] and the references therein

for a complete discussion about the physical standpoint of the problem). The two functions u and
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v are the components of the slowly varying envelope of the electrical field, t is the distance in the

direction of propagation, x are orthogonal variables and ∆ is the diffraction operator. The case

n = 1 corresponds to propagation in a planar geometry, the case n = 2 describes the propagation

in a bulk medium and the case n = 3 represents the propagation of pulses in a bulk medium with

time dispersion. The focusing nonlinear terms in (1.2) describes the dependence of the refraction

index of material on the electric field intensity and the birefringence effects. The parameter β > 0

has to be interpreted as the birefringence intensity and describes the coupling between the two

components of the electric-field envelope.

If α, β are real constants and u = v, the system (1.1) reduces to the nonlinear Schrödinger with

double power nonlinearity.

iut + ∆u+ (α|u|2p + β|u|2(q+1) )u = 0,

u(x, 0) = u0(x),
. (1.3)

Special case of (1.3) is the cubic-quintic nonlinear Schrödinger equation (p = q = 1)

iut + ∆u+ (α|u|2 + β|u|4 )u = 0. (1.4)

This equation arises in a number of independent physics field: nuclear hydrodynamic with Skyrme

[20], the optical pulse propagations in dielectrical media of non-Kerr type [23]. Also, it is used to

describe the boson gas with two and three body interaction [2, 3].

The equation (1.3) is just one of many models of Schrödinger equations. Many of different aspects

of this model were investigated by various techniques by any authors [10, 14, 18, 17, 19, 28, 21, 33]

and references therein. In [33] was consideriut + ∆u+ (α|u|p1 + β|u|p2 )u = 0,

u(x, 0) = u0(x),
. (1.5)

with (x, t) ∈ Rn×R, n ≥ 3 and 0 < p1 < p2 ≤ 4
n−2 and they proved local and global well-posedness,

they also addresses issues related to finite time blow-up, assymptotic behaviour and scattering in

the energy space H1(Rn).

The system (1.1), admits the mass and the energy conservation in the spaces L2(Rn)× L2(Rn)

and H1(Rn)×H1(Rn) respectively. More precisely, the mass (L2 norm):

M(u(t), v(t)) := ‖u(t)‖2L2(Rn) + ‖v(t)‖2L2(Rn) = M(u0, v0), (1.6)

and the energy:

E(t) := E(u(t), v(t)) := ‖∇u(t)‖2L2(Rn) + ‖∇v(t)‖2L2(Rn) − X(t)

= E(0) := E(u0, v0),
(1.7)
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are conserved by the flow of (1.1), where

X(t) =
α

p+ 1

[
‖u(t)‖2p+2

L2p+2(Rn)
+ ‖v(t)‖2p+2

L2p+2(Rn)

]
+

2β

q + 2
‖u(t) v(t)‖q+2

Lq+2(Rn)
. (1.8)

For some remarks on proofs of conservation laws for nonlinear Schrödinger equations, we refer to

[29].

Well-posedness issues and the blow-up phenomenon for the IVP (1.1) has been studied in the

literature, see for example in [11, 13, 16, 26, 27, 30, 35] and references therein. The system (1.2)

has scaling, this is if u and v are two solutions from (1.2) and λ > 0 then

η(x, t) = λ1/pu(λx, λ2t), ω(x, t) = λ1/pv(λx, λ2t), (1.9)

also are two solutions of (1.2). Hence, putting

p =
2

n− 2s0
,

the Sobolev space Ḣs0 is invariant under the scaling (1.9). In what follows we list some important

results that are relevant in our work.

1) Local existence:

Under assumptions s ≥ max{s0, 0} and p > [s]/2 if p 6∈ Z
the solution of the Cauchy problem (1.2), exists locally in time.

2) Global existence. Assuming

i) 0 < p < 2/n

the solution of the Cauchy problem (1.2), exists globally in time (see [16], see also Theorem 1.2

and Section 4 in this work).

3) When p ≥ 2/n, the solution of the Cauchy problem (1.2), blows-up in a finite time for some

initial data, especially for a class of sufficiently large data (see [13, 16, 26, 30] and Theorem 1.3 in

this work). On the other hand, the solution of the Cauchy problem (1.2) exists globally for other

initial data, especially for a class of sufficiently small data (see [11, 16, 27]).

In [35], Xiaoguang et al. obtained a sharp threshold of blow-up solution for (1.2). To study the

blow-up threshold, the following stationary system∆Q− (2−n)p+2
2 Q+ (|Q|2p + β|Q|p−1|R|p+1)Q = 0,

∆R− (2−n)p+2
2 R+ (|R|2p + β|R|p−1|Q|p+1)R = 0,

(1.10)

associated with (1.2) was considered.

Let, sc = n/2− 1/p, σp,n,β := (pn2 )1/4(1−1/p)
√
‖Q‖2

L2(Rn)
+ ‖R‖2

L2(Rn)
,

Γ(u, v) := Esc(u, v)M1−sc(u, v),

and

ϑ(u, v) := (‖∇u‖2L2(Rn) + ‖∇v‖2L2(Rn))
sc/2(‖u‖2L2(Rn) + ‖v‖2L2(Rn))

(1−sc)/2.
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The following is the result proved in Xiaoguang et al. [35].

Theorem 1.1 ([35]). Let 2/n ≤ p < An, where An =∞ if n = 1, 2, An = 2/(n− 2) if n ≥ 3 and

(|x|u0, |x|v0) ∈ L2(Rn)× L2(Rn). Assume that

Γ(u0, v0) < Γ(Q,R) ≡ sc
n

sc
(σp,n,β)2,

then the following two conclusions are valid.

1) If ϑ(u0, v0) < ϑ(Q,R), then the solution of the Cauchy problem (1.2) exists globally in time.

2) If ϑ(u0, v0) > ϑ(Q,R), then the solution of the Cauchy problem (1.2) blows-up in finite time.

In [7], they considered the initial value problem (IVP) associated to the coupled system of

supercritical nonlinear Schrödinger equationsiut + ∆u+ θ1(ωt)(|u|2p + β|u|p−1|v|p+1)u = 0,

ivt + ∆v + θ2(ωt)(|v|2p + β|v|p−1|u|p+1)v = 0,
(1.11)

where θ1 and θ2 are periodic functions. They proved that, for given initial data ϕ,ψ ∈ H1(Rn),

as |ω| → ∞, the solution (uω, vω) of the IVP (1.11) converges to the solution (U, V ) of the IVP

associated to iUt + ∆U + I(θ1)(|U |2p + β|U |p−1|V |p+1)U = 0,

iVt + ∆V + I(θ2)(|V |2p + β|V |p−1|U |p+1)V = 0,
(1.12)

with the same initial data, where I(g) is the average of the periodic function g. Moreover, if the

solution (U, V ) is global and bounded, then they also proved that the solution (uω, vω) is also

global provided |ω| � 1.

Our main result characterize the asymptotic properties of solutions of (1.1) and gives the growth

of the Sobolev norm in H1

Theorem 1.2. Let u0, v0 ∈ L2(|x|2dx) ∩ H1(Rn) and u(t), v(t) be solutions of (1.1) with t ≥ 1,

we have

1) If 0 < p ≤ 2
n and p ≥ q + 1 if β > 0 or p ≤ q + 1 if β < 0 then

E(0)− b0
4 tnp

≤
∫ (
|∇u(x, t)|2 + |∇v(x, t)|2

)
dx.

And if moreover X ≤ 0 (see (1.8), e.g., α ≤ 0 and β ≤ 0), we also have

‖∇u(t)‖L2
x(Rn) + ‖∇v(t)‖L2

x(Rn) ≤ min

{(
c0 +

2b
1/2
0

np

)
− b

1/2
0 (2− np)

np
t−np/2, E(0)

}
, (1.13)

and

‖xu(t)‖L2
x

+ ‖x v(t)‖L2
x
≤ 2t

(
c0 +

2b
1/2
0

np

)
+

4b
1/2
0 (np− 1)

np
t1−np/2, (1.14)

and

lim
t→+∞

∫ (
|∇u(x, t)|2 + |∇v(x, t)|2

)
dx = E(0), (1.15)
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where b0 := b0(n, p) and c0 = c0(u0, v0) are defined in (5.7) and (5.16) respectively.

2) If 0 < q ≤ 2
n − 1 and p ≤ q + 1 if α > 0 or p ≥ q + 1 if α < 0 then

E(0)− b1

4 tn(q+1)
≤
∫ (
|∇u(x, t)|2 + |∇v(x, t)|2

)
dx.

And if moreover X ≤ 0 (e.g., α ≤ 0 and β ≤ 0), we also have

‖∇u(t)‖L2
x(Rn)+‖∇v(t)‖L2

x(Rn) ≤ min

{(
c0 +

2b
1/2
1

n(q + 1)

)
− b

1/2
1 (2− n(q + 1))

n(q + 1)
t−n(q+1)/2, E(0)

}
,

and

‖xu(t)‖L2
x

+ ‖x v(t)‖L2
x
≤ 2t

(
c0 +

2b
1/2
1

n(q + 1)

)
+

4b
1/2
1 (n(q + 1)− 1)

n(q + 1)
t1−n(q+1)/2, (1.16)

and

lim
t→+∞

∫ (
|∇u(x, t)|2 + |∇v(x, t)|2

)
dx = E(0),

where b1 := b1(n, q) ≥ 0 and c0 = c0(u0, v0) ≥ 0 are defined in (5.20) and (5.16) respectively.

Remark. i) The restriction t ≥ 1 in Theorem 1.2 can be replaced by t ≥ c0, where c0 > 0 is any

arbitrarily small constant.

ii) Observe also that using interpolation

‖u‖Hθ ≤ ‖u‖1−θL2 ‖u‖θH1 , θ ∈ [0, 1],

the theorem above also gives the growth of the Sobolev norm in Hθ(Rn), θ ∈ [0, 1].

The growth of Sobolev norms, in the Schrödinger equation was studied by J. Bourgain in [6].

See also [31], [9] and references there.

iii) If np = 2 and n(q + 1) = 2 then

∂

∂t

[∫ (
|J(u)|2 + |J(v)|2

)
dx− tf(t)

]
= 0

(see equality (5.1)) and therefore if α < 0, β < 0 and u0, v0 ∈ L2(|x|2dx) then

‖v‖2p+2
L2p+2 + ‖u‖2p+2

L2p+2 ≤
(p+ 1)(‖xu0‖2L2 + ‖xv0‖2L2)

4|α|t2

and

‖uv‖q+2
Lq+2 ≤

(q + 2)(‖xu0‖2L2 + ‖xv0‖2L2)

8|β|t2

And our blow-up result is

Theorem 1.3. Let u0, v0 ∈ L2(|x|2dx) ∩H1(Rn) and u(t), v(t) be solutions of (1.1), we have

1) If np ≥ 2 and p ≤ q+ 1 if β > 0 or p ≥ q+ 1 if β < 0, then there exists 0 < T ∗ <∞ such that

lim
t→T ∗

‖∇u(t)‖L2 =∞, lim
t→T ∗

‖∇v(t)‖L2 =∞,

in the following cases
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(1)

E(0) = 0 and Im

∫
(u0x · ∇u0 + v0x · ∇v0) dx < 0,

(2)

E(0) < 0,

(3)

E(0) > 0,

and (
Im

∫
(u0x · ∇u0 + v0x · ∇v0) dx

)2

>
npE(0)

2

∫
|x|2(|u0|2 + |v0|2) dx.

2) If n(q + 1) ≥ 2 and p ≥ q + 1 if α > 0 or p ≤ q + 1 if α < 0, then there exists 0 < T ∗ < ∞
such that

lim
t→T ∗

‖∇u(t)‖L2 =∞, lim
t→T ∗

‖∇v(t)‖L2 =∞,

in the following cases:

(1)

E(0) = 0 and Im

∫
(u0x · ∇u0 + v0x · ∇v0) dx < 0,

(2)

E(0) < 0,

(3)

E(0) > 0,

and(
Im

∫
(u0x · ∇u0 + v0x · ∇v0) dx

)2

>
n(q + 1)E(0)

2

∫
|x|2(|u0|2 + |v0|2)dx.

Remark. If

lim
t→T ∗

‖∇u(t)‖L2 =∞, lim
t→T ∗

‖∇v(t)‖L2 =∞,

then by the energy conservation (1.7) we have that also limt→T ∗ X(t) =∞, and this limit implies

lim
t→T ∗

‖u(t)‖L∞ =∞, lim
t→T ∗

‖v(t)‖L∞ =∞.

ii)
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2. Notation

Let x = (x1, . . . , xn) ∈ Rn, we denote the partial derivative of u with relation to spatial variable

xj as uxj , ∂xju or ∂u
∂xj

, similarly we denote the partial derivative of u with relation to time variable

t ∈ R as ut, ∂tu or ∂u
∂t . All the integrals in our work are defined in Rn, in this way∫

f(x) dx :=

∫
Rn
f(x) dx.

If f(x), x ∈ Rn is a function, the laplacian of f is denoted by

∆f(x) =
n∑
j=1

∂2
xjf(x), x = (x1, · · · , xn).

The gradient of f is denoted by

∇f(x) = (∂x1f, · · · , ∂xnf).

The product of two vectors x = (x1, . . . , xn) ∈ Cn y = (y1, . . . , yn) ∈ Cn is denoted by

x · y =
n∑
j=1

xjyj ,

and this manner |x|2 = x · x.

3. Preliminary Results

In this section we present important results that will be useful in the following sections.

Lemma 3.1. (Gronwall Inequality) Let u and β be continuous and α and δ Riemann integrable

functions on J = [a, b] with δ and β nonnegative on J .

If u satisfies the integral inequality

u(t) ≤ α(t) + δ(t)

∫ t

a
β(s)u(s)ds, ∀t ∈ J,

then

u(t) ≤ α(t) + δ(t)

∫ t

a
α(s)β(s) exp

(∫ t

s
δ(r)β(r)dr

)
.

Proof. See a proof of this lemma in Theorem 11 of [15]. �

Observe that there are no assumptions on the signs of the functions α and u.

Theorem 3.1. (Existence of solutions in the energy space). Assume 0 ≤ max{p, q+1} < 2/(n−2)

if α < 0 and β < 0 (focusing case), otherwise 0 ≤ max{p, q + 1} < 2/n. Then for any (u0, v0) ∈
H1(Rn)×H1(Rn), there are Tmax > 0 and a unique solution (u, v) ∈ C([0, Tmax);H1(Rn)×H1(Rn))

of (1.1) satisfying (u(0), v(0)) = (u0, v0). Moreover, there holds the blow up alternative:

(i) Tmax =∞
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or

(ii) Tmax <∞ and

lim
t→Tmax

(‖∇u(t)||L2(Rn) + ‖∇v(t)||L2(Rn)) =∞.

When (i) occurs, we say that the solution is global. When (ii) occurs, we say that the solution

blows up in finite time T .

The proof of this theorem is similar to that for the Schrödinger equation and it combines Strichartz

estimates with the contraction mapping principle.

Lemma 3.2. Let u and v be solutions of (1.1), then

∂

∂t

{∫
Im (ux · ∇u+ v x · ∇v) dx

}
=2E(0) +

α(2− np)
p+ 1

∫ (
|u|2p+2 + |v|2p+2

)
dx

+
2β (2− n(1 + q))

q + 2

∫
|u v|q+2dx.

(3.1)

Proof. Differentiating in the variable t and integrating by parts we obtain

∂

∂t

{∫
Im (ux · ∇u) dx

}
= 2Im

∫
ut x · ∇udx− n

∫
Im (uut) dx, (3.2)

using the first equation in (1.1) we have∫
Im (uut) dx = −

∫
|∇u|2dx+ α

∫
|u|2p+2dx+ β

∫
|u|2+q |v|2+qdx, (3.3)

similarly

Im

∫
ut x · ∇udx =Re

∫
∆ux · ∇u dx+ αRe

∫
|u|2pux · ∇u dx

+ βRe

∫
|u|q |v|2+qux · ∇u dx.

(3.4)

Using integration by parts twice, it is easy to see that∫
∆ux · ∇u dx = (n− 2)

∫
|∇u|2dx−

∫
∆ux · ∇u dx

and therefore

Re

∫
∆ux · ∇u dx =

(n− 2)

2

∫
|∇u|2dx. (3.5)

Integrating by parts again gives

2Re

∫
|u|2pux · ∇u dx =− n

∫
|u|2p+2dx−

∫
|u|2 x · ∇(|u|2p)dx

=− n
∫
|u|2p+2dx− 2p

2p+ 2

∫
x · ∇(|u|2p+2)dx

=− n
∫
|u|2p+2dx+

2pn

2p+ 2

∫
|u|2p+2dx

=
−2n

2p+ 2

∫
|u|2p+2dx.

(3.6)
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Similarly

2Re

∫
|u|q |v|2+qux · ∇u dx =− n

∫
|uv|q+2dx− q

q + 2

∫
|v|q+2 x · ∇(|u|q+2)dx

−
∫
|u|q+2 x · ∇(|v|q+2)dx.

(3.7)

Combining (3.4)-(3.7) it follows that

Im

∫
ut x · ∇u =

(n− 2)

2

∫
|∇u|2 dx− nα

2p+ 2

∫
|u|2p+2dx− nβ

2

∫
|uv|q+2dx

− qβ

2(q + 2)

∫
|v|q+2 x · ∇(|u|q+2)dx− β

2

∫
|u|q+2 x · ∇(|v|q+2)dx.

(3.8)

The symmetry of (1.1) in u and v and one integration by parts gives

Im

∫
ut x·∇u+ vt x · ∇v dx =

(n− 2)

2

∫ (
|∇u|2 + |∇v|2

)
dx

− nα

2p+ 2

∫ (
|u|2p+2 + |v|2p+2

)
dx− nβ

∫
|uv|q+2dx

qβ n

2(q + 2)

∫
|v|q+2|u|q+2dx+

β n

2

∫
|u|q+2 |v|q+2dx.

(3.9)

Now from (3.2), (3.3) and (3.9) is not hard to see that

∂

∂t

{∫
Im (ux · ∇u+ v x · ∇v) dx

}
= 2

∫ (
|∇u|2 + |∇v|2

)
dx

− nαp

p+ 1

∫ (
|u|2p+2 + |v|2p+2

)
dx− 2nβ(q + 1)

q + 2

∫
|uv|q+2dx.

(3.10)

We conclude the proof of Lemma by using the conservation law (1.7). �

The following Lemma is an obvious result.

Lemma 3.3. Let u and v be solutions of the coupled system (1.1), we have

∂

∂t
|u|2 = 2 Im(∆uu) and

∂

∂t
|v|2 = 2 Im(∆v v). (3.11)

The following lemma will be useful to prove the asymptotic behaviour of solutions of (1.1)

Lemma 3.4. Let u0, v0 ∈ L2(|x|2dx)∩H1(Rn) and u(t), v(t) solutions of (1.1), then if 0 ≤ t ≤ T ,

we have (∫
|x|2|u(x, t)|2dx

)1/2

≤
(∫
|x|2|u0|2dx

)1/2

+ 2

∫ t

0
‖∇u(t′)‖L2dt′, (3.12)

and (∫
|x|2|v(x, t)|2dx

)1/2

≤
(∫
|x|2|v0|2dx

)1/2

+ 2

∫ t

0
‖∇v(t′)‖L2dt′. (3.13)
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Proof. Using Lemma 3.3 we obtain

∂

∂t

∫
|x|2|u(t)|2 dx =

∫
|x|2∂ |u(t)|2

∂t
dx = 2

∫
|x|2Im (u∆u) dx, (3.14)

integrating by parts once, we have∫
|x|2u∆u dx = −2

∫
ux · ∇u dx−

∫
|x|2|∇u|2 dx, (3.15)

inserting (3.15) in (3.14) we arrive to

∂

∂t

∫
|x|2|u(t)|2 dx = −4Im

∫
ux · ∇u dx

= 4Im

∫
ux · ∇u dx.

(3.16)

Let Ω(t) = ‖xu‖L2 , then using Cauchy-Schwartz, the inequality (3.16) implies

dΩ(t)2

dt
= 2Ω(t)

dΩ(t)

dt
≤ 4Ω(t)‖∇u‖L2 , (3.17)

and from (3.17) integrating, we have

Ω(t) ≤ Ω(0) + 2

∫ t

0
‖∇u‖L2dt′.

Similarly we obtain the inequality (3.13). �

In this paper we will use the operators J and L defined by

Jw = ei|x|
2/4t(2it)∇(e−i|x|

2/4tw) = (x+ 2it∇)w, Lw = (i∂t + ∆ )w.

With this notation the system (1.1) isLu = −F (u, v) = −(α|u|2p + β|u|q|v|q+2)u,

Lv = −F (v, u).
(3.18)

We note that (see Remark after proof Theorem 3.2).

J(Lu) = L(Ju) (3.19)

Lemma 3.5. Let u and v be solutions of coupled system (1.1), then we have

Im(

∫
J(|u|2pu) · Ju dx) = −2(np− 2)

(p+ 1)
t

∫
|u|2p+2 dx− 2

(p+ 1)

∂

∂t

{
t2
∫
|u|2p+2 dx

}
,

and

Im(

∫
J(|v|2pv) · Jv dx) = −2(np− 2)

(p+ 1)
t

∫
|v|2p+2 dx− 2

(p+ 1)

∂

∂t

{
t2
∫
|v|2p+2 dx

}
.
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Proof. Using the definition of J , the scalar product of vectors and differentiating gives

J(|u|2pu) · Ju =|x|2|u|2p+2 − 2it|u|2pux · ∇u+ 2itu∇(|u|2pu) · x+ 4t2∇(|u|2pu) · ∇u

=|x|2|u|2p+2 + 2it|u|2px · (u∇u− u∇u) + 2it|u|2∇(|u|2p) · x

+ 4t2|u|2p|∇u|2 + 4t2u∇(|u|2p) · ∇u,

taking the imaginary part we have

Im
(
J(|u|2pu) · Ju

)
=2t|u|2∇(|u|2p) · x+ 4t2Im

(
u∇(|u|2p).∇u

)
=2t

p

p+ 1
∇(|u|2p+2) · x+ 4t2Im

(
u∇(|u|2p).∇u

)
,

(3.20)

and after integration over Rn, we obtain

Im

∫
J(|u|2pu)Ju dx =

2tp

p+ 1

∫
∇(|u|2p+2) · x dx+ 4t2Im

∫
u∇(|u|2p).∇u) dx. (3.21)

Integrating by parts, we have∫
∇(|u|2p+2) · x dx = −n

∫
|u|2p+2 dx,

and ∫
u∇(|u|2p).∇u = −

∫
|u|2p|∇u|2 dx−

∫
|u|2pu∆u dx.

Substituting into the equation (3.21) and applying Lemma 3.3, we arrive to

Im

∫
J(|u|2pu)Ju dx = − 2tpn

p+ 1

∫
|u|2p+2 dx− 4t2

∫
|u|2pIm ( ∆uu) dx

= − 2tpn

p+ 1

∫
|u|2p+2 dx− 2t2

∫
|u|2p ∂

∂t
|u|2 dx

= − 2tpn

p+ 1

∫
|u|2p+2 dx− 2t2

p+ 1

∫
∂

∂t
|u|2p+2 dx,

we concludes the proof by observing that

t2
∂

∂t

(
|u|2p+2

)
=

∂

∂t

(
t2 |u|2p+2

)
− 2t |u|2p+2.

�

Lemma 3.6. Let u and v be solutions of coupled system (1.1), then we have

Im(

∫
J(|u|q|v|q+2u) · Ju dx) + Im(

∫
J(|v|q|u|q+2v) · Jv dx) =

− 4t (n(q + 1)− 2)

q + 2

∫
|u v|q+2 dx− 4

q + 2

∂

∂t

{
t2
∫ (
|u v|q+2

)
dx

}
.

(3.22)

Proof. From the definition of J we have

J(|u|q|v|q+2u) = |u|q|v|q+2ux+ 2it∇(|u|q|v|q+2u), (3.23)
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making the scalar product of (3.23) with Ju = xu− 2it∇u and differentiating gives

J(|u|q|v|q+2u)·Ju = |x|2|u|q|v|q+2|u|2 − 2it|u|q|v|q+2ux · ∇u+ 2itu x · ∇(|u|q|v|q+2u)

+ 4t2∇(|u|q|v|q+2u) · ∇u

=|x|2|u|q|v|q+2|u|2 + 2it|u|q |v|q+2x · (u∇u− u∇u) + 2it|u|2 x · ∇(|u|q|v|q+2)

+ 4t2|u|q|v|q+2|∇u|2 + +4t2u∇(|u|q|v|q+2) · ∇u.

(3.24)

Taking the imaginary part of (3.24) and differentiating again, we obtain

Im(J(|u|q|v|q+2u) · Ju) =2t|u|2 x · ∇(|u|q|v|q+2) + 4t2Im
(
u∇(|u|q|v|q+2) · ∇u

)
=2t|v|q+2 x · |u|2∇(|u|q) + 2t|u|q+2 x · ∇(|v|q+2)

+ 4t2Im
(
u∇(|u|q|v|q+2) · ∇u

)
=

2tq

2 + q
|v|q+2 x · ∇(|u|q+2) + 2t|u|q+2 x · ∇(|v|q+2)

+ 4t2Im
(
u∇(|u|q|v|q+2) · ∇u

)
.

(3.25)

Observe that∫
u∇(|u|q|v|q+2) · ∇udx =−

∫
|u|q|v|q+2 |∇u|2dx−

∫
|u|q|v|q+2∆uu dx,

using the Lemma 3.3 it follows that

4t2Im

∫
u∇(|u|q|v|q+2) · ∇udx =− 4t2

∫
|u|q |v|q+2Im (∆v v) dx

=− 2t2
∫
|v|q+2 |u|q ∂

∂t
|u|2 dx

=− 4t2

q + 2

∫
|v|q+2 ∂

∂t
|u|q+2 dx.

(3.26)

Combining (3.25), (3.26) and integrating by parts in Rn, it is not difficult to see that∫
Im(J(|u|q|v|q+2u)·Ju)dx+

∫
Im(J(|v|q|u|q+2) · Jv)dx =

2tq

q + 2

∫
x · ∇(|u v|q+2)dx

+ 2t

∫
x · ∇(|u v|q+2)dx− 4t2

q + 2

∫
∂

∂t

(
|u v|q+2

)
dx

=− 4tn(q + 1)

q + 2

∫
|u v|q+2 dx− 4t2

q + 2

∫
∂

∂t

(
|u v|q+2

)
dx,

(3.27)

the proof of lemma follows using the following identity

t2
∂

∂t

(
|u v|q+2

)
=

∂

∂t

(
t2 |u v|q+2

)
− 2t |u v|q+2.

�
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Theorem 3.2. (Pseudo-Conformal Law) Let u and v be solutions of the coupled system (1.1),

then

∂

∂t

{∫
|Ju|2 + |Jv|2 − 4αt2

(p+ 1)

∫ [
|u|2(p+1) + |v|2(q+1)

]
dx− 8βt2

(q + 2)

∫
|u v|q+2 dx

}
=

4α(np− 2) t

(p+ 1)

∫ [
|u|2(p+1) + |v|2(q+1)

]
dx+

8βt

(q + 2)
[(q + 1)n− 2]

∫
|u v|q+2 dx.

(3.28)

Proof. From (3.18) and (3.19), we get

L(Ju) = J(Lu) = −αJ(|u|2pu)− βJ(|u|q|v|q+2u) (3.29)

and by the definition of L, we have

i
∂

∂t
(Ju) + ∆(Ju) = −αJ(|u|2pu)− βJ(|u|q|v|q+2u). (3.30)

Making the scalar product of (3.30) with Ju, taking two times the imaginary part, after inte-

gration in Rn, we obtain

∂

∂t

∫
|Ju(x)|2 dx− 2Im

∫
|∇(Ju(x))|2 dx = − 2αIm

∫
J(|u|2pu) · Ju dx

− 2βIm

∫
J(|u|q|v|q+2u) · Ju dx.

(3.31)

Therefore

∂

∂t

∫
|Ju(x)|2 dx = −2αIm(

∫
J(|u|2pu) · Ju dx)− 2βIm(

∫
J(|u|q|v|q+2u) · Ju dx). (3.32)

Similarly

∂

∂t

∫
|Jv(x)|2 dx = −2αIm(

∫
J(|v|2pv) · Jv dx)− 2βIm(

∫
J(|v|q|u|q+2v) · Jv dx). (3.33)

Adding (3.32) and (3.33) and applying the lemmas 3.5 and 3.6 we concludes the proof. �

Remark. Let u ∈ S(Rn), we consider the following multiplication differential operator

P̂ u(ξ) =
n∑
l=1

ζlξ
θl û(ξ), ξ ∈ Rn, (3.34)

where ζl ∈ R and the multi-index θl = (θjl )j=1,...,n ∈ (Z+)n. In order to the differential operators

L = ∂t − iP, J = x+ tQ, x ∈ Rn,

commutes, where Q is also a multiplication differential operator, is easy to see that we need

Q(u) =i(P (xu)− xP (u)), x = (xj)j=1,...,n ∈ Rn

=i(P (xju)− xjP (u))j=1,...,n,
(3.35)

and using properties of Fourier transform we have

Q̂u(ξ) =

(
n∑
l=1

ζlθ
j
l ξ
θl−ej û(ξ)

)
j=1,...,n

, ξ ∈ Rn, (3.36)
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where the canonical unit vetor ej =

j︷ ︸︸ ︷
(0, . . . , 0, 1, 0, . . . , 0). Observe that in this case J also commutes

with cL for any constant c ∈ C and reciprocally L commutes with cJ for any constant c ∈ C.

In our case, if we consider

Pu = ∆u⇒ P̂ u(ξ) = −
n∑
l=1

ξ2el û(ξ),

and by definition of Q (see (3.36)) we obtain

Q̂u(ξ) = −
(
2ξ2ej−ej û(ξ)

)
j=1,...,n

= −2ξû(ξ),

and therefore

Qu = 2i∇u.

In the case n = 1, considering the operator ∂t + ∂2k+1
x , x ∈ R, then

P̂ u(ξ) = (−1)k+1ξ2k+1û(ξ), ξ ∈ R,

and Q̂u(ξ) = (−1)k+1(2k + 1)ξ2kû(ξ), thus

Qu = (−1)k(2k + 1)∂2k
x u,

in the particular case k = 1 (KdV equation), we obtain

J = x− 3t∂2
x.

4. A priori estimates in H1(Rn)×H1(Rn)

Here we will give conditions about of the global existence. We begin with the following result

well-known result

Lemma 4.1. (The Gagliardo-Nirenberg inequality) Let f : Rn 7→ R. Fix 1 ≤ q, r ≤ ∞ and a

natural number m. Suppose also that a real number λ and a natural number j are such that

1

p
=
j

n
+

(
1

r
− m

n

)
λ+

1− λ
q

and
j

m
≤ λ ≤ 1.

Then

(1) every function f : Rn 7→ R that lies in Lq(Rn) with mth derivative in Lr(Rn) also has jth

derivative in Lp(Rn);

(2) and, furthermore, there exists a constant C depending only on m,n, j, q, r and λ such that

‖Djf‖Lp ≤ C‖Dmf‖λLr‖f‖1−λLq . (4.1)
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In the particular case j = 0, r = q = 2 and m = 1, we have

‖f‖Lp ≤ C‖Df‖λL2‖f‖1−λL2 , (4.2)

where

0 ≤ λ := λ(r) =
(r − 2)n

2r
≤ 1.

Considering the energy equation (1.7), we can to obtain an “a priori” estimate to

‖∇u(t)‖2L2(Rn) + ‖∇v(t)‖2L2(Rn) (4.3)

if (2p+ 2)λ(2p+ 2) ≤ 2 and (4 + 2q)λ(4 + 2q) ≤ 2, i.e. if

0 < p ≤ 2

n
, 0 < q ≤ 2

n
− 1, (4.4)

or if

0 < p ≤ 2

n
, and β ≤ 0,

or if

0 < q ≤ 2

n
− 1, and α ≤ 0,

where in the equality, we obtain “a priori” estimate only to ‖u0‖L2 ≤ C and ‖v0‖L2 ≤ C (small

data).

We observe that if X ≤ 0, then from (1.7) it follows that∫ (
|∇u(x, t)|2 + |∇v(x, t)|2

)
dx ≤ E(u0, v0), ∀t ≥ 0. (4.5)

In the next section we will see that in some cases when X ≤ 0, we can also get us a better

asymptotic growth to (4.3).

5. Asymptotic Growth in the Energy Space

In this section we will prove the Theorem 1.2.

From Theorem 3.2 we obtain

∂

∂t

[∫ (
|J(u)|2 + |J(v)|2

)
dx− tf(t)

]
=

4tα(np− 2)

p+ 1

∫
|u|2p+2 + |v|2p+2 dx

+
8tβ[n(q + 1)− 2]

q + 2

∫
|uv|q+2 dx,

(5.1)

where the function

f(t) = 4tX(t) =
4αt

(p+ 1)

∫ [
|u|2(p+1) + |v|2(p+1)

]
dx+

8βt

(q + 2)

∫
|uv|q+2 dx. (5.2)

We consider two cases

Case I If

β n(q + 1) ≤ β np⇐⇒


p ≥ q + 1 if β > 0,

or

p ≤ q + 1 if β < 0.
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In this case is

8tβ[n(q + 1)− 2] ≤ 8tβ(np− 2),

and (5.1) implies

∂

∂t

[∫ (
|J(u)|2 + |J(v)|2

)
dx− tf(t)

]
≤4tα(np− 2)

p+ 1

∫
|u|2p+2 + |v|2p+2 dx

+
8tβ(np− 2)

q + 2

∫
|uv|q+2 dx

=(np− 2)f(t),

(5.3)

integrating the inequality above∫
(|J(u)|2+|J(v)|2) dx− tf(t) ≤ a0 + (np− 2)

∫ t

0
f(t′)dt′

≤ a0 + (np− 2)

∫ 1

0
f(t′)dt′ + (np− 2)

∫ t

1
f(t′)dt′,

(5.4)

where

a0 =

∫
|x|2

(
|u0(x)|2 + |v0(x)|2

)
dx, (5.5)

which gives

F (t) := −tf(t) ≤ b0 +

∫ t

1

(
2− np
t′

)
F (t′)dt′, (5.6)

where

b0 = b0(n, p) := a0 + (np− 2)

∫ 1

0
f(t′)dt′. (5.7)

The Gronwall inequality in (5.6) with np ≤ 2, implies

F (t) ≤ b0e−
∫ t
1 (np−2)/t′dt′ = b0t

2−np, t ≥ 1. (5.8)

From conservation of energy (1.7) we can deduce∫ (
|∇u|2 + |∇v|2

)
dx = E(0) +

f(t)

4 t
, (5.9)

and from (5.8) and (5.9) it follows that∫ (
|∇u|2 + |∇v|2

)
dx ≥ E(0)− b0

4 tnp
, t ≥ 1.

On the other hand, if f(t) = 4tX(t) ≤ 0 (e.g. α ≤ 0 and β ≤ 0) the above inequality and (4.5)

imply (1.15). and from inequalities (5.4)-(5.8) we obtain∫
(|J(u)|2 + |J(v)|2) dx+ |tf(t)| ≤ b0 + (2− np)

∫ t

1

b0t
′2−np

t′
dt′

= b0t
2−np if np ≤ 2 and t ≥ 1.

(5.10)

And by definition of J it follows that

|J(u)|2 = |x|2|u|2 + 4t2|∇u|2 − 4tImux · ∇u.



COUPLED SCHRÖDINGER SYSTEM 17

Hence if np ≤ 2, using Cauchy-Schwartz we get∫
|x|2

(
|u|2 + |v|2

)
dx+ 4t2

∫ (
|∇u|2 + |∇v|2

)
dx ≤ b0t2−np + 4t

∫
Imux · ∇udx

+ 4t

∫
Imv x · ∇vdx

≤b0t2−np + 4t‖xu‖L2‖∇u‖L2 + 4t‖x v‖L2‖∇v‖L2 ,

(5.11)

and from (5.11) we have

(‖xu‖L2 − 2t‖∇u‖L2)2 + (‖x v‖L2 − 2t‖∇v‖L2)2 ≤ b0 t2−np, (5.12)

and consequently

2t (‖∇u‖L2 + ‖∇v‖L2) ≤ ‖xu‖L2 + ‖x v‖L2 + 2b
1/2
0 t1−np/2, (5.13)

therefore using Lemma 3.4 we obtain

2t (‖∇u‖L2 + ‖∇v‖L2) ≤ 2b
1/2
0 t1−np/2 + a0 + 2

∫ t

0
(‖∇u‖L2 + ‖∇v‖L2) dt′. (5.14)

Let W(t) = ‖∇u(t)‖L2 + ‖∇v(t)‖L2 , the above inequality gives

tW(t) ≤ b1/20 t1−np/2 +
a0

2
+

∫ t

0
W(t′)dt′

= b
1/2
0 t1−np/2 +

a0

2
+

∫ 1

0
W(t′)dt′ +

∫ t

1
W(t′)dt′

:= b
1/2
0 t1−np/2 + c0 +

∫ t

1

(
1

t′

)
t′W(t′)dt′,

(5.15)

where

c0 =
a0

2
+

∫ 1

0
W(t′)dt′, (5.16)

and a0 as defined in (5.5), and by Gronwall’s inequality (see Lema 3.1), we concludes that if np ≤ 2

and t ≥ 1, then

tW(t) ≤b1/20 t1−np/2 + c0 +

∫ t

1

(
b
1/2
0 t′1−np/2 + c0

) 1

t′
exp

{∫ t

t′

1

r
dr

}
dt′

≤b1/20 t1−np/2 + c0 + t

∫ t

1

(
b
1/2
0 t′1−np/2 + c0

) 1

t′2
dt′.

(5.17)

Consequently, if np ≤ 2 and t ≥ 1 we estimate W(t) by

W(t) ≤

(
2b

1/2
0

np
+ c0

)
− b

1/2
0 (2− np)

np
t−np/2.

Using this inequality and (5.12) is easy to verify the estimate (1.14).

Case II If

αn(q + 1) ≥ αnp⇐⇒

p ≤ q + 1 if α > 0,

p ≥ q + 1 if α < 0.
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In this case is

4tα[n(q + 1)− 2] ≥ 4tα(np− 2),

and (5.1) implies

∂

∂t

[∫ (
|J(u)|2 + |J(v)|2

)
dx− tf(t)

]
≤4tα[n(q + 1)− 2]

p+ 1

∫
|u|2p+2 + |v|2p+2 dx

+
8tβ[n(q + 1)− 2]

q + 2

∫
|uv|q+2 dx

=− [2− n(q + 1)]f(t),

(5.18)

and similarly as the above case we can show that if n(q + 1) ≤ 2, then∫ (
|∇u|2 + |∇v|2

)
dx =E(0) +

f(t)

4 t

≥E(0)− b1

4tn(q+1)
, t ≥ 1,

(5.19)

where

b1 = b1(n, q) := a0 − [2− n(q + 1)]

∫ 1

0
f(t′)dt′. (5.20)

Similarly as in Case I, if f(t) = 4tX(t) ≤ 0, from the inequalities above we obtain∫
(|J(u)|2 + |J(v)|2) dx+ |tf(t)| ≤b1 + (2− n(q + 1))

∫ t

1

b1t
′2−n(q+1)

t′
dt′

=b1t
2−n(q+1) if n(q + 1) ≤ 2 and t ≥ 1.

(5.21)

Let W(t) = ‖∇u(t)‖L2 + ‖∇v(t)‖L2 , as in Case I, we obtain

tW(t) ≤b1/21 t1−n(q+1)/2 + c0 +

∫ t

1

(
b
1/2
1 t′1−n(q+1)/2 + c0

) 1

t′
exp

{∫ t

t′

1

r
dr

}
dt′

≤b1/21 t1−n(q+1)/2 + c0 + t

∫ t

1

(
b
1/2
1 t′1−n(q+1)/2 + c0

) 1

t′2
dt′.

(5.22)

Consequently, if n(q + 1) ≤ 2 and t ≥ 1 we estimate W (t) by

W(t) ≤

(
2b

1/2
1

n(q + 1)
+ c0

)
− b

1/2
1 (2− n(q + 1))

n(q + 1)
t−n(q+1)/2.

Finally using this inequality and (5.12) is easy to verify the estimate (1.16).

Remark. Let P (t) = ‖xu(t)‖2L2
x

+ ‖x v(t)‖2L2
x

and W (t) = ‖∇u(t)‖2L2 + ‖∇v(t)‖2L2, then

i) If E(0) > 1 and P (0)� 1 is very small, then it is not difficult to see that in the right side of

(1.13) we have that (
c0 +

2b
1/2
0

np

)
− b

1/2
0 (2− np)

np
t−np/2 < E(0).
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ii) With the conditions of Theorem 1.2, i.e. if np ≤ 2 and p ≥ q + 1 if β > 0 or p ≤ q + 1 if

β < 0 and X ≤ 0 (see (1.8), e.g., α ≤ 0 and β ≤ 0) and using Lemma 3.4 and Cauchy-Schwartz

inequality we have

2t2W (t)− b0t2−np ≤P (t) ≤ b0t2−np + 2a0 + 8 t

∫ t

0
W (t′) dt′,

and similarly if n(q + 1) ≤ 2 and p ≥ q + 1 if α > 0 or p ≤ q + 1 if α < 0 and X ≤ 0, then

2t2W (t)− b0t2−n(q+1) ≤P (t) ≤ b0t2−n(q+1) + 2a0 + 8 t

∫ t

0
W (t′) dt′.

iii) Using equality (3.16) in the first inequality from (5.11), we obtain

P (t) + 4t2W (t) ≤b0t2−np + 4t

∫
Imux · ∇udx+ 4t

∫
Imv x · ∇vdx

≤b0t2−np + tP ′(t),

hence

P (t) + 4t2W (t) ≤ b0t2−np + tP ′(t),

it follows that

4W (t)− b0
tnp
≤ d

dt

(
P (t)

t

)
.

6. blow-up in H1(Rn)×H1(Rn)

In this section we will prove the Theorem 1.3. Using Lemma 3.2 and equality (3.16) we get

∂2

∂t2

∫
|x|2(|u(t)|2 + |v(t)|2) dx =4

∂

∂t

{
Im

∫
(ux · ∇u+ vx · ∇v) dx

}
=8E(0) +

4α(2− np)
p+ 1

∫ (
|u|2p+2 + |v|2p+2

)
dx

+
8β (2− n(1 + q))

q + 2

∫
|u v|q+2dx.

(6.1)

We consider two cases

Case I If

β p ≤ β (q + 1)⇐⇒

p− q ≤ 1 if β > 0,

p− q ≥ 1 if β < 0.

In this case is

8β[2− n(q + 1)] ≤ 8β(2− np),
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and (6.1) gives

∂2

∂t2

∫
|x|2(|u(t)|2 + |v(t)|2) dx ≤8E(0) +

4α(2− np)
p+ 1

∫ (
|u|2p+2 + |v|2p+2

)
dx

+
8β (2− np)

q + 2

∫
|u v|q+2dx

≤8E(0)− (np− 2)f(t)

t
.

(6.2)

From conservation of the energy (1.7) we can deduce

−f(t)

4 t
= E(0)−

∫ (
|∇u|2 + |∇v|2

)
dx, (6.3)

therefore

−f(t)

t
≤ 4E(0). (6.4)

Combining (6.2), (6.4) and that np ≥ 2, we have

∂2

∂t2

∫
|x|2(|u(t)|2 + |v(t)|2) dx ≤4npE(0). (6.5)

Integrating and using (3.16) we can show that

∂

∂t

∫
|x|2(|u(t)|2 + |v(t)|2) dx ≤ 4Im

∫
(u0 x · ∇u0 + v0 x · ∇v0) dx+ 4npE(0)t, (6.6)

integrating again we obtain∫
|x|2(|u(t)|2 + |v(t)|2)dx ≤

∫
|x|2(|u0|2 + |v0|2)dx+ 4tIm

∫
(u0x · ∇u0 + v0x · ∇v0) dx

+ 2npE(0)t2

:=A0 +B0t+ C0t
2 := P0(t).

(6.7)

It is not difficult to see that there exists a T > 0 such that
∫
|x|2(|u(T )|2 + |v(T )|2)dx = 0 in the

following cases:

(1)

E(0) = 0 and Im

∫
(u0x · ∇u0 + v0x · ∇v0) dx < 0,

(2)

E(0) < 0,

(3)

E(0) > 0,

and (
Im

∫
(u0x · ∇u0 + v0x · ∇v0) dx

)2

>
npE(0)

2

∫
|x|2(|u0|2 + |v0|2)dx.
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Figure 1. The graph of P0(t) corresponding to the case (1).

Figure 2. The graph of P0(t) corresponding to the case (2).

Figure 3. The graph of P0(t) corresponding to the case (3).

The following graphs are examples corresponding to cases (1), (2) and (3) above.

Now the Heisenberg inequality (Uncertainty inequality)

‖f‖2L2 ≤
2

n
‖xf‖L2‖∇f‖L2 , (6.8)
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implies that if the initial data u0 and v0 satisfies (1), (2) or (3) then, there exists 0 < T ∗ ≤ T such

that

lim
t→T ∗

‖∇u(t)‖L2 =∞, lim
t→T ∗

‖∇v(t)‖L2 =∞.

Case II If

α (q + 1) < αp ⇐⇒

p− q > 1 if α > 0,

p− q < 1 if α < 0.

In this case is

4α(2− np) ≤ 4α[2− n(q + 1)],

and (6.1) gives

∂2

∂t2

∫
|x|2(|u(t)|2 + |v(t)|2) dx ≤8E(0)− (n(q + 1)− 2)f(t)

t
.

As in Case I, using (6.4) and n(q + 1) ≥ 2, we have

∂2

∂t2

∫
|x|2(|u(t)|2 + |v(t)|2) dx ≤4n(1 + q)E(0).

Integrating two times and using (3.16) we obtain∫
|x|2(|u(t)|2 + |v(t)|2)dx ≤

∫
|x|2(|u0|2 + |v0|2)dx+ 4tIm

∫
(u0x · ∇u0 + v0x · ∇v0) dx

+ 2n(1 + q)E(0)t2

:=A0 +B0t+ C1t
2.

It is not difficult to see that there exists a T > 0 such that
∫
|x|2(|u(T )|2 + |v(T )|2)dx = 0 in the

following cases:

(1)

E(0) = 0 and Im

∫
(u0x · ∇u0 + v0x · ∇v0) dx < 0,

(2)

E(0) < 0,

(3)

E(0) > 0,

and(
Im

∫
(u0x · ∇u0 + v0x · ∇v0) dx

)2

>
n(q + 1)E(0)

2

∫
|x|2(|u0|2 + |v0|2)dx.

Using the Heinseberg inequality (6.8) again we concludes in this case that if the initial data u0

and v0 satisfies (1), (2) or (3) then, there exists 0 < T ∗ ≤ T such that

lim
t→T ∗

‖∇u(t)‖L2 =∞, lim
t→T ∗

‖∇v(t)‖L2 =∞.
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