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Abstract

We investigate the steady—state equations of motion of the generalized Newtonian fluid in a bounded
domainQ c R¥, whenN = 2 or N = 3. Applying the tools of nonlinear analysis (Smale’s theorem and
properties of Fredholm operators, etc.), we show that if the dynamic stress tensor Basttheture then
the solution set is finite and the solutions &re-functions of the external volume forédor genericf. We
also derive a series of properties of related operators in the case of a more ggn®radtructure, show
that the solution set is compactif> 3N /(N + 2) and explain why the same method as in the gase2
cannot be applied in the case of genexal
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1 Introduction

1.1. Specification of the dynamic stress tensoiVe investigate the structure of the set of steady solutions to
the equations of motion of a class of generalized Newtonian fluids in a bounded Lipschitzian ébmak?’,
whenN = 2 or N = 3. Concretely, we consider incompressible fluids, in which the dynamic stress tensor
S depends on the rate of deformation tenBer (a symmetrical tensor defined in terms of the gradient of the
velocity v and its transposév := $[Vv + (Vv)T]) according to the law

S(Dv) := f (|Dv|?) Dv. (1.1)

The termf (\Dv|2) represents the viscosity of the fluid. Throughout the paper, we assumgithatpositive
function of the clas€'! on the interval0, co), satisfying

. 1 2 _
@) [lim tf(7) =0,
(ii) there existy > 0, p > 1 and positive constants, c» such that

e (6+1)P2 < % [tf(#*)] < co(6+t)»~*  forallt > 0. (1.2)

Due to condition (i), the function f(¢?) can be continuously extended by zero from the intef@abo) to
[0,00). This enables us to extend naturaByDv) to the pointsx € 2, whereDv(x) = O: we define
S(0) := 0.

The fluid is said to beshear—thinningf function f is decreasing, anshear—thickeningf f is increasing.
The next lemma clarifies some important properties of the fungtjevhich follow from conditions (i) and (ii).

Lemma 1. There exist positive constants, c4, c5 (depending only op) such that
ca(0+ 1P < f(t%) < ea(6+ )72, (1.3)
217 < s (5 + )72 (1.4)

forall t € (0,0).



Proof. Condition (i) and the first inequality in (1.2) imply that

t ¢ 1
tf(t?) = /O 4 [Tf(ﬂ)] dr > /0 c (6+7)P2dr = C1t/0 (6 + ts)P~2ds,

dr
which yields
1 1
f(t? > cl/ (6s+ts)P~2ds = ¢ (0 + t)pz/ sP~2ds if p>2,
0 0
9 ! ds _9 .

Similarly, due to (i) and the second inequality in (1.2)katisfies

t 1
tf(t?) < 62/ (47 2dr = CQt/ (6 + ts)P~2 ds,
0 0

which yields
1
f(#? < cQ/ (6+t)P2ds = g (64 t)P2 if p> 2,
0
2 1 ds p—2 1 p—2 .
f(t)SCQ/Om:CQ((S—Ft) /O'S dS If1<p<1

These inequalities imply (1.3). Sinee? f/(t?) = [t f(t)]’ — f(¢?) and[t f(¢?)] satisfies (1.2), we also have
(1.4). O

Conditions (i) and (ii) guarantee that the dynamic stress tefistafined by (1.1) has the so calléd 6)—
structure. According to the definition (see e.g. [9]), terf$er (S;;) has the(p, §)—structure (forl < p < oo
ands > 0) if itis a C"—mapping fromRY XN := {A € RV*N; A = AT} to RY XN and aC'-mapping from

RYXN {0} toRYXN | satisfyingS(0Q) = O and the inequalities

sym sym
N
> OuSy(Q PyPu > o6 (5+1Q)P2 P,

igkl=1
1015 (Q)] < 7 (6+1]Q)P2

forall P = (P;) andQ = (Qi;) in RY <N with Q # O and alli, j, k,l = 1,...,N. (cs andc; are positive

constants independent Bf Q andd.) It follows from [9, Proposition 3] that if tens& has the(p, §)—structure
then there exist positive constantg—c;; (depending only op), such that

cs (6+ Bl + |A —B|)" *|A —B|> < [S(A) —S(B)] : (A —B)

< co (54 |B|+ |A —B))"*|A - B (1.5)
cio (8 + [B| + A —B)"*|A - B| < [S(A) - S(B)|

< en (6 + B| + |A —B|)" 7% |A — B (1.6)

forall A, B € R3X3

sym”*

1.2. Examples. Typical examples of’, which provide tensa® with the (p, §)—structure, are

f(t?)
p—2 =2
f#*) =p (8*+¢*) 2 ... corresponding to S(Dv) = u (6% + [Dv|?) * Dv, (1.8)

(6 +t)P2 ... corresponding to S(Dv) = p (6 + |Dv|)?~? Dv, (1.7)



wherep > 0. (See e.g. [7] or [9].) b = 2 then the inequalities in the definition of tlig, §)—structure are
independent ob, so we may speak only about tBestructure. In this case, condition (1.2) takes the simple
form

d
a < - [tf(t*)] < ¢ forallt>0. (1.9)

and inequalities (1.3) and (1.4) reduce to
cs < f(t?) < s, B < o5 (1.10)
Examples of functiong, which provide tensof with the 2—structure, are
f) =pox(u+t)™7 ... corresponding to S(Dv) = poDv % (1 + |Dv|)™7 Dv, (1.11)

FE%) = o & (1 +£2)

_X
2

corresponding to S(Dv) = poDv £ (uf + Dv|?) 2 Dv,  (1.12)
wherey > 0 andug, p1 > 0. (If the “—" sign is considered then we also assume fhat> 1, in order
to satisfy (1.3) and the first inequality in (1.2).) ObviouslySifDv) is as in (1.7) or (1.8) then the fluid is
shear—thinning fot < p < 2 and shear—thickening fgr > 2. (It is Newtonian ifp = 2.) If S(Dv) is as in
(1.11) or (1.12) then the fluid is shear—thinning/if> 0 and the sign 4" is considered and shear-thickening if
~v > 0 and “-~" is considered. (It is Newtonian #f = 0.)

1.3. Notation, function spaces. Vector functions and spaces of vector functions are denoted by boldface
letters.

oletl < r < ooandk € {0} UN. The norms of scalar- or vector— or tensor-valued functions, with
components in the Lebesgue spat&?) (respectively the Sobolev spadéd " (€2)) are denoted by . ||
(respectively|| . |-

o Cg3,(2) denotes the space of infinitely differentiable divergence—free vector functiofistiat have a
compact support if.

o L5 (%) is the closure o055, () in LP(1).

o Wé:{,’(Q) = L5(Q) ﬂWé’p(Q); since the norm§ . ||, , and||V . ||, are equivalent il’Wé:{,’(Q), we mostly
use the latter as a norm Wé;{,’(ﬂ). Note that there existi> > 0 andc;3 > 0 (depending op ands2) such
that

ciz[Vvlp < [Dvll, < e[Vl (1.13)

forallv € Wéjg(Q). (This is the so calle®orn inequality,see e.g. [11].)

o p’ denotes the conjugate exponenpto

o W, ¥ () is the dual space t8,"(2). The duality between elements BV, 1 (2) and W, (©2) is
denoted by ., .),. The norm inW[I}I’p'(Q) is denoted byf| . ||_; .

o If X andY are Banach spaces théii.X,Y') denotes the space of bounded linear operators ffota Y.

o If T'is a closed densely defined linear operator from Banach spdaoé8anach spac¥ thennul 7' denotes
the nullity of 7', i.e. the dimension of the null space’6f Thedeficiencyof T (i.e. the dimension of the
quotient spacé’ |1y, whereR(T') is the range off") is denoted bylef 7. Theindexof 7', which equals
the differencenul 7' — def T, is denoted bynd T'. Theapproximate nullityof 7" is denoted bywul’ 7'. (It
is the maximum numbet € {0} U N with the property that to every > 0 there exists am—dimensional
subspaceX,, of X such thatr € X, ||z||x = 1 implies||Tz||y < e.) Theapproximate deficiencyf T
(i.e. the approximate nullity of the adjoint operafof) is denoted bylef ’ T'. Note thataul 7" < nul’ T and
def T < def’T. The equalities hold i?(T") is closed, whilenul’ T' = def ' T' = oo if R(T') is not closed.
(See [5, p. 233].)



1.4. The boundary—value problem, a weak solution.The boundary—value problem we intend to investigate
consists of the equations
—divS(Dv) +v-Vv+Vqg = f, (1.14)
divv = 0 (1.15)

in the domain) and the homogeneous Dirichlet boundary condition
v=0 (1.16)

on 9. The unknowns are = (v1,v2,v3) (the velocity) and; (the pressure). Equation (1.14) expresses the
balance of momentum and equation (1.15) expresses the conservation of mass. The boundary condition (1.16)
is also called thao—slip condition.Foundations of the qualitative theory of the system of equations (1.14),
(1.15) and related models were given in the papers [6] (by dadlel. Milek and M. Rizitka) and [1] (by

H. Bellout, F. Bloom and J. N®&s). The existence of a weak solution to the problem (1.14)—(1.16) was proved

by J. Frehse, J. Blek and M. Steinhauer [4] for genetdl > 2 under the condition that

2N

< p < oo. a.17)

The proof is based on the method of Lipschitz truncations. The procedure is also explained in detail in paper
[9]. (Here, the author extends the existential result to the gas@N /(N + 2), N > 3.) By analogy with the
Navier—Stokes equations, the pressure does not explicitly appear in the weak formulation. The right hand side
f of equation (1.14) is supposed to be an eIemeW@f},’pl(Q). The weak solution is a function € Wé:ﬁ(Q)

such that

/ f (|]D)v\2) Dv : Dy dx — / (vev):Dpdx = (f,¢)s (1.18)
Q Q
for all o € W'5(9), where

1 1 2 2

(The condition(s’)~! > 2(p~! — N~!) comes from the requirement that the function® v) : Dy is
integrable in2.) Formula (1.19) implies that < s, which means thaWé”j(Q) C Wéjg(ﬂ) andW&i’p/(Q) C
W&i’S'(Q) (both with the continuous imbedding).

Obviously, if (p')~! > 2(p~! — N~=1) then(s’)~! = (p’)~!) and therefore = p. The condition(p’)~! >
2(p~! — N~1)is equivalent to

_ 3N
P =Nio

If (1.20) holds then one can use (1.18) with= v. Thus, (1.18) yields

(1.20)

[ 1 () YR ax = (€300 < 161 9
(The integral oftv ® v) : Dv vanishes.) Ip > 2 then, due to (1.3),

1
vl < /Q(5+UD>V|)”_2 Dv[? dx < a/gf(lDVQ) Dv?dx = —(f,v),

1

C3C12

1
c3

IN

1 1 :
—|fll1p [VV]p < £l —1p IDV]l, < 5 D5+ Clp) [£]12, -
63 2 7p



Here and further on denotes a generic constant. Hence

/
< e [fI12

Dl < Ly

(1.21)

whereciy = c14(p,c3,c12). If 3N/(N + 2) < p < 2 then we denot€); := {x € Q; [Dv(x)| < J} and
Qo = O~ Q. We have

22—p]D) 2
vl = [ pvpaxt [ DVE oy
Q1 Qz(

Dv| + |Dv|)*»
Dv|?
< 6|0 +22—p/ __IDvlP
> ‘ 1‘ . <5+ ’DVD2_p
22-p
< 5pmr+c—/ £ (IDv?) [Dv?dx = 8719 + C(p) (£, V),
3 Q
< QU+ CO) El-1p VYl < 7192+ Cp) [[£]-1 DV

A

1 :
07 |Q] + 5 IDVIIE + Cp) IE117, -

Hence there exisis s = c15(p, c3, c12) > 0 such that
IDv]Z < 26719 + c15 [|[£]7 - (1.22)

1.5. An alternative form of equation (1.18). In order to represent equation (1.18) as an equation in the dual
space toWé:{,’(Q), we assume from now on that condition (1.20) holds. Let the operatoend % from

WP () to W,, 27 (12) be defined by the equations
(T, ) = /S(]D)v) : Dy dx, (1.23)
0

(BV, )y = / v-Vv.pdx (1.24)
Q

forall vandgin Wé:ﬁ(Q). Operatot is often called th&tokes—typer thep—Stokes—type operatdgquation
(1.18) can now be written in the form

v+ Bv = {1, (1.25)

as an equation in the dual spa&, . (€2) to W ().

1.6. Aims of this paper, previous related results. The structure of the set of strong solutions to the steady
Navier—Stokes equations in a smooth bounded dof@imRY was studied by C. Foias and R. Temam [3].

These authors have shown that there exists a dense opénirsdt2 () such that for every € O the set of

solutions inWéﬁ(Q) N W22(Q) is finite, the number of solutions is constant foin each component a

and every solution is @°°—function off for f € . Similar results have also been obtained by J. Neustupa and

D. A. Siginer in connection with the@&hard problem in a two—dimensional quadrangular cavity, heated/cooled

on two opposite sides and insulated on the other two sides, see paper [8]. The methods, used in [3] and [8],
are especially based on Smale’s theorem (a Banach space generalization of the former Sard theorem, see [10]),
which we cite here for completeness in the form following from [12, Theorem 4.K]:

Theorem 1 (Smale).Let X andY be Banach spaces aifl: X — Y be a proper Fredholm operator of class
C* for k > max{ind F, 0}. Then the set of regular values Bfis dense and open ix.

Recall that a point: € X is said to be aegular pointof F if the range ofF’(z) is the whole spac#’.
The pointz is calledsingularif it is not regular. A pointy € Y is said to be aingular valueof F if F~1(y)
contains a singular point. Otherwiges called aregular value.

5



A closed linear densely defined operator is said t&deelholmif its range is closed and both its nullity and
deficiency are finite. A closed linear operator is said tsemi—Fredholnif its range is closed and its nullity
or its deficiency is finite. Since both the approximate nullity and the approximate deficiency are automatically
infinite if the range is not closed, and on the other hand, they coincide with the nullity and deficiency, respec-
tively, if the range is closed, the semi—Fredholm operator can also be defined to be a closed operator, whose
approximate nullity or approximate deficiency is finite. Naturally, if an operator is Fredholm then it is also
semi—Fredholm. A nonlinear operatérof classC' is said to beFredholmif the Fréchet differentialD F () is
a linear Fredholm operator at all pointss X. In this caseind DF(x) is independent of (see [5, Theorem
IV.5.26]) and it is called the index of the operatbr

Since we often use the notions of thét@aux and Fchet differentials, recall that if the directionahtdaux
derivative DF(x)z* (at pointz € X in the directionz™*) exists in all directions* and it is a bounded linear
operator fromX to Y in dependence om* then DF(z) is called theGateaux differential. If, moreover,
F(x + h) — F(x) — DF(x)h = o(h) for ||h||x — 0thenDXF(z) is said to be the Fchet differential. It is
well known that if the Giteaux differentiaD 7 (x) depends continuously anin the topology of£( X, Y') then
it is the Féchet differential. (See e.g. [2] or [12].)

The aim of this paper is to derive similar results as in papers [3] and [8], however for the boundary—value
problem (1.14)—(1.16). In Section 2, we study in greater detail the operatansd.«r + % and their differen-
tials. We show that i) > 2 then.e7 and.«7 + % areC'—operators fron*Wéjfj(Q) to W&;’p/ (©). Using the
fact thate? ~! o % is compact, we deduce that the set of all solutions to equation (1.25) is compact (Theorem
2). However, it turns out that j§ > 2 then neitherer nor <7 + % is a Fredholm operator because it&éiret
differentialsD <7 (v) andD.<7 (v) + D %(v) are not semi—Fredholm at any poine Wéjg(Q). (SeeLemma 7
and Lemma 8.) Especially due to these “negative” results (see also the end of Section 2 for further explanation),
we focus on the cage= 2 in Section 3 and we derive an analogous description of the solution set of equation
(1.25) as in [3] and [8] (see Theorem 3). Recall that, in contrast to [3] and [8], our equation of motion (1.14)
concerns the generalized Newtonian fluid and we deal with weak solutions.

2 More on the operators.e and & and their differentials

Recall thatp is supposed to satisfy condition (1.20), which implies that the numiédefined in (1.19)) and
s coincide withp’ andp, respectively.

2.1. Basic properties of operatorse and %. The domain ofe/ is the spacé?Vé:{,’(Q) and the range of

</ is contained inWO_Cl;p/(Q). Operatore is bounded and continuous, which follows easily from the second
inequality in (1.6). The first inequality in (1.5) implies thaf is strictly monotone and coercive. Hencé
satisfies the assumptions of Browder’s theorem, see e.g. [2, p. 375]. Thus, the rangs tfe whole dual
spaceW(I(l,’p/(Q). (Note that this also follows from [4] and [9].) Moreover, due to the strict monotonicity,
operators/ is one-to—one and therefore invertible. The boundednesg df easily follows from (1.21) (the
casep > 2) or from (1.22) (the cas8N/(N + 2) < p < 2). The next lemma summarizes these findings and
adds an information on the continuity of the inverse operator.

Lemma 2. Let functionf satisfy conditions (i) and (ii) angd satisfy condition (1.20). Then the-Stokes—type
operator.« is a one—to—one bounded continuous operator, mapping the whole Wéﬁéﬂ) onto the whole

spaceW&},’p/(Q). The inverse operato7 ~! is bounded and continuous.

Proof. We only need to prove that the operater! is continuous. Le{f,} be a sequence such tifgt— f
in W&};p. Denotev,, := &7 'f,, andv := &/ ~If.

a) Assume at first that > 2. We have

(v =V, vy =), = (T = £, vn = V), < [[f0 = fll1p [[V(vh = V)],

g



1
< — b~ fll-1 [PV, ~ D, (2.2)

T oc
Due to (1.23) and (1.5), the left hand side is
= / [S(Dv,,) — S(Dv)] : (Dv,, — Dv) dx > 08/ (6 + |Dv| + |Dv,, — ]D)v|)p_2 Dv,, — Dv|? dx
Q Q

> CS/ IDv,, — Dv[P~? |Dv,, — Dv|? dx = cg|Dv, — Dv 7.
Q

Hencecs |[Dv,, — Dv |5~ < cro ||, — £||_1,,7- The right hand side tends €ofor n — co. Thus,Dv,,(x) —
Dv(x) in Wé:ﬁ(Q). This implies that the operatay ~! is continuous.

b) The casa8N/(N + 2) < p < 2. DenoteQy,, := {x € Q; [Dv,(x) — Dv(x)| < § + |Dv(x)|} and
Qan = QN Q. The right hand side of (2.1) can be estimated:

1
£ — f”fl,p/ D, — DVHP
C12

1 1
16, — £_1 (/ Dv, — ]D)v|pdx>p 1l — £l </ Dv,, — Dv|? dx>p
an QQn

Cp) ||fn — £l -1 p </ (0 + |Dv|)P dx)p + 6/ |Dv,, — Dv|Pdx + C(p,€) ||f, — fH}Z/Lp/,
an QQn

IN

IN

wheree > 0 can be chosen arbitrarily small. The left hand side of (2.1) can be estimated from below by means
of (1.5):

Dv,, — Dv|?
/[S(]Dvn) —S(Dv)] : (Dv,, — Dv) dx > 08/ |Dv, v| _
Q o (0 + [Dv| + [Dv,, — Dv|)*7?
Dv,, — Dv|?
> cs/ |Dvy, v o= dx+082p—2/ IDv,, — Dv|? dx.
2 (34 D] + Dy, — D) 2,

Thus, if we choose = 35272, we obtain

Dv,, — Dv|?
68/ DV vi 5— dx + 082p_3/ |Dv,, — Dv|? dx
Q1 (0 + [Dv| + [Dv,, — Dv|)=? Qan

1

P /
< Clp) 0 — £l -1 (/Q (6 + [Dv])? dX> +C(p) lfn — £, -
in

Since the right hand side tends to zerodor oo, the left hand side must tend to zero as well. Hence
Dv,(x) — Dv(x) a.e.inf and /Q |Dv,, —Dv|Pdx — 0 (2.2)
2n
for n — oo. Denote byyy,, the characteristic function of s@,,. Then
/ |Dv,, — Dv[Pdx = / |Dv,, — Dv|? x1,, dx + / |Dv,, — Dv|? dx.
Q Q Qa2n

The second integral on the right hand side tends to zera for oo due to (2.2). The integrand in the first
integral satisfie® < |Dv,, — Dv|P x1, < (§ + |Dv|)? a.e. inQ2. Thus, due to Lebesgue’s dominated theorem,
the first integral on the right hand side tends to zeraifer oo, too. The proof is completed. O

Applying operatoreZ —! to equation (1.25), we obtain its equivalent form
v+ Y Bv) = 77 Hf), (2.3)

which is an equation ifWé:g(Q).



Lemma 3. If p satisfies condition (1.20) the# is a continuous operator frorﬁV(l)j{,’(Q) to W&i’p/(ﬂ). If,

moreover, functiorf satisfies conditions (i) and (ii) then the operatef—! o % is continuous iﬁWé:’;(Q). If,
furthermore p satisfies the stronger condition

3N

Ntz (.4)

p >
instead of (1.20), then the operatef—! o 4 is compact inW(l)jg(Q).

Proof. Letus at first prove the continuity o8. Thus, consider a sequenge, } in Wéfr(Q) such thawv,, — v
in Wo(Q). If p > N thenv,, — v in L*(Q) for eachs € (1,00). If 3N/(N +2) < p < N thenv,, — v in
LNP/(N=P)(Q) andv,, @ v,, — v @ v in LNP/2N=P)(Q)N*N |n any casey, @ v,, — v @ v in L (Q)N*N,
because condition (1.20) guarantees fhay2(N — p) > p'. Since

(BVn— BV, )o| =

[ W ova - v Ve dx| < va®va - vavl, [Vel,
Q

we observe tha®v,, — %v in W, 7' (€2). HenceZ is a continuous operator froM ™ (£2) to W 1 ().
This and Lemma 2 imply that the operatat—! o 2 is continuous iriWéz’;(Q).

Further, let{v,,} be a bounded sequenceWé;ﬁ(Q). The spacéVé:{,’(Q) is reflexive, hence there exists a
subsequence (which we denote again{ly }) such thatv,, converges weakly to somein Wé:’;(Q). Since
Wé:{,’(ﬂ) is compactly imbedded th*(2) for eachl < s < oo (if p > N) or for eachl < s < Np/(N — p)

(if p < N), v, — vstrongly inL*(Q) forall1 < s < co (if p > N)orforalll < s < Np/(N — p)
(if p < N). Hencev, ® v, — vevin L5 Q)N foralll < s < oo (if p > N)orforalll < s <
Np/2(N —p) (if p < N). Consequentlyy, ® v, — v@vin L (Q)N*N because condition (2.4) guarantees
that Np/2(N — p) > p. Thus,Bv,, — v in W, 27 (Q) and./ "' Bv,, — o/~ Bv in Wy*(Q), which
confirms the compactness of the operator ' 2. a

Since the set of all solutions to the equation (1.25) is bounded (due to the estimates (1.21) and (1.22)), and
equation (1.25) is equivalent to (2.3), we can formulate the following theorem:

Theorem 2. If p satisfies condition (2.4) and functioh satisfies conditions (i) and (ii) then the set of all
solutions of equation (1.25) (and therefore also the set of all weak solutions of the boundary—value problem
(1.14)—(1.16)) is compact i, (€2).

2.2. The Gateaux and Fréchet differential of the operators.<Z and #. The Gateaux derivativeD.o7 (v)v*
of &7 at pointv in the directionv* is a functional oriWéjg(Q), given by the equation

(D (V)V*, ) = / £ (IDv]?) Dv* : Dy dx+/ 2 f (IDv[?) (Dv : Dv*) (Dv : Dy) dx.  (2.5)
Q Q

Let p > 2. Recall that so far functiorf has been defined on the interv@l co) with the possibility of a
continuous extension aff (¢?) by zero at the point = 0 due to condition (i). In order to give a natural sense
to the integrands in (2.5) at the points= Q2 whereDv(x) = O, we assume from now on that

(iii) T£%1+ f(r) = fo (where0 < fy < o) and Tl—i>%l+ 7 f'(7) = 0.

Obviously, (i) = (i). Moreover, condition (iii) implies that the function&r) andr f’(7) (and alsof (¢?)
andt? f'(t?)) can be extended from the interl oo) by continuity to[0, oo). Note that the concrete examples
of function f, given in (1.11) and (1.12), satisfy condition (iii). Singe> 2, the examples (1.7), (1.8) satisfy
(iii), too. (They satisfy (iii) also ifp < 2, but in this casé > 0 is needed.)



Now, due to (1.3) and (1.4), we have

KD;ZZ(V)V*, cp>g‘

IN

/Q\f(!DVIQ)! D[ [Dep] dX+/Q\2f’(IDV|2)\ IDv|? IDv*| D] dx

IN

(c4 + 2c5) / (6 + |Dv])P2 |IDv*| |Dep| dx <
Q

p—2

P
% ( @+ vy dx) 1DV, D]l

C (3772 + [Dv][572) [PV, [Dep] -

IN

IN

This shows thaD <7 (v) is a bounded linear operator froWéjg(Q) to W&i’p/(Q). Thus,D.¢/(v) coincides
with the Giteaux differential ok at the pointv.

The conditionp > 2 is important, because ff < 2 then, in addition to the problem possibly arising at
points wheréDv(x) = O, the integrals on the right hand side of (2.5) generally do not converge bebause
Dv* andDep are inLP(Q)V*N and the integrands need not be integrable. It means thatitea@x derivative
Do/ (v)v*, as an element OWO_},””(Q), need not exist in all directione* € W% (Q2), and this holds true
even ifv is e.g. inC§, (). Coﬁsequently, mapping’ is not G”ateaux—differentiéble, and therefore also not
Frechet—differentiable. This is the main reason why we assume from now gm that

In order to show that the operatér<7(v), as an element o&l(Wéjg(Q), W(;CI;”/(Q)), depends continu-

ously onv € Wé:{,’(Q), consider a sequender,, }, such thatv,, — v in Wéﬁ(Q) (for n — o00). Assume
thatp > 2. (The case = 2 can be treated similarly.) Writin@(v,,) = (d;j(vy)), Dv = (d;5(v)) and
Dy = (d;j(¢)), we obtain

(Dt (va)V*, @), — (DA (VIV*, 0) = /Q [/ (IDval?) — £ (IDv]?)] Dv* : Dyp dxc
+/Q 27 (IDv,[*) (Dv, : DVv¥) (Dv, : D) — 2f' (|Dv]?) (Dv : Dv*) (Dv : Dy)] dx
= /Q[f(HD)vnQ) — f(IDv]*)] Dv* : Dy dx
+/Q [2f (IDval?) dij(va) dig(v") dia(va) dia(p) = ' (IDVI?) dij(v) dij(v*) dia(v) dia()] dx
- /Q[f (IDval?) = £ (IDv[?)] Dv* : Do dx

+/ [2f (IDv,|?) Dv,, ® Dv,, — 2f" (|Dv|?) Dv @ Dv] : (Dv* ® De) dx
0

p—2 p—2

< (T +To0 ) IDVE, 1Dl

P
where )
Ty, = /Q\f(yn)vn\z) — f(Dv]?)|72 dx,

Ton = / 2 (IDv, ) Dv,, @ Dv,, — 2f (JDv[2) Dv @ Dv|7? dx.
Q

(Note that " denotes the outer tensorial product ddd; ® Dv; andDv ® Dv are therefore the 4th order
tensors. On the other hand] tlenotes the inner product of the 2nd order and 4th order tensorsj te0.
Denote

Q= {x € Q; |Dv,(x)|P < |Dv(x)|P + k}, Qo = QN Q.



It follows from the inequalities

/ |Dv,, — Dv[Pdx > / |Dv,, —Dv[Pdx > C(p)/ (|IDv, [P — |Dv|P) dx
Q Qan

Qon

> C(p)/g kdx > C(p)kmeas(Q2,)

thatmeas(£s,) — 0 for n — oo. HencefQ% |Dv|Pdx — 0 for n — co. Consequentlyfg% |Dv,|Pdx — 0
for n — oo, too. The terniy,, can be split to the sum of the integral @n,, and the integral of,,,. The latter
can be estimated by means of (1.3):

|17 (va) = 1 (v ax < € / (1£(Dva )2 + (D)7 ax
Qon

Qon

_pP _p
< C(p)/ [z* (6 + [Dvy|)P +cf? (5+|Dv|)ﬂ dx
QQn
< C(P)/ [5;: + [Dv, [P + ’DVM dx — 0 forn — co.
Q2n
If we denote byyy,, the characteristic function of s, then

[ 1 (vaP) = 1 (V)72 ax = [ 17 (v - 7 (V)77 xa ax

The integrand satisfies the estimates

[F(DVal2) = FIDV) 72 x1n < C(p) (IF(DVa)IP2 + [F(IDVP)2 ) xan
< C) [ea 0+ DVal)? + s (6 + DV xan
< C(p) [0" + [Dvy, [P + [DV[P] x1 < C(p) [0 + 2|Dv P + k]
a.e. in). The function on the right hand side is integrable€in Moreover, asv,, — v point-wise a.e. i

and functionf is continuous ono0, co), f(|Dv,|) — f(|Dv]) — 0 (for n — oo) point-wise a.e. irf). Hence

the integral of| f (|Dvy,|*) — f (|Dv]?) \P%? X1 tends to zero as — co. ConsequentlyZ;,, — 0 for n — oo

due to the Lebesgue dominated theorem. (Note that this is the point where we use condition (iii), particularly
the continuity off on [0, c0).) We can also prove, by analogy, that, — 0 for n — co. (Here, we only apply

(1.4) instead of (1.3) and use the continuityt®ff’(t2) up to the point = 0.) We have proven the lemma:

Lemma 4. Letp > 2 and let functionf satisfy conditions (ii) and (iii). Then operate¥ is of the clasgC!
and D¢/ (v) can be therefore identified with theé@ghet differential ok at the pointv Wéf;’(Q).
The Gateaux derivative of operatof at pointv wé;{;(g) inthe directionv* is an element oW&};pl (),
satisfying
(DAB(V)V*, p), = / [V -Vv ' o+ v Vv dx (2.6)
Q

for all ¢ € wg;g(sz). By analogy withe?, we can prove thaD.%(v) is a bounded linear operator from
Wé’{,’(Q) to Wg},’p/(Q) and it can be therefore identified with théi®aux differential of% at the point
v. To prove the continuous dependencedn# on v in the topology of the spacé( U(Q), WO”};”/(Q)),
consider a sequende,, } such thatv,, — v in WO’U( ) (for n — o). Applying the continuous imbedding
W, 2(Q) — L% (Q), which follows from (1.20), we get

(DABWVa)V", p), = (DBNVIV', ), = /QKvn —V) - VV o v V(v = V) - Ve dx
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< v = Vllap [VVEllp [[ellzp + [V ll2p 1V (v = V)l lll2pr < CHIV (VR = V)lp VYR [[Vellp.
The continuity of D4 is proven. This, together with Lemma 4, yields:

Lemmab5. Letp > 2 and let functionf satisfy conditions (ii) and (iii). Then the operater + % is of the
classC! and its Giteaux differentialD[.«7 + %|(v) = D.«/(v) + D%(v) can be identified with the Echet
differential at each point € Wy (9).

The next lemma provides more information on thédkret differential ofe7 in the cases whefp > 2 and
d+|Dv| >0a.e.inQ}orp=2.

Lemma6. Let{p > 2 andé + |Dv| > 0 a.e. inQ2} or p = 2. Let functionf satisfy conditions (ii) and (iii).
Thennul D.<7(v) = 0, which means that the operat@re/(v) is one—to—one.

Proof. DenoteQ, = {x € ; f/(|Dv(x)?) > 0andQ_ := Q \ Q.. Then, choosingr = v* in (2.5) and
applying (1.2), we obtain

<D,Q{(V)V*,V*>J = (/Q +/ﬂ ) [f (UD)V|2) \]D)v*]2+2f’(\]D)v|2) (]D)v:]D)V*)2] dx

> / f(|]D)V|2) |]D)V*|2dx+/ [f (|]D)V|2) —|—2f/(|]D)V|2) |]D)V|2] “D)V*|2 dx
Oy Q

> / c3 (6 + [Dv])P~2 yDv*|2dx+/ c1 (6 + |Dv|)P~2 [Dv*|? dx. (2.7)
Q4 Q

If p > 2 andd + |Dv| > 0 a.e. inQ2 then the right hand side is equal to zero onljfift*| = 0 a.e. inQ2, which
means that™ = 0. If p = 2 then the right hand of (2.7) reducesdtp/, IDv*|*dx+e [, |Dv*[* dx which
is also equal to zero only #* = 0, independently of. Hencenul D.<7(v) = 0 and the operatob.«7 (v) is
one—to—one. O

As the case = 2 will be studied separately in Section 3, we assumehat2 from now on till the end of
Section 2.

Lemma 7. Assume thap > 2 and functionf satisfies conditions (ii) and (iii). Then the operatbr (v) is
not semi—Fredholm frov 2 (Q2) to W 7 (Q) for anyv € W (Q).

Proof. 1) Let us at first consider the cage> 0. Assume for a while that € C§%,(€2). ThenD.</(v),
which is a bounded linear operator frdméj’;(Q) to W&;’p/ (©2), can also be considered to be a bounded linear
operator fromW 72 (€2) to W, *(€2). Inequality (2.7) and Lax—Milgram’s theorem imply thate (v) maps
W '2(Q) onto the whole spact, (). SinceW%(Q) is dense inW,2(), the range ofD.</(v) (as
an operator defined W (22) — we denote the range B§(D.<7 (v))) is dense iftW (). As W %(Q)
is dense inWO_’(l;p/(Q), R(D</(v)) is also dense ir’W&};”/. Moreover, since the range @i.<7(v)) differs
from W&},’p'(Q), it is not closed iﬁW&};p'(Q). Consequently, the operatbreZ (v) is not semi—Fredholm and
nul’ D7 (v) = def’ Do/ (v) = oc.

Let us now show that the operatbreZ (v) is not semi—Fredholm at all points € Wéf;’(Q). By contra-

diction: assume thab.</ (v) is semi—Fredholm at some poing € Wé:{,’(Q). Since< is of the clasg!, we

can apply Theorem IV.5.22 in [5] and deduce tfhat/ (v) is semi—Fredholm for al in a sufficiently small

neighborhood ofy. This is, however, impossible, because any neighborhoeq obntains functions from
6> (22), and we already know thd.<7 (v) is not semi—Fredholm for these

2) Now, assume that= 0. Let¢ > 0. Let us write, for a whilef, instead off, and putfe (t2) := £+ fo(t2).
Obviously, fg(t2) satisfies condition (jii). Sincg satisfies (1.2) withd = 0, function f; satisfies (1.2) with
§ = £Y/(=2) and modified constants andc;. Denote by, the operators defined by (1.23) witt§ given
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by (1.1), wheref = fy. Let.</ be the operator defined by (1.23) withcorresponding to functiorfe. The
differenceD.< (v) — D.a/(v) satisfies

([DAe(v) — Daty(v)]v*, Lp>g = / [fe (|]DV|2) —fo (|Dv|2)} Dv*: Dy dx = 5/ Dv* : Dy dx.
Q Q
From this, we observe that
|[Dete(v) = DAV, < EIVVIl.

This inequality shows that if the operatdra(v) was semi—Fredholm, theR.«;(v) would also be semi—
Fredholm for > 0 sufficiently small. (See [5, Theorem 1V.5.22].) This is, however, not true due to part 1) of
this proof. O

Provided thapp > 2 and f satisfies conditions (ii), (iii), we have proven that the rangeée¥ (v) is not
closed inW, -7’ (€2) if § > 0. In fact, one can also show thR(D./ (v)) is not closed ifW ' () if § = 0
andv # 0. The proof is, however, subtler and more technical.

The next lemma unveils information analogous to Lemma 7, but it concerns the differential-af?.

Lemma 8. Letp > 2 and functionf satisfy conditions (ii) and (iii). The®[</+%](v) is not a semi—Fredholm
operator fromW ™ (€2) to W 17 () for anyv € W ().

Proof. We claim thatD%(v) is a compact operator frofWéjg(Q) to Wof};p/(Q).

If N=2o0r{N =3andp > 3} andv € wg;g(m thenDZ(v) is a continuous operator froWéjg(Q)
to LL(2) because

(DB~V)V,p)s| = /[v Vv 4+ v* - Vv] - pdx
Q

< (Ivlloo V9™ [lp + V" loo IV V1) Il < CUVYIR IV llp el

holds for allv*, ¢ € W (2) andW,” (2) is dense irL% (12). (We use the continuous imbeddifg;” <
L>(Q), which follows from the inequality > N.) The spacd.} () is compactly imbedded tw(;(l,’P'(Q),
henceD %(v) is a compact mapping fror’Wéfg(Q) to Wg,;’p/(Q).

If N =3and2 < p < 3then we use the estimates

(DB, @lo| < IVl s IVV Iy + IV s IVVIp) [ells < CUVYIL VYl s,

wherep~! + (3 — p)/3p + s~1 = 1, which yieldss~! = 2 — 2p~1. (We apply the continuous imbedding
Wé;{,’(Q) — LP/G7)(().) Hence the conjugate exponenisatisfies(s’) ! = 2p~1 — 1. The estimates of
(DAB(v)V*, ¢), show thatDA(v) is a bounded linear operator froWé:{j(Q) to L¥' (). Exponents is less
than3p/(3 —p) (which is equivalentte—! = % —2p7 ' >pt—13), henceWé:{j(Q) is compactly imbedded to
L:(Q). Consequenthy.® () is compactly imbedded twai’p/(Q) and D#(v) is a compact operator from
W2 () to W, 27 (0).

The caseV = p = 3 can be treated similarly.

As DA(v) is compact fromWézg(Q) to Wy i’p/(Q), it is also relatively compact with respect iof.o7 +
P)(v). Thus, if D[/ + P](v) was semi—Fredholm froriWé:g(Q) to W&;’p/(Q) then D[« + B|(v) —
D%A(v) = Do/ (v) would also be semi—Fredholm, which is not true due to Lemma 7. O

We observe from Lemma 8 thatif > 2 then the Smale—Sard theorem (see Theorem 1) or other related
tools, based on the theory of Fredholm operators, cannot be applied to equation (1.25) in order to characterize
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the set of right hand sidesthat are regular values ef + 2. Moreover, as the differentidD[</ + #] is not
surjective fromW (1) to WO_};’"(Q), we also cannot apply the implicit function theorem or other related
tools in order to derive an information on the structure of the solution set of equation (1.25) and the behavior of
solutions if the right hand sid&varies. These are the reasons why we focus just on thepcasein the next
section.

3 The structure of the set of solutions to the boundary value problem
(1.14)—(1.16) in the casg = 2.

In this section, we assume that 2, which means that the stress tenSpdefined by (1.1), has the-structure.
We suppose that functiofi satisfies conditions (ii) and (iii). Recall that as= 2, inequalities (1.2), (1.3) and
(1.4) reduce to (1.9) and (1.10). We already know from Lemma 4 and Lemma SAteaid &7 + 4 are
Cl-mappings frorrWéﬁ(Q) to W(I};Z(Q).

Lemma 9. The range of the Frchet differentialD.<7 (v) (at each pointv € Wéﬁ(Q)) is the whole space
W o (Q). Thus,D.e/(v) is a Fredholm operator of inde from W2 () to W, ,*(2). Consequentlys
is a Fredholm operator of indeXfrom Wéf,(Q) to W&};Q(Q), too.

Proof. It follows from (2.7) that the bilinear fordD.</ (v)v*, v*), is elliptic in Wé:i(Q). Thus, applying

Lax—Milgram’s theorem, we deduce tha{D.o/ (v)) = W&};Q(Q) anddef D.¢7(v) is therefore equal to zero.
Sincenul D.o7(v) = 0 as well (see Lemma 6), we hawed Do/ (v) = 0. This implies thatD.e/(v) is a
Fredholm operator of index Hences’ is a Fredholm operator of indéxas well. O

Lemma 10. « + # is a proper Fredholm operator frofV 7> () to W 2*(Q) of index0.

Proof. Let us at first prove that? + % is proper, i.e. that the pre-image’ + %]~ '(K) of any compact
setK in W, ,*(Q) is compact inW2(Q2). Thus, let{v,} be a sequence iW,(Q) such thatf, :=
[of + 2B](v,) are in a compact s&k’ in W&};Q(Q). There exists a subsequence{6éf} (which we denote
again{f,}), that converges to some functidnin W(I(II’Q(Q). Due to the continuity ofoz—!, the sequence
{ /=11, } converges ifW > (Q). If follows from estimate (1.21) that the sequenggis bounded ifW % (€2).
Hence there exists a subsequence (which we denote agéin,by, weakly convergent to somein Wéf,(Q).
Since the operatotZ ~! o % is compact (see Lemma 3} ~'%v,, — o/ "1 %v strongly inWé:i(Q). As
vy = — o/ " Bv, + o/~ 'f,, we obtain thav,, — v strongly inW % (€2). This shows thate” + ]! (K) is
compact inW 7> (9).

In order to prove that the operatof + % is Fredholm of index zero, we need to show tha¥/ (v)+DZA(v)
is a linear Fredholm operator of index zero at some pothWéf,(Q). We have shown in the proof of Lemma
8 that ifp > 2 thenDZ(v) is a compact operator frofWé:{,’(Q) to W&},’p'(ﬂ). The proof can be modified
so that it also works in the cage= 2: let {v,,} be a bounded sequenceWéﬁ(Q). We want to show that
there exists a subsequence such tiat, is convergent iﬁW&i’z(Q). Using formula (2.6), one can simply
verify that D2(v) is a bounded operator frofV;:2(Q2) to L2(2) (if N = 2) or to Ly*() (if N = 3).
Since the imbedding dE2(£2) to W, .*(2) (if N = 2), respectively oL *(2) to W, 2*(9) (if N = 3),
is compact,D%(v) is a compact operator frofW > (€2) to Wy (). Consequently, the operatdr#(v)
is also relatively compact with respect foe7(v). Hence, sinceD.<7(v) is a Fredholm operator of index
0, Do/ (v) + DA(v) is a semi—Fredholm operator of the same index(See [5, p. 238, Theorem 5.26].)
In order to verify thatD.</ (v) + DZ(v) is not only semi—Fredholm, but it is a Fredholm operator, it is
sufficient to show thahul [D.o7(v) + DA (v)] < oco. (Thendef [D</(v) + DZ(v)] is also finite because
the index is zero.) By contradiction: assume thalt [D.o7 (v) + D% (v)] = oo. Then there exists a sequence
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{vy,} on the unit ball inWéf,(Q), such that its closure is not compact (i.e. the sequence is not pre-compact)
and[D«/(v) + D#A(v)|v, = 0. Hencev,, + [D</(v)] ' D%(v)v, = 0. Since the operatob%(v) is
compact fromW 7% () to W () and[D.7(v)] ~* is bounded fronW ;%(2) to W7 (Q), there exists a
subsequence (which we also denote{ly,}) such that{[D.<7 (v)] "' D%(v)v,} is a convergent sequence in
W, 2(). Consequently{v,,} is also convergent i# > (2). This is a contradiction with the assumption that
{vn} was not pre-compact. ’ O

Now, we are in a position to apply Theorem 1 (with= 1) to equation (1.25). It provides the existence of
a dense open sélin WO_},’Q(Q) such that alf in O are regular values of + 2. Denote byS(f) the set of
all solutions of equation (1.25), i.€7 + ABlv = f. Sinceind [ + A = 0, the seiS(f) is discrete for each
f € O. (This follows from [10, Corollary 1.5] or [3, Theorem A].) Since it is also compact (see Theorem 2), it
must be finite.

Assume thaf, andf; are in the same componefit of O. Thenf, andf; can be connected by a continuous
curvet € [0,1] — f, € O'. LetvY,..., v} be the elements & (f,). Due to the implicit function theorem (see
e.g. [12, Theorem 4.B]), there existcontinuous curves € [0, 1] — vi € W(l)ff(Q) (¢ =1,...,k) such that
vi e S(f) for all t € [0,1]. Any two different curves cannot intersect at any painbtherwise it would lead
to a contradiction with the implicit function theorem arowdThus, the sef(f;) contains at least different
pointsv}, ..., vi. Due to the symmetry, the number of elementS {fy ) is the same as the number of elements
in S(fo). This shows that the number of elementsS¢f) is constant for alf in the same component 6f. The
fact that each element &(f) is aC''—function off follows from the implicit function theorem or the so called
pre-image theorem, see [12, Theorem 4.J]. We have proven the theorem:

Theorem 3. There exists an open dense suliSeif W&i’z(ﬂ) such that
1) for everyf € O, the setS(f) is constituted by a finite number of solutions of equation (1.25),
2) the number of elements 8ff), for f in every connected component®fis constant,
3) each element af(f) is aC'—function off for f in every connected component®f
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