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Abstract

We investigate the steady–state equations of motion of the generalized Newtonian fluid in a bounded
domainΩ ⊂ RN , whenN = 2 orN = 3. Applying the tools of nonlinear analysis (Smale’s theorem and
properties of Fredholm operators, etc.), we show that if the dynamic stress tensor has the2–structure then
the solution set is finite and the solutions areC1–functions of the external volume forcef for genericf . We
also derive a series of properties of related operators in the case of a more general(p, δ)–structure, show
that the solution set is compact ifp > 3N/(N + 2) and explain why the same method as in the casep = 2
cannot be applied in the case of generalp.
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1 Introduction

1.1. Specification of the dynamic stress tensor.We investigate the structure of the set of steady solutions to
the equations of motion of a class of generalized Newtonian fluids in a bounded Lipschitzian domainΩ ⊂ RN ,
whenN = 2 or N = 3. Concretely, we consider incompressible fluids, in which the dynamic stress tensor
S depends on the rate of deformation tensorDv (a symmetrical tensor defined in terms of the gradient of the
velocityv and its transpose:Dv := 1

2 [∇v + (∇v)T ]) according to the law

S(Dv) := f
(
|Dv|2

)
Dv. (1.1)

The termf
(
|Dv|2

)
represents the viscosity of the fluid. Throughout the paper, we assume thatf is a positive

function of the classC1 on the interval(0,∞), satisfying

(i) lim
t→0+

t f(t2) = 0,

(ii) there existδ ≥ 0, p > 1 and positive constantsc1, c2 such that

c1 (δ + t)p−2 ≤ d
dt
[
tf(t2)

]
≤ c2 (δ + t)p−2 for all t > 0. (1.2)

Due to condition (i), the functiontf(t2) can be continuously extended by zero from the interval(0,∞) to
[0,∞). This enables us to extend naturallyS(Dv) to the pointsx ∈ Ω, whereDv(x) = O: we define
S(O) := O.

The fluid is said to beshear–thinningif function f is decreasing, andshear–thickeningif f is increasing.
The next lemma clarifies some important properties of the functionf , which follow from conditions (i) and (ii).

Lemma 1. There exist positive constantsc3, c4, c5 (depending only onp) such that

c3 (δ + t)p−2 ≤ f(t2) ≤ c4 (δ + t)p−2, (1.3)

t2 |f ′(t2)| ≤ c5 (δ + t)p−2. (1.4)

for all t ∈ (0,∞).
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Proof. Condition (i) and the first inequality in (1.2) imply that

tf(t2) =
∫ t

0

d
dτ
[
τ f(τ2)

]
dτ ≥

∫ t

0
c1 (δ + τ)p−2 dτ = c1 t

∫ 1

0
(δ + ts)p−2 ds,

which yields

f(t2) ≥ c1

∫ 1

0
(δs+ ts)p−2 ds = c1 (δ + t)p−2

∫ 1

0
sp−2 ds if p ≥ 2,

f(t2) ≥ c1

∫ 1

0

ds
(δ + t)2−p = c1 (δ + t)p−2 if 1 < p < 1.

Similarly, due to (i) and the second inequality in (1.2),f satisfies

tf(t2) ≤ c2

∫ t

0
(δ + τ)p−2 dτ = c2 t

∫ 1

0
(δ + ts)p−2 ds,

which yields

f(t2) ≤ c2

∫ 1

0
(δ + t)p−2 ds = c2 (δ + t)p−2 if p ≥ 2,

f(t2) ≤ c2

∫ 1

0

ds
(δs+ ts)2−p = c2 (δ + t)p−2

∫ 1

0
sp−2 ds if 1 < p < 1.

These inequalities imply (1.3). Since2t2 f ′(t2) = [tf(t2)]′ − f(t2) and[tf(t2)]′ satisfies (1.2), we also have
(1.4). �

Conditions (i) and (ii) guarantee that the dynamic stress tensorS defined by (1.1) has the so called(p, δ)–
structure. According to the definition (see e.g. [9]), tensorS ≡ (Sij) has the(p, δ)–structure (for1 < p < ∞
andδ ≥ 0) if it is a C0–mapping fromRN×Nsym := {A ∈ RN×N ; A = A

T } toRN×Nsym and aC1–mapping from
R
N×N
sym r {O} toRN×Nsym , satisfyingS(O) = O and the inequalities

N∑
i,j,k,l=1

∂klSij(Q)PijPkl ≥ c6 (δ + |Q|)p−2 |P|2,

|∂klSij(Q)| ≤ c7 (δ + |Q|)p−2

for all P ≡ (Pij) andQ ≡ (Qij) in RN×Nsym with Q 6= O and alli, j, k, l = 1, . . . , N . (c6 andc7 are positive
constants independent ofP,Q andδ.) It follows from [9, Proposition 3] that if tensorS has the(p, δ)–structure
then there exist positive constantsc8–c11 (depending only onp), such that

c8

(
δ + |B|+ |A− B|

)p−2 |A− B|2 ≤ [S(A)− S(B)] : (A− B)

≤ c9

(
δ + |B|+ |A− B|

)p−2 |A− B|2 (1.5)

c10

(
δ + |B|+ |A− B|

)p−2 |A− B| ≤ |S(A)− S(B)|

≤ c11

(
δ + |B|+ |A− B|

)p−2 |A− B| (1.6)

for all A, B ∈ R3×3
sym.

1.2. Examples. Typical examples off , which provide tensorS with the(p, δ)–structure, are

f(t2) = µ (δ + t)p−2 . . . corresponding to S(Dv) = µ (δ + |Dv|)p−2
Dv, (1.7)

f(t2) = µ
(
δ2 + t2

) p−2
2 . . . corresponding to S(Dv) = µ

(
δ2 + |Dv|2

) p−2
2
Dv, (1.8)
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whereµ > 0. (See e.g. [7] or [9].) Ifp = 2 then the inequalities in the definition of the(p, δ)–structure are
independent ofδ, so we may speak only about the2–structure. In this case, condition (1.2) takes the simple
form

c1 ≤
d
dt
[
tf(t2)

]
≤ c2 for all t > 0. (1.9)

and inequalities (1.3) and (1.4) reduce to

c3 ≤ f(t2) ≤ c4, t2 |f ′(t2)| ≤ c5. (1.10)

Examples of functionsf , which provide tensorS with the2–structure, are

f(t2) = µ0 ± (µ1 + t)−γ . . . corresponding to S(Dv) = µ0Dv ± (µ1 + |Dv|)−γ Dv, (1.11)

f(t2) = µ0 ±
(
µ2

1 + t2
)− γ

2 . . . corresponding to S(Dv) = µ0Dv ±
(
µ2

1 + |Dv|2
)− γ

2
Dv, (1.12)

whereγ ≥ 0 andµ0, µ1 > 0. (If the “−” sign is considered then we also assume thatµ0 > µ−γ1 in order
to satisfy (1.3) and the first inequality in (1.2).) Obviously, ifS(Dv) is as in (1.7) or (1.8) then the fluid is
shear–thinning for1 < p < 2 and shear–thickening forp > 2. (It is Newtonian ifp = 2.) If S(Dv) is as in
(1.11) or (1.12) then the fluid is shear–thinning ifγ > 0 and the sign “+” is considered and shear–thickening if
γ > 0 and “−” is considered. (It is Newtonian ifγ = 0.)

1.3. Notation, function spaces. Vector functions and spaces of vector functions are denoted by boldface
letters.

◦ Let 1 < r < ∞ andk ∈ {0} ∪ N. The norms of scalar– or vector– or tensor–valued functions, with
components in the Lebesgue spacesLr(Ω) (respectively the Sobolev spacesW k,r(Ω)) are denoted by‖ . ‖r
(respectively‖ . ‖k,r).
◦ C∞0,σ(Ω) denotes the space of infinitely differentiable divergence–free vector functions inΩ that have a

compact support inΩ.

◦ Lpσ(Ω) is the closure ofC∞0,σ(Ω) in Lp(Ω).

◦ W1,p
0,σ(Ω) := Lpσ(Ω)∩W1,p

0 (Ω); since the norms‖ . ‖1,p and‖∇ . ‖p are equivalent inW1,p
0,σ(Ω), we mostly

use the latter as a norm inW1,p
0,σ(Ω). Note that there existc12 > 0 andc13 > 0 (depending onp andΩ) such

that

c12 ‖∇v‖p ≤ ‖Dv‖p ≤ c13 ‖∇v‖p (1.13)

for all v ∈W1,p
0,σ(Ω). (This is the so calledKorn inequality,see e.g. [11].)

◦ p′ denotes the conjugate exponent top.

◦ W−1,p′

0,σ (Ω) is the dual space toW1,p
0,σ(Ω). The duality between elements ofW−1,p′

0,σ (Ω) andW1,p
0,σ(Ω) is

denoted by〈 . , . 〉σ. The norm inW−1,p′

0,σ (Ω) is denoted by‖ . ‖−1,p′ .

◦ If X andY are Banach spaces thenL(X,Y ) denotes the space of bounded linear operators fromX to Y .

◦ If T is a closed densely defined linear operator from Banach spaceX to Banach spaceY thennul T denotes
the nullity of T , i.e. the dimension of the null space ofT . Thedeficiencyof T (i.e. the dimension of the
quotient spaceY |R(T ), whereR(T ) is the range ofT ) is denoted bydef T . The indexof T , which equals
the differencenul T − def T , is denoted byindT . Theapproximate nullityof T is denoted bynul ′ T . (It
is the maximum numbern ∈ {0} ∪ N with the property that to everyε > 0 there exists ann–dimensional
subspaceXn of X such thatx ∈ Xn, ‖x‖X = 1 implies‖Tx‖Y ≤ ε.) Theapproximate deficiencyof T
(i.e. the approximate nullity of the adjoint operatorT ∗) is denoted bydef ′ T . Note thatnul T ≤ nul ′ T and
def T ≤ def ′ T . The equalities hold ifR(T ) is closed, whilenul ′ T = def ′ T =∞ if R(T ) is not closed.
(See [5, p. 233].)
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1.4. The boundary–value problem, a weak solution.The boundary–value problem we intend to investigate
consists of the equations

−div S(Dv) + v · ∇v +∇q = f , (1.14)

div v = 0 (1.15)

in the domainΩ and the homogeneous Dirichlet boundary condition

v = 0 (1.16)

on ∂Ω. The unknowns arev ≡ (v1, v2, v3) (the velocity) andq (the pressure). Equation (1.14) expresses the
balance of momentum and equation (1.15) expresses the conservation of mass. The boundary condition (1.16)
is also called theno–slip condition.Foundations of the qualitative theory of the system of equations (1.14),
(1.15) and related models were given in the papers [6] (by J. Nečas, J. Ḿalek and M. R̊užička) and [1] (by
H. Bellout, F. Bloom and J. Něcas). The existence of a weak solution to the problem (1.14)–(1.16) was proved
by J. Frehse, J. Ḿalek and M. Steinhauer [4] for generalN ≥ 2 under the condition that

2N
N + 2

< p < ∞. (1.17)

The proof is based on the method of Lipschitz truncations. The procedure is also explained in detail in paper
[9]. (Here, the author extends the existential result to the casep = 2N/(N + 2),N ≥ 3.) By analogy with the
Navier–Stokes equations, the pressure does not explicitly appear in the weak formulation. The right hand side
f of equation (1.14) is supposed to be an element ofW−1,p′

0,σ (Ω). The weak solution is a functionv ∈W1,p
0,σ(Ω)

such that ∫
Ω
f
(
|Dv|2

)
Dv : Dϕ dx−

∫
Ω

(v ⊗ v) : Dϕ dx = 〈f ,ϕ〉σ (1.18)

for all ϕ ∈W1,s
0,σ(Ω), where

1
s′

:= max
{

1
p′

;
2
p
− 2
N

}
. (1.19)

(The condition(s′)−1 ≥ 2(p−1 − N−1) comes from the requirement that the function(v ⊗ v) : Dϕ is
integrable inΩ.) Formula (1.19) implies thatp ≤ s, which means thatW1,s

0,σ(Ω) ⊂W1,p
0,σ(Ω) andW−1,p′

0,σ (Ω) ⊂
W−1,s′

0,σ (Ω) (both with the continuous imbedding).

Obviously, if (p′)−1 ≥ 2(p−1 −N−1) then(s′)−1 = (p′)−1) and therefores = p. The condition(p′)−1 ≥
2(p−1 −N−1) is equivalent to

p ≥ 3N
N + 2

. (1.20)

If (1.20) holds then one can use (1.18) withϕ = v. Thus, (1.18) yields∫
Ω
f
(
|Dv|2

)
|Dv|2 dx = 〈f ,v〉σ ≤ ‖f‖−1,p′ ‖∇v‖p.

(The integral of(v ⊗ v) : Dv vanishes.) Ifp ≥ 2 then, due to (1.3),

‖Dv‖pp ≤
∫

Ω
(δ + |Dv|)p−2 |Dv|2 dx ≤ 1

c3

∫
Ω
f
(
|Dv|2

)
|Dv|2 dx =

1
c3
〈f ,v〉σ

≤ 1
c3
‖f‖−1,p′ ‖∇v‖p ≤

1
c3c12

‖f‖−1,p′ ‖Dv‖p ≤
1
2
‖Dv‖pp + C(p) ‖f‖p

′

−1,p′ .
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Here and further on,C denotes a generic constant. Hence

‖Dv‖pp ≤ c14 ‖f‖p
′

−1,p′ , (1.21)

wherec14 = c14(p, c3, c12). If 3N/(N + 2) ≤ p < 2 then we denoteΩ1 := {x ∈ Ω; |Dv(x)| ≤ δ} and
Ω2 := Ωr Ω1. We have

‖Dv‖pp =
∫

Ω1

|Dv|p dx +
∫

Ω2

22−p |Dv|2

(|Dv|+ |Dv|)2−p dx

≤ δp |Ω1|+ 22−p
∫

Ω2

|Dv|2

(δ + |Dv|)2−p dx

≤ δp |Ω|+ 22−p

c3

∫
Ω
f
(
|Dv|2

)
|Dv|2 dx = δp |Ω|+ C(p) 〈f ,v〉σ

≤ δp |Ω|+ C(p) ‖f‖−1,p′ ‖∇v‖p ≤ δp |Ω|+ C(p) ‖f‖−1,p′ ‖Dv‖p

≤ δp |Ω|+ 1
2
‖Dv‖pp + C(p) ‖f‖p

′

−1,p′ .

Hence there existsc15 = c15(p, c3, c12) > 0 such that

‖Dv‖pp ≤ 2δp |Ω|+ c15 ‖f‖p
′

−1,p′ . (1.22)

1.5. An alternative form of equation (1.18). In order to represent equation (1.18) as an equation in the dual
space toW1,p

0,σ(Ω), we assume from now on that condition (1.20) holds. Let the operatorsA andB from

W1,p
0,σ(Ω) to W−1,p′

0,σ (Ω) be defined by the equations

〈A v,ϕ〉σ :=
∫

Ω
S(Dv) : Dϕ dx, (1.23)

〈Bv,ϕ〉σ :=
∫

Ω
v · ∇v ·ϕ dx (1.24)

for all v andϕ in W1,p
0,σ(Ω). OperatorA is often called theStokes–typeor thep–Stokes–type operator.Equation

(1.18) can now be written in the form

A v + Bv = f , (1.25)

as an equation in the dual spaceW−1,p′

0,σ (Ω) to W1,p
0,σ(Ω).

1.6. Aims of this paper, previous related results. The structure of the set of strong solutions to the steady
Navier–Stokes equations in a smooth bounded domainΩ in RN was studied by C. Foias and R. Temam [3].
These authors have shown that there exists a dense open setO in L2

σ(Ω) such that for everyf ∈ O the set of
solutions inW1,2

0,σ(Ω) ∩W2,2(Ω) is finite, the number of solutions is constant forf in each component ofO
and every solution is aC∞–function off for f ∈ O. Similar results have also been obtained by J. Neustupa and
D. A. Siginer in connection with the B́enard problem in a two–dimensional quadrangular cavity, heated/cooled
on two opposite sides and insulated on the other two sides, see paper [8]. The methods, used in [3] and [8],
are especially based on Smale’s theorem (a Banach space generalization of the former Sard theorem, see [10]),
which we cite here for completeness in the form following from [12, Theorem 4.K]:

Theorem 1 (Smale).LetX andY be Banach spaces andF : X → Y be a proper Fredholm operator of class
Ck for k > max{indF , 0}. Then the set of regular values ofF is dense and open inY .

Recall that a pointx ∈ X is said to be aregular pointof F if the range ofF ′(x) is the whole spaceY .
The pointx is calledsingular if it is not regular. A pointy ∈ Y is said to be asingular valueof F if F−1(y)
contains a singular point. Otherwisey is called aregular value.

5



A closed linear densely defined operator is said to beFredholmif its range is closed and both its nullity and
deficiency are finite. A closed linear operator is said to besemi–Fredholmif its range is closed and its nullity
or its deficiency is finite. Since both the approximate nullity and the approximate deficiency are automatically
infinite if the range is not closed, and on the other hand, they coincide with the nullity and deficiency, respec-
tively, if the range is closed, the semi–Fredholm operator can also be defined to be a closed operator, whose
approximate nullity or approximate deficiency is finite. Naturally, if an operator is Fredholm then it is also
semi–Fredholm. A nonlinear operatorF of classC1 is said to beFredholmif the Fŕechet differentialDF(x) is
a linear Fredholm operator at all pointsx ∈ X. In this case,indDF(x) is independent ofx (see [5, Theorem
IV.5.26]) and it is called the index of the operatorF .

Since we often use the notions of the Gâteaux and Fréchet differentials, recall that if the directional Gâteaux
derivativeDF(x)x∗ (at pointx ∈ X in the directionx∗) exists in all directionsx∗ and it is a bounded linear
operator fromX to Y in dependence onx∗ thenDF(x) is called theGâteaux differential. If, moreover,
F(x + h) − F(x) − DF(x)h = o(h) for ‖h‖X → 0 thenDF(x) is said to be the Fréchet differential. It is
well known that if the Ĝateaux differentialDF(x) depends continuously onx in the topology ofL(X,Y ) then
it is the Fŕechet differential. (See e.g. [2] or [12].)

The aim of this paper is to derive similar results as in papers [3] and [8], however for the boundary–value
problem (1.14)–(1.16). In Section 2, we study in greater detail the operatorsA andA + B and their differen-
tials. We show that ifp ≥ 2 thenA andA + B areC1–operators fromW1,p

0,σ(Ω) to W−1,p′

0,σ (Ω). Using the
fact thatA −1 ◦B is compact, we deduce that the set of all solutions to equation (1.25) is compact (Theorem
2). However, it turns out that ifp > 2 then neitherA nor A + B is a Fredholm operator because its Fréchet
differentialsDA (v) andDA (v)+DB(v) are not semi–Fredholm at any pointv ∈W1,p

0,σ(Ω). (See Lemma 7
and Lemma 8.) Especially due to these “negative” results (see also the end of Section 2 for further explanation),
we focus on the casep = 2 in Section 3 and we derive an analogous description of the solution set of equation
(1.25) as in [3] and [8] (see Theorem 3). Recall that, in contrast to [3] and [8], our equation of motion (1.14)
concerns the generalized Newtonian fluid and we deal with weak solutions.

2 More on the operatorsA and B and their differentials

Recall thatp is supposed to satisfy condition (1.20), which implies that the numberss′ (defined in (1.19)) and
s coincide withp′ andp, respectively.

2.1. Basic properties of operatorsA and B. The domain ofA is the spaceW1,p
0,σ(Ω) and the range of

A is contained inW−1,p′

0,σ (Ω). OperatorA is bounded and continuous, which follows easily from the second
inequality in (1.6). The first inequality in (1.5) implies thatA is strictly monotone and coercive. HenceA
satisfies the assumptions of Browder’s theorem, see e.g. [2, p. 375]. Thus, the range ofA is the whole dual
spaceW−1,p′

0,σ (Ω). (Note that this also follows from [4] and [9].) Moreover, due to the strict monotonicity,
operatorA is one–to–one and therefore invertible. The boundedness ofA −1 easily follows from (1.21) (the
casep ≥ 2) or from (1.22) (the case3N/(N + 2) ≤ p < 2). The next lemma summarizes these findings and
adds an information on the continuity of the inverse operatorA −1.

Lemma 2. Let functionf satisfy conditions (i) and (ii) andp satisfy condition (1.20). Then thep–Stokes–type
operatorA is a one–to–one bounded continuous operator, mapping the whole spaceW1,p

0,σ(Ω) onto the whole

spaceW−1,p′

0,σ (Ω). The inverse operatorA −1 is bounded and continuous.

Proof. We only need to prove that the operatorA −1 is continuous. Let{fn} be a sequence such thatfn → f
in W−1,p

0,σ . Denotevn := A −1fn andv := A −1f .

a) Assume at first thatp ≥ 2. We have

〈A vn −A v, vn − v〉σ = 〈fn − f , vn − v〉σ ≤ ‖fn − f‖−1,p′ ‖∇(vn − v)‖p

6



≤ 1
c12
‖fn − f‖−1,p′ ‖Dvn − Dv‖p. (2.1)

Due to (1.23) and (1.5), the left hand side is

=
∫

Ω
[S(Dvn)− S(Dv)] : (Dvn − Dv) dx ≥ c8

∫
Ω

(
δ + |Dv|+ |Dvn − Dv|

)p−2 |Dvn − Dv|2 dx

≥ c8

∫
Ω
|Dvn − Dv|p−2 |Dvn − Dv|2 dx = c8 ‖Dvn − Dv‖pp.

Hencec8 ‖Dvn − Dv‖p−1
p ≤ c−1

12 ‖fn − f‖−1,p′ . The right hand side tends to0 for n→∞. Thus,Dvn(x)→
Dv(x) in W1,p

0,σ(Ω). This implies that the operatorA −1 is continuous.

b) The case3N/(N + 2) ≤ p < 2. DenoteΩ1n := {x ∈ Ω; |Dvn(x) − Dv(x)| < δ + |Dv(x)|} and
Ω2n := Ωr Ω1n. The right hand side of (2.1) can be estimated:

1
c12
‖fn − f‖−1,p′ ‖Dvn − Dv‖p

≤ ‖fn − f‖−1,p′

(∫
Ω1n

|Dvn − Dv|p dx
)1
p

+ ‖fn − f‖−1,p′

(∫
Ω2n

|Dvn − Dv|p dx
)1
p

≤ C(p) ‖fn − f‖−1,p′

(∫
Ω1n

(δ + |Dv|)p dx
)1
p

+ ε

∫
Ω2n

|Dvn − Dv|p dx + C(p, ε) ‖fn − f‖p
′

−1,p′ ,

whereε > 0 can be chosen arbitrarily small. The left hand side of (2.1) can be estimated from below by means
of (1.5): ∫

Ω
[S(Dvn)− S(Dv)] : (Dvn − Dv) dx ≥ c8

∫
Ω

|Dvn − Dv|2

(δ + |Dv|+ |Dvn − Dv|)2−p dx

≥ c8

∫
Ω1n

|Dvn − Dv|2

(δ + |Dv|+ |Dvn − Dv|)2−p dx + c82p−2

∫
Ω2n

|Dvn − Dv|p dx.

Thus, if we chooseε = 1
2c82p−2, we obtain

c8

∫
Ω1n

|Dvn − Dv|2

(δ + |Dv|+ |Dvn − Dv|)2−p dx + c82p−3

∫
Ω2n

|Dvn − Dv|p dx

≤ C(p) ‖fn − f‖−1,p′

(∫
Ω1n

(δ + |Dv|)p dx
)1
p

+ C(p) ‖fn − f‖p
′

−1,p′ .

Since the right hand side tends to zero forn→∞, the left hand side must tend to zero as well. Hence

Dvn(x)→ Dv(x) a.e. inΩ and
∫

Ω2n

|Dvn − Dv|p dx→ 0 (2.2)

for n→∞. Denote byχ1n the characteristic function of setΩ1n. Then∫
Ω
|Dvn − Dv|p dx =

∫
Ω
|Dvn − Dv|p χ1n dx +

∫
Ω2n

|Dvn − Dv|p dx.

The second integral on the right hand side tends to zero forn → ∞ due to (2.2). The integrand in the first
integral satisfies0 ≤ |Dvn − Dv|p χ1n ≤ (δ + |Dv|)p a.e. inΩ. Thus, due to Lebesgue’s dominated theorem,
the first integral on the right hand side tends to zero forn→∞, too. The proof is completed. �

Applying operatorA −1 to equation (1.25), we obtain its equivalent form

v + A −1(Bv) = A −1(f), (2.3)

which is an equation inW1,p
0,σ(Ω).
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Lemma 3. If p satisfies condition (1.20) thenB is a continuous operator fromW1,p
0,σ(Ω) to W−1,p′

0,σ (Ω). If,

moreover, functionf satisfies conditions (i) and (ii) then the operatorA −1 ◦B is continuous inW1,p
0,σ(Ω). If,

furthermore,p satisfies the stronger condition

p >
3N
N + 2

(2.4)

instead of (1.20), then the operatorA −1 ◦B is compact inW1,p
0,σ(Ω).

Proof. Let us at first prove the continuity ofB. Thus, consider a sequence{vn} in W1,p
0,σ(Ω) such thatvn → v

in W1,p
0,σ(Ω). If p ≥ N thenvn → v in Ls(Ω) for eachs ∈ (1,∞). If 3N/(N + 2) ≤ p < N thenvn → v in

LNp/(N−p)(Ω) andvn⊗vn → v⊗v in LNp/2(N−p)(Ω)N×N . In any case,vn⊗vn → v⊗v in Lp
′
(Ω)N×N ,

because condition (1.20) guarantees thatNp/2(N − p) ≥ p′. Since

|〈Bvn −Bv, ϕ〉σ| =
∣∣∣∣∫

Ω
[vn ⊗ vn − v ⊗ v] : ∇ϕ dx

∣∣∣∣ ≤ ‖vn ⊗ vn − v ⊗ v‖p′ ‖∇ϕ‖p,

we observe thatBvn → Bv in W−1,p′

0,σ (Ω). HenceB is a continuous operator fromW1,p
0,σ(Ω) to W−1,p′

0,σ (Ω).
This and Lemma 2 imply that the operatorA −1 ◦B is continuous inW1,p

0,σ(Ω).

Further, let{vn} be a bounded sequence inW1,p
0,σ(Ω). The spaceW1,p

0,σ(Ω) is reflexive, hence there exists a

subsequence (which we denote again by{vn}) such thatvn converges weakly to somev in W1,p
0,σ(Ω). Since

W1,p
0,σ(Ω) is compactly imbedded toLs(Ω) for each1 < s <∞ (if p ≥ N ) or for each1 < s < Np/(N − p)

(if p < N ), vn → v strongly inLs(Ω) for all 1 < s < ∞ (if p ≥ N ) or for all 1 < s < Np/(N − p)
(if p < N ). Hencevn ⊗ vn → v ⊗ v in Ls(Ω)N×N for all 1 < s < ∞ (if p ≥ N ) or for all 1 < s <
Np/2(N −p) (if p < N ). Consequently,vn⊗vn → v⊗v in Lp

′
(Ω)N×N , because condition (2.4) guarantees

thatNp/2(N − p) > p′. Thus,Bvn → Bv in W−1,p′

0,σ (Ω) andA −1Bvn → A −1Bv in W1,p
0,σ(Ω), which

confirms the compactness of the operatorA −1B. �

Since the set of all solutions to the equation (1.25) is bounded (due to the estimates (1.21) and (1.22)), and
equation (1.25) is equivalent to (2.3), we can formulate the following theorem:

Theorem 2. If p satisfies condition (2.4) and functionf satisfies conditions (i) and (ii) then the set of all
solutions of equation (1.25) (and therefore also the set of all weak solutions of the boundary–value problem
(1.14)–(1.16)) is compact inW1,p

0,σ(Ω).

2.2. The Ĝateaux and Fŕechet differential of the operatorsA and B. The Ĝateaux derivativeDA (v)v∗

of A at pointv in the directionv∗ is a functional onW1,p
0,σ(Ω), given by the equation

〈
DA (v)v∗, ϕ

〉
σ

=
∫

Ω
f
(
|Dv|2

)
Dv∗ : Dϕ dx +

∫
Ω

2 f ′
(
|Dv|2

)
(Dv : Dv∗) (Dv : Dϕ) dx. (2.5)

Let p ≥ 2. Recall that so far functionf has been defined on the interval(0,∞) with the possibility of a
continuous extension oftf(t2) by zero at the pointt = 0 due to condition (i). In order to give a natural sense
to the integrands in (2.5) at the pointsx ∈ Ω whereDv(x) = O, we assume from now on that

(iii) lim
τ→0+

f(τ) = f0 (where0 < f0 <∞) and lim
τ→0+

τ f ′(τ) = 0.

Obviously, (iii) =⇒ (i). Moreover, condition (iii) implies that the functionsf(τ) andτ f ′(τ) (and alsof(t2)
andt2f ′(t2)) can be extended from the interval(0,∞) by continuity to[0,∞). Note that the concrete examples
of functionf , given in (1.11) and (1.12), satisfy condition (iii). Sincep ≥ 2, the examples (1.7), (1.8) satisfy
(iii), too. (They satisfy (iii) also ifp < 2, but in this caseδ > 0 is needed.)
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Now, due to (1.3) and (1.4), we have∣∣〈DA (v)v∗, ϕ
〉
σ

∣∣ ≤ ∫
Ω

∣∣f (|Dv|2
)∣∣ |Dv∗| |Dϕ| dx +

∫
Ω

∣∣2f ′ (|Dv|2
)∣∣ |Dv|2 |Dv∗| |Dϕ| dx

≤ (c4 + 2c5)
∫

Ω
(δ + |Dv|)p−2 |Dv∗| |Dϕ| dx ≤

≤ C

(∫
Ω

(δ + |Dv|)p dx
)p−2

p

‖Dv∗‖p ‖Dϕ‖p

≤ C
(
δp−2 + ‖Dv‖p−2

p

)
‖Dv∗‖p ‖Dϕ‖p.

This shows thatDA (v) is a bounded linear operator fromW1,p
0,σ(Ω) to W−1,p′

0,σ (Ω). Thus,DA (v) coincides
with the Ĝateaux differential ofA at the pointv.

The conditionp ≥ 2 is important, because ifp < 2 then, in addition to the problem possibly arising at
points whereDv(x) = O, the integrals on the right hand side of (2.5) generally do not converge becauseDv,
Dv∗ andDϕ are inLp(Ω)N×N and the integrands need not be integrable. It means that the Gâteaux derivative
DA (v)v∗, as an element ofW−1,p′

0,σ (Ω), need not exist in all directionsv∗ ∈ W1,p
0,σ(Ω), and this holds true

even ifv is e.g. inC∞0,σ(Ω). Consequently, mappingA is not Ĝateaux–differentiable, and therefore also not
Fréchet–differentiable. This is the main reason why we assume from now on thatp ≥ 2.

In order to show that the operatorDA (v), as an element ofL
(
W1,p

0,σ(Ω),W−1,p′

0,σ (Ω)
)
, depends continu-

ously onv ∈ W1,p
0,σ(Ω), consider a sequence{vn}, such thatvn → v in W1,p

0,σ(Ω) (for n → ∞). Assume
that p > 2. (The casep = 2 can be treated similarly.) WritingD(vn) ≡ (dij(vn)), Dv ≡ (dij(v)) and
Dϕ ≡ (dij(ϕ)), we obtain

〈
DA (vn)v∗, ϕ

〉
σ
−
〈
DA (v)v∗, ϕ

〉
σ

=
∫

Ω

[
f
(
|Dvn|2

)
− f

(
|Dv|2

)]
Dv∗ : Dϕ dx

+
∫

Ω

[
2f ′
(
|Dvn|2

)
(Dvn : Dv∗) (Dvn : Dϕ)− 2f ′

(
|Dv|2

)
(Dv : Dv∗) (Dv : Dϕ)

]
dx

=
∫

Ω

[
f
(
|Dvn|2

)
− f

(
|Dv|2

)]
Dv∗ : Dϕ dx

+
∫

Ω

[
2f ′

(
|Dvn|2

)
dij(vn) dij(v∗) dkl(vn) dkl(ϕ)− f ′

(
|Dv|2

)
dij(v) dij(v∗) dkl(v) dkl(ϕ)

]
dx

=
∫

Ω

[
f
(
|Dvn|2

)
− f

(
|Dv|2

)]
Dv∗ : Dϕ dx

+
∫

Ω

[
2f ′

(
|Dvn|2

)
Dvn ⊗ Dvn − 2f ′

(
|Dv|2

)
Dv ⊗ Dv

]
: (Dv∗ ⊗ Dϕ) dx

≤
(
I
p−2
p

1n + I
p−2
p

2n

)
‖Dv∗‖p ‖Dϕ‖p,

where
I1n =

∫
Ω

∣∣f (|Dvn|2
)
− f

(
|Dv|2

)∣∣ p
p−2 dx,

I2n =
∫

Ω

∣∣2f ′ (|Dvn|2
)
Dvn ⊗ Dvn − 2f ′

(
|Dv|2

)
Dv ⊗ Dv

∣∣ p
p−2 dx.

(Note that “⊗” denotes the outer tensorial product andDvk ⊗ Dvk andDv ⊗ Dv are therefore the 4th order
tensors. On the other hand, “:” denotes the inner product of the 2nd order and 4th order tensors.) Letk > 0.
Denote

Ω1n := {x ∈ Ω; |Dvn(x)|p ≤ |Dv(x)|p + k} , Ω2n := Ωr Ω1n.
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It follows from the inequalities∫
Ω
|Dvn − Dv|p dx ≥

∫
Ω2n

|Dvn − Dv|p dx ≥ C(p)
∫

Ω2n

(|Dvn|p − |Dv|p) dx

≥ C(p)
∫

Ω2n

k dx ≥ C(p)kmeas(Ω2n)

thatmeas(Ω2n)→ 0 for n→∞. Hence
∫

Ω2n
|Dv|p dx→ 0 for n→∞. Consequently,

∫
Ω2n
|Dvn|p dx→ 0

for n→∞, too. The termI1n can be split to the sum of the integral onΩ1n and the integral onΩ2n. The latter
can be estimated by means of (1.3):∫

Ω2n

∣∣f (|Dvn|2
)
− f

(
|Dv|2

)∣∣ p
p−2 dx ≤ C(p)

∫
Ω2n

(
|f(|Dvn|2)|

p
p−2 + |f(|Dv|2)|

p
p−2

)
dx

≤ C(p)
∫

Ω2n

[
c

p
p−2

4 (δ + |Dvn|)p + c
p
p−2

4 (δ + |Dv|)p
]

dx

≤ C(p)
∫

Ω2n

[
δp + |Dvn|p + |Dv|p

]
dx −→ 0 for n→∞.

If we denote byχ1n the characteristic function of setΩ1n then∫
Ω1n

∣∣f (|Dvn|2
)
− f

(
|Dv|2

)∣∣ p
p−2 dx =

∫
Ω

∣∣f (|Dvn|2
)
− f

(
|Dv|2

)∣∣ p
p−2 χ1n dx.

The integrand satisfies the estimates∣∣f(|Dvn|2)− f(|Dv|2)
∣∣ p
p−2 χ1n ≤ C(p)

(
|f(|Dvn|2)|

p
p−2 + |f(|Dv|2)|

p
p−2

)
χ1n

≤ C(p)
[
c4 (δ + |Dvn|)p + c4 (δ + |Dv|)p

]
χ1n

≤ C(p)
[
δp + |Dvn|p + |Dv|p

]
χ1n ≤ C(p)

[
δp + 2|Dv|p + k

]
a.e. inΩ. The function on the right hand side is integrable inΩ. Moreover, asvn → v point-wise a.e. inΩ
and functionf is continuous on[0,∞), f(|Dvn|) − f(|Dv|) → 0 (for n → ∞) point-wise a.e. inΩ. Hence

the integral of
∣∣f (|Dvn|2

)
− f

(
|Dv|2

)∣∣ p
p−2 χ1n tends to zero asn→∞. Consequently,I1n → 0 for n→∞

due to the Lebesgue dominated theorem. (Note that this is the point where we use condition (iii), particularly
the continuity off on [0,∞).) We can also prove, by analogy, thatI2n → 0 for n→∞. (Here, we only apply
(1.4) instead of (1.3) and use the continuity oft2 f ′(t2) up to the pointt = 0.) We have proven the lemma:

Lemma 4. Let p ≥ 2 and let functionf satisfy conditions (ii) and (iii). Then operatorA is of the classC1

andDA (v) can be therefore identified with the Fréchet differential ofA at the pointv ∈W1,p
0,σ(Ω).

The Ĝateaux derivative of operatorB at pointv ∈W1,p
0,σ(Ω) in the directionv∗ is an element ofW−1,p′

0,σ (Ω),
satisfying

〈DB(v)v∗, ϕ〉σ =
∫

Ω
[v · ∇v∗ ·ϕ+ v∗ · ∇v ·ϕ] dx (2.6)

for all ϕ ∈ W1,p
0,σ(Ω). By analogy withA , we can prove thatDB(v) is a bounded linear operator from

W1,p
0,σ(Ω) to W−1,p′

0,σ (Ω), and it can be therefore identified with the Gâteaux differential ofB at the point

v. To prove the continuous dependence ofDB on v in the topology of the spaceL
(
W1,p

0,σ(Ω),W−1,p′

0,σ (Ω)
)
,

consider a sequence{vn} such thatvn → v in W1,p
0,σ(Ω) (for n → ∞). Applying the continuous imbedding

W1,p
0,σ(Ω) ↪→ L2p′(Ω), which follows from (1.20), we get

〈
DB(vn)v∗, ϕ

〉
σ
−
〈
DB(v)v∗, ϕ

〉
σ

=
∫

Ω

[
(vn − v) · ∇v∗ ·ϕ+ v∗ · ∇(vn − v) · ∇ϕ

]
dx
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≤ ‖vn − v‖2p′ ‖∇v∗‖p ‖ϕ‖2p′ + ‖v∗‖2p′ ‖∇(vn − v)‖p ‖ϕ‖2p′ ≤ C ‖∇(vn − v)‖p ‖∇v∗‖p ‖∇ϕ‖p.

The continuity ofDB is proven. This, together with Lemma 4, yields:

Lemma 5. Let p ≥ 2 and let functionf satisfy conditions (ii) and (iii). Then the operatorA + B is of the
classC1 and its Ĝateaux differentialD[A + B](v) ≡ DA (v) + DB(v) can be identified with the Fréchet
differential at each pointv ∈W1,p

0,σ(Ω).

The next lemma provides more information on the Fréchet differential ofA in the cases when{p > 2 and
δ + |Dv| > 0 a.e. inΩ} or p = 2.

Lemma 6. Let {p > 2 andδ + |Dv| > 0 a.e. inΩ} or p = 2. Let functionf satisfy conditions (ii) and (iii).
Thennul DA (v) = 0, which means that the operatorDA (v) is one–to–one.

Proof. DenoteΩ+ := {x ∈ Ω; f ′(|Dv(x)|2) ≥ 0 andΩ− := Ω r Ω+. Then, choosingϕ = v∗ in (2.5) and
applying (1.2), we obtain

〈
DA (v)v∗, v∗

〉
σ

=
(∫

Ω+

+
∫

Ω−

) [
f
(
|Dv|2

)
|Dv∗|2 + 2 f ′

(
|Dv|2

)
(Dv : Dv∗)2

]
dx

≥
∫

Ω+

f
(
|Dv|2

)
|Dv∗|2 dx +

∫
Ω−

[
f
(
|Dv|2

)
+ 2 f ′

(
|Dv|2

)
|Dv|2

]
|Dv∗|2 dx

≥
∫

Ω+

c3 (δ + |Dv|)p−2 |Dv∗|2 dx +
∫

Ω−

c1 (δ + |Dv|)p−2 |Dv∗|2 dx. (2.7)

If p > 2 andδ + |Dv| > 0 a.e. inΩ then the right hand side is equal to zero only if|Dv∗| = 0 a.e. inΩ, which
means thatv∗ = 0. If p = 2 then the right hand of (2.7) reduces toc3

∫
Ω+
|Dv∗|2 dx+c1

∫
Ω−
|Dv∗|2 dx which

is also equal to zero only ifv∗ = 0, independently ofδ. Hencenul DA (v) = 0 and the operatorDA (v) is
one–to–one. �

As the casep = 2 will be studied separately in Section 3, we assume thatp > 2 from now on till the end of
Section 2.

Lemma 7. Assume thatp > 2 and functionf satisfies conditions (ii) and (iii). Then the operatorDA (v) is

not semi–Fredholm fromW1,p
0,σ(Ω) to W−1,p′

0,σ (Ω) for anyv ∈W1,p
0,σ(Ω).

Proof. 1) Let us at first consider the caseδ > 0. Assume for a while thatv ∈ C∞0,σ(Ω). ThenDA (v),

which is a bounded linear operator fromW1,p
0,σ(Ω) to W−1,p′

0,σ (Ω), can also be considered to be a bounded linear

operator fromW1,2
0,σ(Ω) to W−1,2

0,σ (Ω). Inequality (2.7) and Lax–Milgram’s theorem imply thatDA (v) maps

W1,2
0,σ(Ω) onto the whole spaceW−1,2

0,σ (Ω). SinceW1,p
0,σ(Ω) is dense inW1,2

0,σ(Ω), the range ofDA (v) (as

an operator defined inW1,p
0,σ(Ω) – we denote the range byR(DA (v))) is dense inW−1,2

0,σ (Ω). As W−1,2
0,σ (Ω)

is dense inW−1,p′

0,σ (Ω), R(DA (v)) is also dense inW−1,p′

0,σ . Moreover, since the range ofDA (v)) differs

from W−1,p′

0,σ (Ω), it is not closed inW−1,p′

0,σ (Ω). Consequently, the operatorDA (v) is not semi–Fredholm and
nul ′DA (v) = def ′DA (v) =∞.

Let us now show that the operatorDA (v) is not semi–Fredholm at all pointsv ∈ W1,p
0,σ(Ω). By contra-

diction: assume thatDA (v) is semi–Fredholm at some pointv0 ∈W1,p
0,σ(Ω). SinceA is of the classC1, we

can apply Theorem IV.5.22 in [5] and deduce thatDA (v) is semi–Fredholm for allv in a sufficiently small
neighborhood ofv0. This is, however, impossible, because any neighborhood ofv0 contains functionsv from
C∞0,σ(Ω), and we already know thatDA (v) is not semi–Fredholm for thesev.

2) Now, assume thatδ = 0. Letξ > 0. Let us write, for a while,f0 instead off , and putfξ(t2) := ξ+f0(t2).
Obviously,fξ(t2) satisfies condition (iii). Sincef0 satisfies (1.2) withδ = 0, functionfξ satisfies (1.2) with
δ = ξ1/(p−2) and modified constantsc1 andc2. Denote byA0 the operatorA defined by (1.23) withS given
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by (1.1), wheref ≡ f0. Let Aξ be the operator defined by (1.23) withS corresponding to functionfξ. The
differenceDAξ(v)−DA0(v) satisfies

〈
[DAξ(v)−DA0(v)]v∗, ϕ

〉
σ

=
∫

Ω

[
fξ
(
|Dv|2

)
− f0

(
|Dv|2

)]
Dv∗ : Dϕ dx = ξ

∫
Ω
Dv∗ : Dϕ dx.

From this, we observe that ∥∥[DAξ(v)−DA0(v)]v∗
∥∥
−1,p′

≤ ξ ‖∇v∗‖p.

This inequality shows that if the operatorDA0(v) was semi–Fredholm, thenDAξ(v) would also be semi–
Fredholm forξ > 0 sufficiently small. (See [5, Theorem IV.5.22].) This is, however, not true due to part 1) of
this proof. �

Provided thatp > 2 andf satisfies conditions (ii), (iii), we have proven that the range ofDA (v) is not
closed inW−1,p′

0,σ (Ω) if δ > 0. In fact, one can also show thatR(DA (v)) is not closed inW−1,p′

0,σ (Ω) if δ = 0
andv 6≡ 0. The proof is, however, subtler and more technical.

The next lemma unveils information analogous to Lemma 7, but it concerns the differential ofA + B.

Lemma 8. Letp > 2 and functionf satisfy conditions (ii) and (iii). ThenD[A +B](v) is not a semi–Fredholm

operator fromW1,p
0,σ(Ω) to W−1,p′

0,σ (Ω) for anyv ∈W1,p
0,σ(Ω).

Proof. We claim thatDB(v) is a compact operator fromW1,p
0,σ(Ω) to W−1,p′

0,σ (Ω).

If N = 2 or {N = 3 andp > 3} andv ∈W1,p
0,σ(Ω) thenDB(v) is a continuous operator fromW1,p

0,σ(Ω)
to Lpσ(Ω) because

∣∣〈DB(v)v∗,ϕ〉σ
∣∣ =

∣∣∣∣∫
Ω

[v · ∇v∗ + v∗ · ∇v] ·ϕ dx
∣∣∣∣

≤
(
‖v‖∞ ‖∇v∗‖p + ‖v∗‖∞ ‖∇v‖p

)
‖ϕ‖p′ ≤ C ‖∇v‖p ‖∇v∗‖p ‖ϕ‖p′

holds for allv∗, ϕ ∈W1,p
0,σ(Ω) andW1,p

0,σ(Ω) is dense inLp
′
σ (Ω). (We use the continuous imbeddingW1,p

0,σ ↪→
L∞(Ω), which follows from the inequalityp > N .) The spaceLpσ(Ω) is compactly imbedded toW−1,p′

0,σ (Ω),

henceDB(v) is a compact mapping fromW1,p
0,σ(Ω) to W−1,p′

0,σ (Ω).
If N = 3 and2 < p < 3 then we use the estimates∣∣〈DB(v)v∗, ϕ〉σ

∣∣ ≤ (
‖v‖ 3p

3−p
‖∇v∗‖p + ‖v∗‖ 3p

3−p
‖∇v‖p

)
‖ϕ‖s ≤ C ‖∇v‖p ‖∇v∗‖p ‖ϕ‖s,

wherep−1 + (3 − p)/3p + s−1 = 1, which yieldss−1 = 4
3 − 2p−1. (We apply the continuous imbedding

W1,p
0,σ(Ω) ↪→ L3p/(3−p)

σ (Ω).) Hence the conjugate exponents′ satisfies(s′)−1 = 2p−1 − 1
3 . The estimates of

〈DB(v)v∗, ϕ〉σ show thatDB(v) is a bounded linear operator fromW1,p
0,σ(Ω) to Ls

′
σ (Ω). Exponents is less

than3p/(3−p) (which is equivalent tos−1 ≡ 4
3−2p−1 > p−1− 1

3 ), henceW1,p
0,σ(Ω) is compactly imbedded to

Lsσ(Ω). Consequently,Ls
′
σ (Ω) is compactly imbedded toW−1,p′

0,σ (Ω) andDB(v) is a compact operator from

W1,p
0,σ(Ω) to W−1,p′

0,σ (Ω).
The caseN = p = 3 can be treated similarly.

AsDB(v) is compact fromW1,p
0,σ(Ω) to W−1,p′

0,σ (Ω), it is also relatively compact with respect toD[A +

B](v). Thus, ifD[A + B](v) was semi–Fredholm fromW1,p
0,σ(Ω) to W−1,p′

0,σ (Ω) thenD[A + B](v) −
DB(v) = DA (v) would also be semi–Fredholm, which is not true due to Lemma 7. �

We observe from Lemma 8 that ifp > 2 then the Smale–Sard theorem (see Theorem 1) or other related
tools, based on the theory of Fredholm operators, cannot be applied to equation (1.25) in order to characterize
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the set of right hand sidesf that are regular values ofA + B. Moreover, as the differentialD[A + B] is not
surjective fromW1,p

0,σ(Ω) to W−1,p′

0,σ (Ω), we also cannot apply the implicit function theorem or other related
tools in order to derive an information on the structure of the solution set of equation (1.25) and the behavior of
solutions if the right hand sidef varies. These are the reasons why we focus just on the casep = 2 in the next
section.

3 The structure of the set of solutions to the boundary value problem
(1.14)–(1.16) in the casep = 2.

In this section, we assume thatp = 2, which means that the stress tensorS, defined by (1.1), has the2–structure.
We suppose that functionf satisfies conditions (ii) and (iii). Recall that asp = 2, inequalities (1.2), (1.3) and
(1.4) reduce to (1.9) and (1.10). We already know from Lemma 4 and Lemma 5 thatA andA + B are
C1–mappings fromW1,2

0,σ(Ω) to W−1,2
0,σ (Ω).

Lemma 9. The range of the Fŕechet differentialDA (v) (at each pointv ∈ W1,2
0,σ(Ω)) is the whole space

W−1,2
0,σ (Ω). Thus,DA (v) is a Fredholm operator of index0 from W1,2

0,σ(Ω) to W−1,2
0,σ (Ω). Consequently,A

is a Fredholm operator of index0 fromW1,2
0,σ(Ω) to W−1,2

0,σ (Ω), too.

Proof. It follows from (2.7) that the bilinear form〈DA (v)v∗, v∗〉σ is elliptic in W1,2
0,σ(Ω). Thus, applying

Lax–Milgram’s theorem, we deduce thatR(DA (v)) = W−1,2
0,σ (Ω) anddef DA (v) is therefore equal to zero.

SincenulDA (v) = 0 as well (see Lemma 6), we haveindDA (v) = 0. This implies thatDA (v) is a
Fredholm operator of index0. HenceA is a Fredholm operator of index0 as well. �

Lemma 10. A + B is a proper Fredholm operator fromW1,2
0,σ(Ω) to W−1,2

0,σ (Ω) of index0.

Proof. Let us at first prove thatA + B is proper, i.e. that the pre–image[A + B]−1(K) of any compact
setK in W−1,2

0,σ (Ω) is compact inW1,2
0,σ(Ω). Thus, let{vn} be a sequence inW1,2

0,σ(Ω) such thatfn :=
[A + B](vn) are in a compact setK in W−1,2

0,σ (Ω). There exists a subsequence of{fn} (which we denote

again{fn}), that converges to some functionf in W−1,2
0,σ (Ω). Due to the continuity ofA −1, the sequence

{A −1fn} converges inW1,2
0,σ(Ω). If follows from estimate (1.21) that the sequencevn is bounded inW1,2

0,σ(Ω).
Hence there exists a subsequence (which we denote again by{vn}), weakly convergent to somev in W1,2

0,σ(Ω).
Since the operatorA −1 ◦ B is compact (see Lemma 3),A −1Bvn → A −1Bv strongly inW1,2

0,σ(Ω). As

vn = −A −1Bvn + A −1fn, we obtain thatvn → v strongly inW1,2
0,σ(Ω). This shows that[A + B]−1(K) is

compact inW1,2
0,σ(Ω).

In order to prove that the operatorA +B is Fredholm of index zero, we need to show thatDA (v)+DB(v)
is a linear Fredholm operator of index zero at some pointv ∈W1,2

0,σ(Ω). We have shown in the proof of Lemma

8 that if p > 2 thenDB(v) is a compact operator fromW1,p
0,σ(Ω) to W−1,p′

0,σ (Ω). The proof can be modified

so that it also works in the casep = 2: let {vn} be a bounded sequence inW1,2
0,σ(Ω). We want to show that

there exists a subsequence such thatBvn is convergent inW−1,2
0,σ (Ω). Using formula (2.6), one can simply

verify thatDB(v) is a bounded operator fromW1,2
0,σ(Ω) to L2

σ(Ω) (if N = 2) or to L3/2
σ (Ω) (if N = 3).

Since the imbedding ofL2
σ(Ω) to W−1,2

0,σ (Ω) (if N = 2), respectively ofL3/2
σ (Ω) to W−1,2

0,σ (Ω) (if N = 3),

is compact,DB(v) is a compact operator fromW1,2
0,σ(Ω) to W−1,2

0,σ (Ω). Consequently, the operatorDB(v)
is also relatively compact with respect toDA (v). Hence, sinceDA (v) is a Fredholm operator of index
0, DA (v) + DB(v) is a semi–Fredholm operator of the same index0. (See [5, p. 238, Theorem 5.26].)
In order to verify thatDA (v) + DB(v) is not only semi–Fredholm, but it is a Fredholm operator, it is
sufficient to show thatnul [DA (v) + DB(v)] < ∞. (Thendef [DA (v) + DB(v)] is also finite because
the index is zero.) By contradiction: assume thatnul [DA (v) +DB(v)] =∞. Then there exists a sequence
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{vn} on the unit ball inW1,2
0,σ(Ω), such that its closure is not compact (i.e. the sequence is not pre-compact)

and [DA (v) + DB(v)]vn = 0. Hencevn + [DA (v)]−1DB(v)vn = 0. Since the operatorDB(v) is
compact fromW1,2

0,σ(Ω) to W−1,2
0,σ (Ω) and[DA (v)]−1 is bounded fromW−1,2

0,σ (Ω) to W1,2
0,σ(Ω), there exists a

subsequence (which we also denote by{vn}) such that{[DA (v)]−1DB(v)vn} is a convergent sequence in
W1,2

0,σ(Ω). Consequently,{vn} is also convergent inW1,2
0,σ(Ω). This is a contradiction with the assumption that

{vn} was not pre-compact. �

Now, we are in a position to apply Theorem 1 (withk = 1) to equation (1.25). It provides the existence of
a dense open setO in W−1,2

0,σ (Ω) such that allf in O are regular values ofA + B. Denote byS(f) the set of
all solutions of equation (1.25), i.e.[A + B]v = f . Sinceind [A + B] = 0, the setS(f) is discrete for each
f ∈ O. (This follows from [10, Corollary 1.5] or [3, Theorem A].) Since it is also compact (see Theorem 2), it
must be finite.

Assume thatf0 andf1 are in the same componentO′ ofO. Thenf0 andf1 can be connected by a continuous
curvet ∈ [0, 1] 7→ ft ∈ O′. Let v0

1, . . . ,v
0
k be the elements ofS(f0). Due to the implicit function theorem (see

e.g. [12, Theorem 4.B]), there existk continuous curvest ∈ [0, 1] 7→ vit ∈W1,2
0,σ(Ω) (i = 1, . . . , k) such that

vit ∈ S(ft) for all t ∈ [0, 1]. Any two different curves cannot intersect at any pointv, otherwise it would lead
to a contradiction with the implicit function theorem aroundv. Thus, the setS(f1) contains at leastk different
pointsv1

1, . . . ,v
1
k. Due to the symmetry, the number of elements inS(f1) is the same as the number of elements

in S(f0). This shows that the number of elements ofS(f) is constant for allf in the same component ofO. The
fact that each element ofS(f) is aC1–function off follows from the implicit function theorem or the so called
pre-image theorem, see [12, Theorem 4.J]. We have proven the theorem:

Theorem 3. There exists an open dense subsetO of W−1,2
0,σ (Ω) such that

1) for everyf ∈ O, the setS(f) is constituted by a finite number of solutions of equation (1.25),

2) the number of elements ofS(f), for f in every connected component ofO, is constant,

3) each element ofS(f) is aC1–function off for f in every connected component ofO.
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