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Abstract

We prove the global in time existence of a weak solution to the variational inequality of the Navier—
Stokes—Boussinesq type, simulating the flow of a viscous heat conductive fluid through the channel, with
the so called natural boundary conditions on the outflow for velocity and temperature. The use of the
variational inequality enables us to derive an energy—type estimate of the solution.
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1 Introduction and notation

1.1. The Navier—Stokes—Boussinesg-type initial-boundary value problen.et T > 0 and{) be a bounded
Lipschitzian domain irR3. PutQr := Q x (0,T). We study the mathematical model of a flow of an incom-
pressible viscous heat—conductive fluid in dom@iim the time interval(0, 7"). The densityp is assumed to
vary only due to the varying temperatuteaccording to the law

p = pref [1 — (8 — brer)],

wherep,os > 0 is a constant density corresponding to a chosen constant reference tempgeatared o is
the coefficient of thermal expansion. Applying this formula, the acting volume fofagan be expressed as

:Of = Pref [1 - a(& - Gref)] .f (11)

The balance of momentum is described by the Navier—Stokes equation. Since the density usually differs very
little from p,..¢ in the range of physically realistic temperatures, we may assume that the flow is incompressible
and putp := p,r = 1 in all terms in the Navier—Stokes equations, except for the volume force. Thus, the
Navier—Stokes equation takes the form

ou —vAu+ (u-V)u = —Vp+ [1 —a(f— Gref)] 7, 1.2

whereu is the velocityp is the pressure andis the kinematic coefficient of viscosity. Similarly, assuming that

the density is constant (equal pg.s = 1), the internal energy in the fluid reduces to the heat, and neglecting
the heat production due to viscosity (the Boussinesq approximation), we write the equation of balance of the
internal energy in the form

00 — BAO+ (u- V)0 = g, (1.3)

whereg is the given specific intensity of sources of heaflimnd is the coefficient of heat conduction. All
coefficientsa, 8 andv are supposed to be positive constants. The conservation of mass is described by the
equation of continuity

divu = 0. (1.4)



We assume thal() = I'; UTy, wherel'; andI'y are disjoint nonempty subsets@f, open in the 2D topology
of 0€2. Since the 2D measure bf is positive, there exists, > 0 such that the Friedrichs inequality

2 < ca V.2 (1.5)

holds for all functions froni’’1:2(2), whose trace ofr; is equal to zero. (See [16, Theorem 1.1.9].) Bet
simulates the part of the boundary<fwhere the fluid flows int&2 or the part that coincides with a fixed wall,
and it is therefore logical to use the Dirichlet boundary conditions

u=u", 0 =06 onI'; x (0,7) (1.6)

for the velocity and the temperature. We assume tffaand6* are given functions o'y x (0,7") that can
be extended t62 x (0,7") so that the extended functions, which are for simplicity also denotedtgndo*,
satisfy

u* € L®(0,T; Wh(Q)) nWh2(0,7; W 12(Q)), divue* =0 a.e.inQ x (0,7), (1.7)
0* € L>(0,T; WH(Q)) nwh?(0,T; W12(Q)), (1.8)

where W ~12(Q) (respectivelyiV ~12(Q)) is the dual toW?(Q) (respectivelyiV’1:2(Q)). It follows from

[15, Theorem 1.3.1] that function*, satisfying (1.7), is irC? ([0, T]; L*(<2)) and functionp*, satisfying (1.8),

is in C°([0,77]; L*(2)). We assume that the fluid “essentially” flows out(dthroughl',. (By “essentially”

we mean that possible backward flowsIoncannot be excluded.) As the velocity and the temperature on the
outflow cannot be expected to be known in advance, we use the so called “natural” boundary condition for the
velocity and the pressure

—pn—i—yg—z = F onI'y x (0,7) (2.9)

and the Neumann boundary condition for the temperature:
ﬂ% =G onI'y x (0,7). (1.10)
on

The classical formulation of the considered initial-boundary value problem is completed by the initial condi-
tions for the velocity and the temperature

u = ug, 0 = 6 in Q x {O} (1.11)

1.2. Aims of this paper and related previous results. The boundary condition (1.9) is a variant of the so
called “do nothing” condition, because it naturally follows from the appropriate weak formulation, see [9].
(In fact, our condition (1.9) is more general, because the “do nothing” boundary condition considered in [9]
has the zero right hand side.) The problem is that although we assume that the fluidethmensghl’; and
essentially leaves throudh,, condition (1.9) admits backward flows di that might possibly bring back

to ©Q an uncontrollable amount of kinetic energy. Thus, condition (1.9) does not enable us to derive an a
priori estimate of velocity and temperature, analogous to the usual energy inequality, and consequently, the
construction of a global in time weak solution fails. This is why we impose an additional restriction on the
size of possible backward flows driy. However, then the velocity is from the beginning constructed in an
arbitrarily large convex subset of a certain function space, and the Navier—Stokes equation (1.2) is therefore
logically replaced by an appropriate variational inequality. We prove the global in time existence of a weak
solution of the boundary—initial value problem, formulated by means of this inequality, and we also show that
if the time derivative of the solution is ih?(0, T; V1) (the spacd” ~! is defined in subsection 1.3) then there
exists an associated presspreo thatu, p satisfy the Navier—Stokes equation in the sense of distributions in
2% (0,T). Moreover, ifu andp are “smooth” then the variational inequality is reduced only td'set (0,7")



and it substitutes the boundary condition (1.9). Finally, we also show that if the solution is in the interior of the
aforementioned convex set then the boundary condition (1.9) is satisfied point-Wiseif0, T').

Our main result on the existence of a weak solution is formulated in Theorem 1 in Section 3. Note that the
same theorem also holds if the heat conductivity of the fluid is not taken into account and one considers just the
Navier—Stokes inequality (1.16), without equation (1.17), which represents the weak form of equation (1.3).
The main reason why we study the coupled system (1.2), (1.3) for the main unknowns velocity and temperature
in this paper, is that in addition to the “natural boundary condition” (1.9) for the velocity, we also use the
“natural boundary condition” (1.10) for the temperature on the Paxif 02, and we show that in contrast to
(1.9), condition (1.10) does not have any negative effect on the energy estimates and there is therefore no need
to replace equation (1.3) by an inequality.

The Navier—Stokes equations with the mixed boundary conditions (1.6) and (1.9) (for velocity) have been
studied e.qg. in papers [12], [13], [1], [2], where the authors prove the solvability under the assumptions that
the given data are “small”. (The flow of a heat—conductive fluid is also considered in [2].) A modification
of condition (1.9) that enables one to derive an energy estimate was suggested in [3]. The Navier—Stokes
equations with the boundary condition (1.9) modified in the sense of [3] have been studied in [4], [5] [6] and
[17] in connection with flows through profile cascades. While the inflow to the cascade was assumed to be
“sufficiently small” the first two papers, a finer treatment of the boundary condition has enabled the authors to
improve the results to an “arbitrarily large” inflow and to prove the existence of weak solutions in papers [6]
and [17]. Another approach was applied in [10] and [11], where the authors studied the steady Navier—Stokes
problems with the mixed boundary conditions (1.6) and (1.9) (for velocity), and artificially restricted the size of
a possible backward flow dry,. The velocity was constructed in a “large” convex subset of a certain function
space, and instead of the Navier—Stokes equation, the authors used an appropriate steady variational inequality
of the Navier—Stokes type. A similar idea is also applied in this paper. Here, however, we consider the non—
steady problem and the usual equations (1.2) and (1.4) are completed by the equation (1.3) of heat convection
and conduction. Boundary conditions of different types on different part&oare applied not only to the
velocity, but also to the temperature.

1.3. Notation, function spaces. Vector—functions and spaces of vector-functions are denoted by boldface
letters.

oletl < r < ococandk € {0} UN. The norm of a scalar— or vector— or tensor—valued function, with
components in the Lebesgue spdcds) (respectively the Sobolev spatE* " (Q)) is denoted by . |
(respectively| . ||x,»). The norminL"(I'z) is denoted by . ||, 1.

o Let V be the space of infinitely differentiable divergence—free vector functiofis timat have a compact
support inQ U T'y. We denote byH the closure ofY in L?(Q) and byV'! the closure oy in W12(Q).
(V! can also be characterized as a space of divergence—free function§¥rah((2), whose trace of';
is zero.) The dual space 86" is denoted bW’ ~!. The norm inV !, respectively the duality between
elements o ~! andV'!, is denoted by . || _1 2, respectively by ., .).

o Letcy > 0anda € (2,4) be such numbers that

esssup/ (u*-m)2 dS < co. (1.12)
te(0,T) JT2

Here,u* is the function from (1.6) and (1.7 denotes the outer normal vector field and the subscript
denotes the negative part. (The negative part is taken “positively”, ice<if) thenc_ = —c.) We define
K to be the set of all functiong € V'! such that

/ [(u™(t)+ @) -n]® dS < ¢ foraate (0,7). (1.13)
s

The numberss, a and functionu* are fixed throughout the paper. Constantan be chosen to be arbitrarily
large. Obviously, the larger is, the larger is sef!.



o We denote by# (0, T) the Banach space of of functions ¢ L?(0,T; V'!) such that,w € L*(0,T;
V1), equipped by the norm

T ) T ) 1/2
Mwm::<A|wwudr+A\wlega) .

Applying [15, Theorem 1.3.1], one can deduce that each funatidrom (0, T') is in C°([0, T); H), too.
o We denote by# (0,T) := #(0,T) N L?(0,T; K%).
o Let X be the space of infinitely differentiable scalar function$§lithat have a compact supportihu I's.

We denote byX'! the closure oft in W12(Q). The dual space t&! is denoted byX —!. The norm in
X1, respectively the duality between elements\of! and X!, is also denoted bjf . ||_; 2, respectively

by (.,.).

Lemma 1. a) K' is a closed convex subset Bf'. There exists; > 0 such thatK' contains thee;—
neighborhood of0 in V1.

b) 2 (0,T) is a closed convex subset#f(0, T').

Proof. The fact thatK! is closed easily follows from the fact that the inequality in (1.13) is not strong. In

order to prove the convexity dk'!, assume thap,, ¢, € K'. Lets € (0,1). Then, applying Minkowski’s
inequality,

(/F2 [(w*(t) + sy + (1 — 8)¢by) - m]* ds)é
< (Lo ) (0 0+ 6 m) ] as)

gS(Ajm%w+@»nrdﬂ%+a—@(éjmwo+%wnraﬂa

< scé/a—i— (1— s)c;/a = c;/a.
This shows thatg, +(1—5)¢, € K',t00. The existence @f > 0 such thatk ! contains the;—neighborhood

of 0 follows from the fact that the inequality (1.12) is strong: et V!, ||¢||1.2 < e1. Then, applying again
Minkowski's inequality, we obtain

< </F2(u*(t)-n)‘i dS>% + </F2(¢-n)‘i dS)%

(/FQ(“*(”'")G d5>i +C(a)[lpll12 < (/FQ(U*(t) ) dS)i +C(a) e

Q

IN

Since the first term on the right hand side is strongly less tiéé”n the whole right hand side is less than or
equal toé/“ if €; is sufficiently small. Henceb ¢ K'.
Statement b) is an easy consequence of a). O

1.4. A formal derivation of the variational inequality. Suppose thats,  andp is a “smooth” solution
of the problem (1.2)—(1.4), (1.6), (1.9)—(1.11). ketbe a “smooth” function fronjo, 7] to K. Writing u,
respectivelyd, in the formu = u* +v, respectively) = 6* -+, wherev(t) € V' andd(t) € X' fort € (0,T),



multiplying equation (1.2) byw — v, integrating ovef2 x (0,7") and applying the boundary conditions (1.6)
and (1.9), we obtain

/OT/Qat(uwv).(w_v) dmdt+/0T/Q(u*+’v)'V(U*+’U)'(w—’v) de dt
—i—/OT/Qz/V(u*—l-U)'V(w—U) da dt

T T
_ / /[1—@(9*+19—9ref)]f-(w—'v) dccdt+/ F-(w—v)dSdt.  (114)
0 Q 0 Ty

The first term on the left hand side satisfies

/(]T/Q(‘)t(u*qtv)-(wv) da dt
_ /OT/Qﬁt(u*+w)~(w—v)dacdt—|—/0T/98t(v—w)-(w—v)dacdt

T
0 Q
T
< /0 /Qat(u* +w) - (w—wv)dedt+ - 1 ”w( ) — vol|3, (1.15)

wherevy := ug — v*(0). From now on, we considap € . (0,7). Recall thatd,u* is supposed to be in
L2(0,T; W—12(Q)). This implies thav,(u* + w) is in L2(0,T7; V). Thus, we can write the integral of
O(u* +w) - (w —v) in Q as the duality 0, (u* + w), w — v). Substituting from (1.15) to (1.14), we obtain

T T
/ <8t(u*+w),w—v>dzvdt+/ /(u*+v)-V(u*+v)-(w—v)dmdt
0 0o Ja
T T
—i—/o /g)uV(u*%—v)-V(w—v) dedt > /0 /Q[l—a(é?*—i-ﬁ—ﬁref)]f-(w—v) de dt
T
+/ Fo(w—v) det—%Hw(O)—vOH%. (1.16)
1)

The fact that (1.16) is an inequality, and not an equation, gives us a freedom to impose an additional condition
on the solutioru: we requirev(t) = u(t) — u*(t) to be inK! for a.a.t € (0,7).

The weak form of equation (1.3) can be derived in a usual way: we Wittehe formd = 6* + 9, multiply
equation (1.3) by a test functian € C> ([0, T]; X*) such that)(T) = 0, integrate in2 x (0,7), apply the
integration by parts, apply the boundary condition (1.10) and wsite)) instead of[, gv» dz. We get

/ /0*+19 8t1/1d{13dt+/ / * 4 o) 9*+19)1/)da:dt+5/T/ﬂv(9*+?9)‘dea:dt
/ - Gy deH/ (9,) dt+/(9*(0)+ﬁo)w(0) de, (1.17)

whered, := 6y — 6*(0). The functionsy and¥ are from now on considered to be the new unknowns.
1.5. The initial-boundary value problem (P). Given

a) w* and@*, satisfying (1.7) and (1.8),

b) wug € L*(Q) such thatdivug = 0 in Q in the sense of distributiongy € L2(9),

c) fe L'i% (0,T; L*'(£2)) for somer; ands; such that; ' 457" = % and2 < r; < 6,



d) F e L*(0,T; L*3(Is)), g € L*(0,T; X~') and G € L2(0,T; L*/3(Ty)).

We look forv and ¥ such thatv € L>(0,T; H) N L*(0,T; K'), ¥ € L>(0,T; L*(Q)) N L*(0,T; X*')
and the inequality (1.16) and the equation (1.17) are satisfied for all test functiogs.# (0,7) andy €
C>([0,T]; X*') such that)(T) = 0.

The assumptions on functiofi in item c) imply that the first integral on the right hand side of (1.16)
converges. Similarly, the assumptions Bh g and GG in item d) guarantee the convergence of the second
integral on the right hand side of (1.16) and the corresponding integrals in (1.1®), Ij is a solution of
problem(P) then, by analogy with the theory of the Navier—Stokes equations, a distriqutiof2 x (0,7)
is said to be arassociated pressuli¢ v = u* + v, § = 0* + ¥ andp satisfy equation (1.2) in the sense of
distributions inQ2 x (0, 7).

As it is usual in the theory of weak solutions of partial differential equations, one can show that if all the
given data and the solutiof, «#) are sufficiently smooth and integrable, there v* + v andd = 6* + ¢
satisfy equations (1.3) and (1.4), boundary conditions (1.6) and (1.10) and initial conditions (1.11) in a strong
sense i) x (0,7") oronI'y x (0,7") oronI'y x (0,7 orin§ x {0}. Itis, however, not clear at the first sight
whether the variational inequality (1.16) in some sense involves the momentum equation (1.2) and in which
sense problentX) also involves the boundary condition (1.9). The next two lemmas concern these questions.

Lemma 2. Let (v, 1)) be a solution of problentX). Letd;v be, in addition, inL?(0,7; V') andp be a given
function fromZL!(0,7). Then an associated pressyrexists as a function froni! (O,T; LQ(Q)), such that
Jop(t) dS =p(t) a.e.in(0,T).

Proof. Consider functionw in (1.16) in the formw = v + x(t)¢, wherey € C'([0,T7]), x(0) = x(T) =0
ande € W2 (Q) (the space of all divergence—free functions fré¥it () with the zero trace of(). Then
(1.16) yields

T T
/ (O(u+ x() ), x(t)p) dt +/ X(t)/ [u-Vu-¢+vVu-Ve| dedt
0 0 Q
T
> [ [ 1= 0= 0u)f -6 daat (118)
Since
T T
| (@t xoe o8y at =[x (0. 9) de,
0 0
(1.18) takes the form
T T
/0 (0 (B, ) dt+/0 X(t)/g[u-vu-¢+uvu-v¢] dz dt

T
> [ 3 [[1=a(0—0u0lf -6 dodr (1.19)

Considering (1.19) with functior ¢ instead ofp, we observe that (1.19) holds as an equation. Moreover, as it
holds for allx € C*[0,T7]) such thaty(0) = x(T) = 0, we deduce that the equation

o)+ |

[u-Vu-¢+vVu-Ve| de = /[1-0[(9—9ref)]f'¢d$
Q

Q

holds at a.a. points€ (0, T'). Integrating with respect to time frofto ¢, we get
t t
/[u(t) —uo]-¢dw+/ /[u-Vu-¢+l/Vu~V¢] dedr = / /[l—a(ﬁ—ﬁref)]f~¢da:d7.
Q 0 Jo 0 Jo

6



Put
Si(y) = /Q[u(t)_uo]'¢dib+/0 /Q{u-vu-¢+uw-v¢—[1—a(9—9ref)]f-¢}dmd7.

3: is a bounded linear functional G 2(Q) that vanishes of "> (€2). Thus, due to [8, Corollary 111.5.1],

there existsP(t) € L*(2) such thatf,(v) = [, P(t)div da. Substituting here fof;, differentiating this
identity with respect ta (in the sense of distributions) if®, 7') and denoting := 9, P, we deduce that, ¢
andp satisfy equation (1.2) in the sense of distribution&irx (0, 7).

It follows from the assumptions (1.7) and (1.8) (on functiarisand 6*) and the definition of the solu-
tion (v, ) (which includes the information on the integrability ofand¥) that Aw € L?(0,T; W, ()
(WhereW_l ?(Q) is the dual toW y*(Q)), w - Vu € L¥3(0,T; W, 7%(Q)) and[1 — a(f — b,e)] f are in
LY0,T; W, (). The distributional derivativé);v is supposed to be ii?(0,7; V' ~1), which implies
thatdyu = 9 (u* +wv) isin L*(0,T; W, *(Q)). Consequently¥p (the distributional gradient gf) belongs
to L' (0, T; W *(Q)) andp can be therefore chosen so that it belongst0, 7; L(92)). Sincep is unique

up to an additive function of, this function can be chosen so thesatisfies the COI’]dItIO!ﬁQp ) dS = p(t)
a.e.in(0,7). O

Lemma 3. a) Let(wv, ) be a solution of problenK) and let all the term$,u, v - Vu, Au and
[1 — (0 — brer)] f (Whereu = u* + v and@ = 6* + 9) belong toL? (0, T; L*(€2)). Then the associated
pressurep exists as a function from? (0, 7"; W2(Q)) and the inequality

// I/——pn F)( —w)dSdt > 0 (1.20)
1)

holds for allg € L?(0,T; K*!).

b) If, in addition to the assumptions in item &) lies uniformly in the interior ofK* in the sense that there
existse; > 0 such thaw(t) + ¢ € K for all ¢ from thee;—neighborhood 00 in V! and a.at € (0,7T)
then the boundary condition (1.9) is satisfied point-wise a.€zitxx (0, 7).

Proof. a) An associated pressysexists due to Lemma 2. It follows from equation (1.2) and the assumptions
in item a) thatVp € L2(0,T; L*(Q2)). Writing w instead ofu* + v andé instead of¢* + ¢ in (1.16) and
expressing the first integral in (1.16) by means of the identities

T T T
/0<8t( +w),w—v)dt = / (0 (u +v),w—v>dt+/0 (Oy(w —v),w —v) dt
= [ [ oy azars ) - o013 - o) vl

/OT/Qatu.(’w—v)dwdt+/OT/Qu.vu.(w_v)dxdt
+ ' vVu - V(w —v) dedt — ! [1—a(f —bOu)] f - (w —v) dedt
0 Q 0 Q

> / F-(w—v)dSdt— < ||lw(T) —v(T)|5. (1.21)
Ty 2

we obtain

Let g be at first a function from the same classwsi.e. ¢ € L*(0,T; K'), d;q € L*(0,T; V1), Let
¢ € (0,1). If we usew in (1.21) in the formw = £q + (1 — &)v, divide the inequality by and consider
¢ — 0+, we get

/ /E)t q—v dmdtJr/ /u Vu-(q—v)dedt

7



+/OT/QVW-V(q—v)dmdt—/DT/Qu—a(e—eref)}f.(q—v)dmdt
> /OT F2F-(q—v)det.

Applying the integration by parts to the third integral on the left hand side, we obtain

T T 0
/0 /Q{(?tu—uAu+u~Vu—[1—a(9—0ref)]f}-(q—v)da:dt+/0 /qua—z-(q—v)det

T
—/ F.-(q—v)dSdt > 0,
0 Jrs

T T ou T
—/ /Vp-(q—v)da:dt+/ /V—‘(q—'v)det—/ F.-(q—v)dSdt > 0.
0 JQ o Jr, On 0 Jry

Integrating by parts in the first integral, we get (1.20). Since the set of funafien€.?(0, 7; K'), such that
oq € L*(0,T; V1), isdense inL2(0,T; K'), (1.20) holds for aly € L?(0,T; K*!).

b) Leth € L?(0,T; V') such thab;h € L?(0,T; V~1). Then there exist§ > 0 such that botly = v + dh
andq = v — dh are admissible test functions in (1.20). Using these test functions and dividing (1.20Wby

obtain the equation
T
/ / (Ua—u—pn—F) “hdSdt = 0.
0 s Gn

Sincevdu/dn — pn — F € L*(0,T; L4/3(F2)) and the set of traces of the functiohsonI'; is dense in
L2(0,T; L*(I',)), we deduce that condition (1.9) holds a.eTinx (0, 7). O

2 Approximations and their estimates

2.1. Auxiliary notions and considerations. Let us choose € R such thats > 3—2/a and 3+1/a < k < 1.
Denote byV* a closure ofy in W*2(Q), which is the interpolation spad&?(Q), W2(Q)].. ThenV1!is
compactly imbedded t& © and there exists a continuous operator of traces f¥6fto L4/(3‘2")(8Q). Par-
ticularly, due to the choice of, the operator of traces maps continuouglfj to L(I'y) and toL>*/(@=1)(Ty).
Define K* to be the set of all functiong € V* that satisfy inequality (1.13). By analogy wifli !, setK*
is convex and closed iv*. Denote byP,; (respectivelyF,) the projector inV! (respectively inV'*), which
assigns to each element B (respectively inV*) the nearest element iK' (respectively inK*). Due to
the convexity ofKC! (respectivelyK "), P; (respectivelyP,) is a continuous mapping af ! (respectivelyV ~)
into itself.

We denote by ., .); o the scalar product iV 12(Q). For¢ € V!, we put¥(¢) := ¢ — Pi(¢).

Lemma 4. Operator¥ is monotone and satisfies the inequalities

((9).9),, > 1¥(e)

120 (T(0),8),, > e [¥(P)]e (2.1)
for all ¢ € V!, wheree, is the number given by Lemma 1.

Proof. If ¢, ¢, € V' then, due to the convexity &, || P1(¢p;) — Pi(#1)]l12 < ||¢1 — bo]l1.2. Hence

((py) — O(hs), 01 — ¢2)172 = |l¢) — &1lli2 — (Pi(@1) — Pi(dhy), b1 — ¢2)1,2
> [y — @allTo — [ Pi(e)) — Pi(ea) |12 [lpy — @alliz > 0.




This proves the monotonicity oP. Furthermore,

(\II(¢)7¢)172 - (¢_Pl(¢)7¢_Pl(¢))172+ (¢_P1(¢)7P1(¢))1,2
(¢ = Pi(#), ¢ — Pr(#)),, = [ T(P)I3 2

(We have used the inequalityp — Pi(¢), P (¢ > 0, which holds becausK! is convex.) Obviously, the
1,2

second inequality in (2.1) holds¥ (¢) = 0. Thus, assume th&@t (¢) # 0 and puth := ¢; ¥(¢) /|| ¥ (®)]|1,2-
Then

(T(9),d),, = (0~ Pu(®). ¢~ Pi(®)),, + (¢ — Pr(#), Pr(d) = h), , + (¢ — Pi(¢),h), ,.

v

The first term on the right hand side is nonnegative. The second term is also nonnegative, becdkiseand
K'is convex. Thus, substituting fdr, we get

¥(o)

((6):6)15 = @ (YD) 1547

)., = @ 2@ O

Putv? .= Vv n w22(Q). v%is a Hilbert space with the scalar proddct . ), o, identical with the scalar
product inW?22(Q). Letey, ey ... be a basis iV2, orthonormal inH.. It follows from the density o2 in
H and from the continuous imbeddiig? << H that the functiong, es, . .. also form a basis ifH. Let
(1,C2, ... be abasis iV22(Q).

1.2. Construction of approximations. Letn € N. We look for the coefficienta,g”), b,(C") e C([o,1)),
(k =1,2,...,n) such that the functions

v =Y oM er, 0 =30 ¢ (2.2)
k=1 k=1
satisfy the initial conditions
v™(0) = 2(007 ek), €k, 9™ (0) = 2(1907 Ck) o Ck (2.3)
k=1 k=1

(where( ., . ), denotes the scalar productIif (2) or in L?(Q)) and the integral equations
/ (00" + (u* + B(v™)) - V(u* +v™)] - e, da + 1// V(u* +v™): Ve, da + (du*, ep,)
Q Q

- / [1—a@@ +0™ — )] f - e dz + 1 (B(v™), 1), = | F-edS, (2.4)
Q ’ Ty

/ (00T + (w* + By (v™)) - V(0" +9"™)] ¢, dz + 3 / V(0" +9™) V¢ da + (0,0%, )
Q Q
= (9:Ck) + A G dS (2.5)

hold forallk = 1, ..., n. Substituting here from (2.2), we obtain a systertwobrdinary differential equations

n)

for the unknown coefficients,i ) b,g") (k =1,...,n). The system is completed by the initial conditions

o (0) = (vo,er)y,  By(0) = (D0, )y (2.6)

The local solvability of the system follows from Caratheodory’s theorem. In order to prove the global solvability
on the time interva(0, T"), we derive global estimates oi”) andb;") (k=1,...,n).



2.3. A priori estimates. Multiplying the k—th equation in (2.4) by,g") and summing ovek from 1 to n, we
obtain

1 d n n n n * n * n n

5 7 P+ v Vo™ +n (B (0™), v™), , = ‘/Q(“ + Bo(v™)) - V(u* + v™) - v™ da

_,,/ Vu* : Vol da:—<8tu*,'v(")>—|—/[1—a(9*+19(”) —Oep)]f -0 dz+ [ F-0™MdS. (2.7)
Q Q T2

Similarly, multiplying thek—th equation in (2.5) by,(f”) and summing fok = 1,...,n, we get
1 d n) 112 n * n * n n
5 auﬁ( 5+ BIVem |3 = /Qpﬁ(u + o). V(" +9M)) 9™ de
-8 / vo* - VI dx — (9,6F,9™) + (g, 0™y + [ G9™ dS. (2.8)
Q I

The first integral on the right hand side of (2.7) equals

- / (u* + B(v™)) - Vo™ . v™ dg — / (u* + B (v™)) - Vu* - o™ da
Q Q

= —%/ (u* + Pﬁ(v(”)))) ‘n|o™2ds — / (u* + P,{('v(")))) Vau' o™ da
Ty Q

a—1

1
1 a a %0 o
2 s Ty Q

1 1/a n * n * n
502/ Clo™ 2 5 + [Ju + Be(w™)||, V|2 [0y,

IN

wherer; ' + s;' = 1. If r5 is chosen so that < 75 < 6/(3 — 2x) (which is< 6) thenV* << L™(Q)
andV?! << L*2(Q). Moreover, using also the inequaliti¢s* + P (v™)|,, < |[u*[., + 0™, <
C + ||lv™]|,,, we observe that the right hand side of the last inequality is

< §[[Vo ™3+ C(6) [v™3 + C 0™ s, + C 0™ I, 0],
Interpolating the normgv ™ ||,., and||v(™ ||, between|v(™ ||, and|| Vo™ |5, we further obtain:
- < 35[IVo |3+ C ) [lv™]5 + C(6). (2.9)

The second term on the right hand side of (2.7) satisfies

V/ Vu* : Vol dz| < §]|[Vo™|2 4+ C(0) |[Vu*|3. (2.10)
Q

The third term on the right hand side of (2.7) can be estimated by means of (1.5) and (1.7) as follows:
[(Oru*, o) < 0|12 0™ [he < §IVO™3 + C(6) [[Oru*l5. (2.11)

The fourth term on the right hand side of (2.7) can be estimated by means of the assumptions on the integrability
of function f, Young’s inequality, the continuous imbedding¥df!:?(Q) to L°(Q2) and Friedrichs’ inequality:

1= + 9% 0.0 -0 da| < 1= 00" + 0 = 00l 11 [0l

6—7r1 3r1—6

< 1= a @ + 9 = )l 1= a0+ 0™ = 0) 6™ [F s [0 o
6=ry 3r1—6
< Ot=a(@ + 9" —buer) [, 1= a(®" + 0" —Guo)ll1 5" [ Fllsr 0o

10



6—11 3r1—6 3r1—6
Clt = a0 + 9" = brer)ll,™ (IVO™Il" + 1= (0" = )]l 5" ) 1F]ls1 [V0™l2

4rq

S IVo ™3 + 6 VO™ |3+ C(8) + C0) |11 — (0" + 9™ — buer) 13 ]| Fllsr ™ - (2.12)

IN

IN

Finally, the last term on the right hand side of (2.7) can be estimated by means of the continuity of the operator
of traces fromW12(Q) to L*(992) and Friedrich’s inequality:

IN

1P laysir, [0 ar, < ClUF lagsir, 0™ 12 < ClIF|laysr, VO™

F.o®™ dS’
Iy

IN

8 [Vo™ 5+ CO) IIFI3 5.1, (2.13)

Substituting now from (2.10)—(2.13) to (2.7), we obtain
N3+ v Vo |3+ n (B + o), 0™) < T8V 4 ey VO3

4'r1

+C(8) [0 ™[5 + CO) 11 = a0 + 9™ — brer) 3 | Fls ™ + C(8) | V|3
C () 107113 2 + C(8) + CO) IFII3 3, - (2.14)

2dtH

The first term on the right hand side of (2.8) can be estimated by analogy with (2.9):

- / [(w* + B (v™)) - V(" +9™)] 9™ da
Q

[(w* + Bo(v™)) - vo™] ) da:—/[( + B (v™)) - vo*] 9™ da

p\

|9 9 de
/Fz( P.(v™)) - n |9 dS/ ™)) . v 9 d

5 (] [+ o) m)” ds)“ ([ o ds)a“l— [l + Rl - 967 0 d

1 174 *
5 & CIIIR + [ + B ™), 196712 9.,

DO | —

IN

IN

£SO 2, 4 Clut + B ™), 1967 9,

S VO™3 + CO) O3+ C (Jullny + [0 [lr,) V6|2 97|,

5 VO™ |5+ C(8) 95+ C 19|y + C [0 [y [0,

35 [|[VOM™II3 + 6 Vo™ 13 + C(8) 9™ + C(8) o™ |5 + C(6). (2.15)

IN A

IN

The estimates of the second, third and fourth term on the right hand side of (2.8) are standard:

ﬁ/ﬂV@*-Vﬂ(") de| < §|VIW|2 +C(6)|Vo*||3, (2.16)
(g, 9™)] < M, < O < VI3 + C0) llgl 1 2, (2.17)
5 GO dS| < (|Gllaszirs 19" lary < CIGllayzirs 9™ 12 < ClGaszr, V™2
< VI3 + CO) G113 5.1, - (2.18)

Substituting from (2.15)—(2.18) to (2.8), we obtain

5 dt Hl9 o+ BIVO™I3 < 55|V |3+ 6 [Vo™ 3+ C(8) [9™]I5 + C (@) ™3

11



+CO)[IVO*[5+ C(0) llgll* 12 + CO) IG5, - (2.19)
/

Choosingd > 0 so small thalR§ < %u and (5 + ¢3)0 < %ﬂ, summing (2.14) and (2.19), and using the
assumptions (1.7) and (1.8) arf andf*, we get

5 3 (D@ B+ 19 3) + 2 Vol + £ 7003 + 1 (B(0), o), ,
4rq 4ry

< Cllo™ 3+ 0 L+ 1f11) 1015 +C (L + 1))
+CO)IFIZ 5, +CO) lgl212 + CO) IG5, + C(6)- (2.20)

Integrating finally this inequality on the time interv@, 7°), we derive the estimates

o™ (@)|2 + [[9T)(2)]|2 < ¢ forallt € (0,T)andn €N, (2.21)
T
/ (Vo™ )3+ [Vo™|3) dt < ¢5  foralln €N, (2.22)
0
T
/ n (‘I’(U(”)), U(”))1 , dt < ¢ foralln € N. (2.23)
0 K

The upper bounds,, c; and c¢g depend on the functiona*, 6*, f, g, F, G, vo andfy and also on the
coefficientsy and3 and on the constants in Friedrichs’ inequality (1.5) and, in the definition of the convex
setK! (see (1.13)). They are, however, independent.dflote that the inequalities (2.1) and (2.23) yield

T T
/ 0 [T (™)2 5 dt < e, / 0 [ @ (™| dt < . (2.24)
0 ’ 0 €1

2.4. Existence of approximations.Estimates (2.21) imply that

n

n 2 n
S (" (1) + b

k=1

2
) ) < a forallt € (0,7) andn € N.

From this, one can deduce that the system of ordinary differential equations for the unmfcﬁ%vaadb,g”)

(k =1,...,n) (which we obtain if we substitute(™ andd(™ in the forms (2.3) to (2.4) and (2.5)) is uniquely
solvable on the whole time intervéd, T'). Consequently, functions™ and9(™ (defined by formulas (2.3))
also exist on the whole intervéd, 7') and satisfy estimates (2.21)—(2.23).

2.5. An estimate of a fractional derivative. In order to pass to the limit for — oo in weak forms of (2.4)
and (2.5), we also need an information on a strong convergence of the sequéhde For this purpose, we
derive an estimate of a fractional derivativerd) with respect ta. Chooser € (0, 3) and put

H = {v e L}0,T; V'); |7 8(r) € L*(—00,00; V-2(Q)) },

T [e'e)
o2y = /0 lo(6)]12 dt + / 727 13(r)% 0,5 d,

— 00

whereV ~2 denotes the dual space¥ andv is the Fourier transform af in variablet. (In order to calculate
the Fourier transform, we extenrdt) by zero fort € (—o0, 0)U(T, c0).) Recall that? := VINnW?22(Q). We
denote by| . || 2.2 the norm inV ~2. Our next objective is to show that the sequeficé } is bounded irf{".
Leth € V2. Then there exist coefficients , as, . .. suchthah = 323° | oy ;.. Denoteh™ = 31 ay ey,
Multiplying equation (2.4) bya(™ and applying the Fourier transform, we get

T
/ e—27ri7—t/[at,v(n)+(u*+PK(v(n))).v(u*+v(n))] -h™ de dt
0 Q

12



T T
+ v / e 2mirt / V(u* +v™): VA dzdt + / (Opu*, h™) dt
0 Q 0

A T
_ / e—27riTt / [1 o 05(9* + 19(”) _ Href)]f . h(n) dx dt + n/ e_27ri7't (\P(’U(n)), h(n))l 9 dt
0 Q 0 |

T
= / e 2™t [ . R 494t (2.25)
0 o

Applying the integration by parts to the first term on the left hand side, we get

T
/ e2”iTt/ o™ - B dg dt
0 Q

2T / »™(T) - B™ dg — / 2™ (0) - A" dg + 2rir / ()R dz. (2.26)
Q Q Q

(Here,%(”) denotes the Fourier transformof?).) We claim that there exists > 0 such that all other terms
in (2.25) can be estimated (in the absolute value}tjjh™ ||2.o. We show it on the example of the last term
on the left hand side of (2.25):

’ T
n/o e_zwm(‘I‘(U(n)),h(n))1,2 dt‘ S Cn”h(n)”1,2/0 1@ (™)1, dt

TR S N C )
< Clh Hma ; (T(™), o), dt < aHh 2,2 c6-

(We have used (2.1) and (2.23).) The other terms in (2.25) can be treated similarly, and this also holds on the
first two terms on the right hand side of (2.26). Thus, the last term on the right hand side of (2.26) satisfies

< ¢ Hh(n)

|2,2-

27Ti7'/ 7™ (7) - h™ do
Q

27ri7'/ 2" (1) - hdx
Q

There exists;s > 0, independent of, andh, such that|h(™||y5 < cg||h|j22. This simple inequality can
be proven by means of the Banach—Steinhaus theorem: dendt€'byhe projector inV2, that assigns to
eachh € V? the functionh(™. Since the sequende”™ h} is bounded inV? for eachh € V2, {P("} is a
bounded sequence (V?) (the space of bounded linear operatordif). Consequentlyl P(™ h||z is less
than or equal ta” ||k||2,2, whereC is independent ofi. The inequality|2rir () (7), h),| < cres |22

(for all b € V) implies that|[5"™) (7)|| _2.2 < cres/2n|7|. Thus, there existsy > 0, independent of, such

that
T —1 1 [e5e)
ol = [l @Raat ([ v [ [T R e R, ar

—1 0 1
e[ [F)rrrars [, ar
—00 1 —1
0 T
< C’+/ 5™ (7)||3 dr < C’+/ o™ @®)2 dt < co. (2.27)
0

—0o0

IN

3 The limit procedure for n — oo

3.1. Convergence of the approximations. It follows from (2.21), (2.22) and (2.27) that there existe
L=(0,T; H)N'H", ¥ € L>(0,T; L3(Q)) N L2(0,T; X*) and subsequences 6™} and {9} (which
we again denote bjw(™} and{#(™}) such that

QY weakly inH" and weakly- in L>°(0,7T; H), (3.1)

13



9" — 9 weaklyinL*(0,7; X') and weakly= in L> (0, T; L*()). (3.2)
Due to the compact imbeddirkf” —< L?(0,T; V*) (see e.g. [14, Chap. 1.5.2]), we also have
v — »  strongly inL?(0,T; V*). (3.3)

The convergence (3.3) further yields

v™ — v stronglyinL?(0,T; H), (3.4)
v — v strongly inL?(0,T; L%(T2)), (3.5)
v — v strongly inL?(0, T; L*/(@=D(Ty)). (3.6)

(Recall that numbed has been introduced in subsection 1.3.) The first inequality in (2.24) implies that
T(v™) — 0 stronglyinL?(0,T; Wh2(Q))). (3.7)

3.2. The inclusionv(t) € K*. Due to the monotonicity of operatd¥ in W2, we have
T
/ (\Il('v(")) —W(z), v — z)1 ,dt >0 (3.8)
0 b

foralln € Nandz € V'!. Using (3.1) and (3.7), we get

T
lim (\Il(v(")), v — z)
n—oo 0

T

T
lim (\Il(z),'v(”))l’2 dt = /0 (\Il(z),'v)L2 dt.

n—oo 0

L dt =0,

Thus, passing to the limit for — oo in (3.8), we obtairy"OT(\I'(z), v—z),, dt < 0. Putz = v—£¥(v) where
¢ > 0. Dividing the inequality by¢ and passing to the limit fof — 0+, we gethT(\Il(v), ¥ (v)),, dt <0,

which means tha® (v(t)) = 0 for a.a.t € (0,7). This implies thaw(t) € K' for a.a.t € (0,T).

3.3. Passage to the limit (forn — o0) in equation (2.4) for w in the class.#,,,(0,7). Recall that the
functionsey, (k = 1,2,...) form a basis inV2, orthonormal inH. Form € N, we denote by#,,,(0,T) the

set of functionsw € #/(0,T) that have a finite expansian(t) = ;" | ux(t)ex, and we put’#,,,(0,7) :=

W (0, T) N L2(0,T; KY).

We want to show that the functions= u* +v andf = 6* + ¢ satisfy the inequality (1.16) and the equation
(1.17). Assume at first that the test functienin (1.16) is chosen from se¥’,,,(0,7) andn > m. Recall that
v(") has the expansion (2.2). Let us multiply equation (2.4)py- a,(C”) if £ <mand by—a,(fn) ifm<k<n
and sum the equations fér=1,...,n. We obtain

/ [80™ + (u* + Po(v™)) - V(u* +v™)] - (w — v™) dz + y/ V(u* +o™): V(w —o™) dz
Q Q

+ (Bu*, w — v™) —/[1—04(«9*+29(") —bret)] f - (w — 0™ dz + n (T(v™), w — v™)

1,2
Q I

= [ F-(w—0v™)ds. (3.9)
I'>

Further, we integrate this equation with respect to timé®r"). The two terms that contain the derivatives
with respect ta yield

T
/ / [00™ - (w — ™) + (u*, w — v™)] de dt
0o Jo
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T
= /<8tu* + Ow, w — 'v(”)> dt —/ /(8tw — ™) - (w — ™) dz dt
Q 0o Jo
= /Q<8tu +Opw,w — o) dt — o w(T) — o' )(T)||% + 5 lw(©0) = ol J(0)|I2
< /Q<8tu* + Ow, w — v(")> dt + % [|w(0) — 'U(")(O)H;. (3.10)

The integral ofn (¥ (v(™),w — v(™)) , can estimated by means of the monotonicity of operdtaand the
identity ¥ (w)(¢)) = 0 as follows:

T
/ n(‘I’(U(”)),w — 'v(”))l
0

Thus, (3.9), (3.10) and (3.11) yield

T
, dt = —n/o (¥ (w) —\I'('u(”)),w—v(”))1 dt < 0. (3.11)

2

) )

T T
/ (Ou™ + Opw, w — v(”)> dt +/ /(u* + B.(v™)) - V(u* +v™) - (w — ™) da dt
0 0o Jo
T T
+ y/ / V(u" +v™): V(w — v™) dedt — / /[1 —a(0* + 9™ — 0, f - (w—o™) da dt
0 Jo 0 Jo
! (n) 1 ) (0)]|2
— F.(w-—ov")dSdt > —§Hw(0)—v (O)H2 (3.12)
0o Jr,

The next step is the passage to the limitfior— oo in (3.12). Here, we apply all types of convergence (3.1)—
(3.7). Since the limit passage in some terms is the same or analogous to the proof of the global in time existence
of weak solutions of the Navier—Stokes equations with the no slip boundary condition (see e.g. [7]) or [14], we
focus only on the two “most difficult” nonlinear terms: a) the inequality

T T
lim inf (—y/ /WW:W(") dwdt) < —y/ /w;vu de dt (3.13)
n—0oo 0 JQ 0 JQ

holds due to (3.1). b) The second integral on the left hand side of (3.12) can be treated as follows:
T
/ / (w* + B (v™)) - V(u* +v™) - (w — v™) de dt
0 Q
T
_ / / (" + Po(™)) - V(" + ™) . (u* + w) dzdt
0 Q
T
- / /(u* + B (0™) - V(w' + 0™ - (u + ™) da dt
0 JO
T
= / / (u* + P, (v™)) - V(u* +v™) . (u* + w) dadt
o Jao

T T
2Jo Jr, 2Jo Jry

Due to (3.5) and (3.6),
/ [(w* + B(v'™)) - n] u* + 0™ [2dS — [(u* +v) n] [u*+v[*dS
FQ FQ

ata.a. points € (0,7). Thus, applying Fatou’s lemma on the interf@T"), we get

n—oo

1 T
lim inf <——/ / [(w* + By(v™)) -] [u* + 0™} det>
2Jo Jr,

15



1 (T
< ——/ / [(u* +v) - n] |u* +v|* dSdt.
2Jo Jr,

The convergence (3.3) and the properties of projeBtoimply that P, (v(™) — v in L2(0,T; V*). Hence
P,(v™) — vin L2(0,T; L*()), too. Consequentlfu* + P (v™)) @ (u* +w) — (u* +v) ® (u* + w)
(for n — oc) in L?(0,T; L*(€2)**3). This and (3.1) yield

/T / (u* + P (v™)) - V(u* + ™) - (u* + w) dzdt
0o Jo

— /OT/Q(u*—i—'v)‘V(u*—i-v)(u*—Fw) d dt

for n — oo. Thus, we have

T
lim inf / / (u* + B(v™)) - V(u* +v™) - (w —v™) de dt
0 Q
1

T T
< / /(u*~n)\u*|2d5dt1/ /[(u*Jr'v)-n] lu* 4+ v|> dS dt
2 0 1T 2 0 1)
T
+/ /(u*+'v)-V(u*+v)-(u*+'w)d:cdt
0 Ja

_ /T / (" +v) - V(u" +0) - (w— v) dzdt, (3.14)
0 Q

The limit passage in all other terms in (3.12) is simpler than (3.13) and (3.14). #lamsl¥ satisfy inequality
(1.16) for all test functionsv € #,,,(0,T). Sincem was an arbitrary number frol§, v and¥ satisfy (1.16)
forallw e |, _; # m(0,T).

3.4. The validity of equation (1.16) forw € (0, 7). We still need to show that (1.16) is satisfied for all
w € J(0,T). For this purpose, it is sufficient to show thgf,_, ¢, (0, T) is dense in#(0,T) in the norm

I ]ll. Obviously, ;> #,,(0,T) is dense in#' (0, T). Set.# (0,T) is closed in# (0, T), with the property
that.#’ (0, T) is equal to the closure of its interior. Hen¢gJs>_, #/,,,(0,T)) N ¢ (0, T) (which coincides
with U>>_, %, (0,T)) is dense in# (0, T) N ¢ (0, T) (which coincides with’z (0, T)).

3.5. Passage to the limit (fom — o) in equation (2.5). The way one can obtain equation (1.17) from (2.5)
is standard and we do not therefore describe it here. We only mention that by analogy with the test function
in (1.16), we at first consider the test functignn (1.17) in a finite—dimensional subspace(6F ([0, T]; Xl),
and use (3.1), (3.2), (3.4) to show that the limit functierend satisfy (1.17). Then we use similar arguments
as in subsection 3.4 and show that (1.17) holdsyfdn the whole class of test functions considered in the
definition of problem P) in subsection 1.5, i.e. for alf € C>°([0, T]; X') such that)(T") = 0.

We have proven the theorem:

Theorem 1. There exists a solution, ¢ of problem P).
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