Anna Andruch-Sobilo, Malgorzata Migda, Institute of Mathematics, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland, e-mail: andruch@math.put.poznan.pl, mmigda@math.put.poznan.pl
Abstract: In this note we consider the third order linear difference equations of neutral type
\label{E} \Delta^3[x(n)-p(n)x(\sigma(n))]+\delta q(n)x(\tau(n))=0, \quad n \in N(n_0), \tag{$ E$}
where $\delta=\pm1$, $p,q N(n_0)\rightarrow\bb R_+;$ $\sigma,\tau N(n_0)\rightarrow\bb N$, $\lim_{n \rightarrow\infty}\sigma(n)= \lim\limits_{n \rightarrow\infty}\tau(n)= \infty.$ We examine the following two cases:
\align\{0<p(n)&\leq1, \sigma(n)=n+k, \tau(n)=n+l\},
\{p(n)&>1, \sigma(n)=n-k, \tau(n)=n-l\},
where $k$, $l$ are positive integers and we obtain sufficient conditions under which all solutions of the above equations are oscillatory.
Keywords: neutral type difference equation, nonoscillatory solution, asymptotic behavior
Classification (MSC 2000): 39A11
Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).
Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.