122 (1997) MATHEMATICA BOHEMICA No.1, 63-73

CONVERGENCE /¢-GROUPS WITH ZERO RADICAL
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Abstract. In this paper we investigate abelian convergence ¢-groups with zero radical
such that each bounded sequence has a convergent subsequence.
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Sequentially compact convergence groups were studied by Dikranjan [3]; cf. also
the references given there.

All ¢-groups (= lattice ordered groups) dealt with in the present paper are assumed
to be abelian.

For convergence ¢-groups we apply the same definitions and notation as in [6].

Let G be a convergence ¢-group. The corresponding convergence will be denoted
by «; thus if a sequence (z,,) converges to x in G, then we express this fact by writing
Tp —a T.

If every sequence in G has a converging subsequence, then G is said to be sequen-
tially compact.

It turns out that the role of the notion of sequential compactness for convergence
{-groups is rather modest. Namely, G is sequentially compact if and only if G = {0}.

If every bounded sequence in G has a converging subsequence, then G will be
called b-sequentially compact.

We use the notion of the radical of an ¢-group as in Conrad [2] (the definition is
recalled in Section 1 below); f-groups with zero radical were investigated in [1] in
connection with the lateral completion of /-groups.
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In the present article we deal with the case when G satisfies the following condi-
tions:

(a) the radical of G is zero;

(b) G is b-sequentially compact.

The symbols Z and R denote the additive group of all integers or of all reals,
respectively, with the natural linear order.

The notion of o-convergence has the usual meaning; we apply the notation
Tn (o) T-

The f-group G is said to satisfy the condition (F) if each bounded disjoint subset
of G is finite (cf. [2]).

We prove the following results.

Let G be a convergence ¢-group satisfying the Urysohn axiom.

(A) Suppose that G satisfies the conditions (a) and (b). Then G is a completely
subdirect product of ¢-groups G; (i € I) such that
(i) for each i € I, G; is isomorphic either to Z or to R;
(ii) if z, —4 7 holds in G and if ¢ € I, then for the natural projection
p; of G onto G; the relation p;(zn) —a (o) pi(z) is valid.

(B) Suppose that G is a completely subdirect product of £-groups G; (i € I) such
that the conditions (i) and (ii) from (A) are satisfied. Further suppose that
the condition (F) is valid. Then G is b-sequentially compact and its radical
is zero.

By an example we show that the assumption on the validity of (F) cannot be
cancelled in the above theorem.

1. PRELIMINARIES; SEQUENTIAL PRECOMPACTNESS

In what follows, N denotes the set of all positive integers. For the sake of com-
pleteness we recall the following definitions from [6].

Let G be an {-group, g € G and (g,) € GV. If g, = g for each n € N, then we
write (g,) = const g. For (h,) € GN we set (h,) ~ (gn) if there is m € N such that
h, = g, for each n € N with n > m.

The set GV is an /-group under the obvious definition of the partial order and of
the operation +. Let a be a convex subsemigroup of the lattice ordered semigroup
(GN)T such that the following conditions are satisfied:

(I) If (gn) € a, then each subsequence of (g, ) belongs to a.
(I') Let (g») € a and (h,) € (GN)*. If (hn) ~ (gn), then (h,) € .
(IIT) Let g € G. Then const g belongs to « if and only if g = 0.
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Under these conditions « is said to be a convergence on G.

For (g,) € GV and g € G we put g, —¢ g if and only if (|g, — g|) € . It is easy
to verify that g, —¢ 0 if and only if (g,) € a.

We denote by conv G the set of all convergences on G.

Let a(0) be the set of all sequences (g, ) in Gt having the property that there exists

(hn) € (GN)* such that (i) hny1 < by for each n € N; (ii) A h, = 0; (iii) there is
neN
m € N such that h,, > g, for each n € N with n > m. Then a(o) € conv G; a(o) is

said to be the o-convergence in G.

Further let a(d) be the set of all (z,) € (GN)* such that (z,) ~ const0. Then
clearly a(d) € conv G; it is said to be the discrete convergence on G.

Let us remark that if z,, —4 T, Yn —a y and o € {+, —, A, V}, then

InOYn —“a TOY;

also, if (z,) = const z, then z,, —, z. (Cf. [6].)

The system conv G is partially ordered by the set-theoretical inclusion. The least
element of conv G is a(d).

The convergence « is said to satisfy the Urysohn axiom if it fulfils

(IT) Whenever (g,,) is a sequence in Gt such that each subsequence of (g,,) has a

subsequence belonging to «, then (g,,) € a.

The system of all elements of conv G which satisfy the Urysohn axiom will be
denoted by Conv G.

Let 0 # g € G. We denote by A, the system of all convex ¢-subgroups A of G such
that g ¢ A; further let R, be the subgroup of G generated by the set |J A (A € A,).
The radical R(G) of G is defined to be the set (R, (0 # g € G). (Ct. [2].)

A subset X of G7 is said to be disjoint if z > 0 for each x € X, and if 21 Azo =0
whenever z; and zo are distinct elements of X.

Let (G;)icr be an indexed system of ¢-groups and let ¢ be an isomorphism of an
{-group G into the direct product [] G; such that, whenever i € I and 2% € G, then
there exists g € G with “

p(g)i = ¥
0(g); =0 foreach jeI\{i}.
Under these assumptions we say that ¢ is a completely subdirect product decompo-
sition of the ¢-group G. The notion of the completely subdirect product is due to
Sik [7].
The condition defining the completely subdirect product decomposition can be

Y Gice@c]]as

i€l icl

expressed also by writing
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A sequence (z,,) in a convergence f-group G is called a Cauchy sequence if, when-
ever (y,) and (z,) are subsequences of (z,), then y, — 2, —4 0.

G is called sequentially precompact if each its sequence has a Cauchy subsequence.
(Cf. [3] for the case of convergence groups.)

G will be said to be b-sequentially precompact if each its bounded sequence has a
Cauchy subsequence.

1.1. Lemma. Let G be a convergence ¢(-group, 0 < x € G, x,, = nx for each
n € N. Then the sequence (x,) has no Cauchy subsequence.

Proof. By way of contradiction, suppose that (y,) is a Cauchy subsequence of
(x5,). We have y, 1 — yn = x > 0 for each n € N, hence the relation

yn—‘,-l — Yn —a 0

cannot hold and so we arrive at a contradiction. O
1.2. Corollary. Let G be a convergence {-group. Suppose that G is b-sequen-
tially precompact. Then G is archimedean.
Proof. If G is not archimedean, then there are x,y € G such that 0 < nz <y

is valid for each n € N. Thus in view of 1.1, G is not sequentially precompact. O

1.3. Corollary. FEach b-sequentially compact convergence (-group is archime-
dean.

2. CONGRUENCE RELATIONS

Again, let G be a convergence £-group with the convergence a.
A subset X of G is said to be closed with respect to « if, whenever z,, —, = and
all x,, belong to X, then z belongs to X as well.

2.1. Lemma. Let A be a convex {-subgroup of G and let g1 € G. Then g1 + A
is closed with respect to « if and only if A is closed with respect to a.

Proof. This is an immediate consequence of the fact that the convergence is
compatible with the operations + and —. O
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Let A be as in 2.1 and suppose that A is closed with respect to a. For each z € G
and X C G we put
T=z+A4, X={T:x€ X}

Hence G is the factor /-group of G corresponding to the f-ideal A, ie., G = G/A.
We set

& ={(Tn): (zn) € a).

2.2. Lemma. @ € convG.

Proof. We have to verify that the conditions (I), (II') and (III) are satisfied
for a.

i) Let (g,) € @ and let (h,) be a subsequence of (g,,). Hence there is (z,) € a
such that (g,,) = (Z,). Then (h,) = (7,,), where (y,) is a subsequence of (z,). We
have (y,) € a, therefore (h,,) € @.

ii) Let (g,) € @, (hn) € (5N )*, G, ~ hn. Further let (x,) be as in (i). There is
m € N such that h,, = g,, for each n € N with n > m. Put y,, = h,, for n < m and
Yn = T, otherwise. Then (y,) ~ (z,,), whence (y,) € a. Clearly (h,) = (7,,). Thus
(hn) € @

iii) Let g € G, (g,,) = constg.

Suppose that (g,,) € @. Hence there exists (r,) € « with (g,) = (T»). Then
T, € g+ A for each n € N. We have z,, —,, 0 and thus in view of 2.1 we obtain that
0 € g + A yielding that g = 0.

Conversely, suppose that g = 0. Put z,, = 0 for each n € N. Then (z,) € a and
(Zn) = (g,,), whence (g,,) € @. O

Under the notation as above we always consider G to be a convergence /-group
with the convergence @.
For X C G we denote by X° the polar of X (cf. [2]).

2.3. Lemma. Let X C G. Then X? is closed with respect to c.

Proof. Put X° = A. Denote X; = {|z|: # € X}. Then X° = X{ and
X, C GT. Hence without loss of generality we can suppose that X C G¥.

Let a, € Aforeachn € N, a,, 5o g. Thena, VO € A, a, VO —, gV 0. Let
z € X. We have z A (a, V0) =0, whence z A (g V0) =0 and thus g vV 0 € A.

Further, —(a, A 0) € A, thus

z A (—=(an AN0)) =0

yielding that
z A\ (=(gn0)) =0,
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hence —(g A 0) € A. Therefore g A0 € A. Since A is a convex subset of G we get
g€ A. O

2.4. Corollary. FEach direct factor of the ¢-group is closed with respect to c.

For an ¢-subgroup A of G we denote
aa=an(AV)*.
Then applying the conditions (I), (II’) and (III) we immediately obtain

2.5. Lemma. a4 € conv A.

The ¢-subgroup A is always regarded as a convergence ¢-group with the conver-
gence a4.
Now suppose that the ¢-group G is represented as a direct product

(1) G=AxB.

In view of 2.4, B is closed with respect to «; let us denote by @ the corresponding
convergence on the ¢-group G/B.

Each element g € G can be uniquely represented as ¢ = a + b with a € A and
be B;if g >0, then a > 0 and b > 0. Hence each element g + B of G/B can be
written as

a+b+B=a+B

witha € A. If a; € A and a1y + B =a+ B, then a —a; € B, whence a = a;.-

2.6. Proposition. Let (1) be valid.

a) Let (a,) € aa. Then (a,) € @.
b) Let (7,) €@, gn = an + by, an € A, b, € B. Then (a,) € aa.

Proof. a)Let (ap) € aag. Then (a,) € o and thus (a,) € @.
b) Let (g,,) € @ and let a,,b, be as above. In view of the definition of @ there

exists (h,) € a such that (h,) = (g,). Let h, = al, + b, a,, € A, b, € B. Then
(al) € (AN)7T and for each n € N we have

a, +B=al, +b, +B=hy,=,=an+b,+B=a,+B,

whence a,, = a,. Thus 0 < a, < h,, for each n € N. Since « is a convex subset of
(GN)* we infer that (a,) € a. Hence (a,) € aa. a
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2.7. Lemma. Let A be a convex {-subgroup of G and let (g,) be a bounded
sequence in G = G/A. Then there exists a bounded sequence (h,) in G such that
R, = g, for eachn € N.

Proof. In view of the assumption there exist z,y € G such that < g, < ¥
for each n € N. Put h,, = (21 V gn) A y1, where 1 =z Ay and y; = =V y. Then
T1=%, §1=Y hi=9, t1<h.<y
for each n € N. |
2.8. Lemma. Suppose that G is b-sequentially compact and that A is an {-ideal
of G which is closed with respect to a. Then G/A is b-sequentially compact.
Proof. Thisis an immediate consequence of the definition of @ and of 2.7. O
From 2.6 and 2.8 we obtain

2.8.1. Corollary. Suppose that G is b-sequentially compact and that (1) is
valid. Then A is b-sequentially compact.

2.9. Lemma. Let (1) be valid, g, € G, gn = an + by, (an, € A, b, € B, n € N).
Then the following conditions are equivalent:

(i) (gn) € oy
(ii) an € a4 and b, € ap.

Proof. (i) Let (gn) € a. Since 0 < a, < gn we obtain that (a,) € a and thus
(an) € as. Similarly, (b,) € ap.

(ii) Let (an) € aa and (b,) € ap. Then (a,), (bn) € a and thus (g,) =
(an +b,) € a. O

By the obvious induction we can generalize the above result for the case
(2) G=A; x Ay x ... x Ag.

2.10. Lemma. Let (2) be valid. Then G is b-sequentially compact if and only
ifall A; (i =1,2,...,k) are b-sequentially compact.

Proof. This follows from 2.6, 2.8.1 and 2.9. O
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3. THE CASE OF LINEARLY ORDERED GROUPS

In this section we suppose that G is as above and that, moreover, G is linearly
ordered.

3.1. Lemma. Let (g,) € a. Then (gn) € a(0).

Proof. From (g,) € o we obtain that g, > 0 for each n € N. The case
G = {0} being trivial we can suppose G # {0}. Let 0 < =z € G. If the set
S: = {n € N: g,, > z} is infinite then there exists a subsequence (h,) of (g,) such
that h, > x for each n € N. Since h, —, 0 we would have x,, —, 0, where
(x,,) = constz, which is a contradiction. Hence for each 0 < x € G the set S is
finite. This yields that for each m € N the set {g,.: gn > gm } has a greatest element;
this will be denoted by ¢g° . Then g9 > g9 > ... > 0. Since each ¢°, is equal to some

gn With n > m, we have /\ ¢S = 0. Hence (g,) € a(o0). O
neN

As a corollary we obtain

3.2. Proposition. If G is linearly ordered, then a(o) is the greatest element of
conv@.

In general, if G fails to be linearly ordered, then conv G need not have the greatest
element. For related questions cf. [5].

3.3. Proposition. (Harminc [4].) Suppose that G is linearly ordered. Then

(i) a(o) belongs to Conv G;
(if) if a belongs to Conv G, then either a = a(d) or a = a(0).

In the remaining part of this section we assume that G is linearly ordered and
b-sequentially compact. We also suppose that a belongs to Conv G. In view of 1.4,
G is archimedean. Tt is well-known that each archimedean linearly ordered group is
isomorphic to an ¢-subgroup of R. Hence without loss of generality we can assume
that the £-group G coincides with an ¢-subgroup of R. We also assume that G # {0}.

There exists € R with z > 0 such that the interval [0, z] of R contains an element,
of G distinct from 0. Put A = G N[0, z]. We distinguish two cases:

a) The set A is finite.

b) The set A is infinite.

Firstly suppose that a) is valid. Then there exists an element g; in G such that g,
covers the element 0. It is a routine to verify that in this case G is isomorphic to Z.

Further let us suppose that b) holds. Then for each y € R with y > 0 there exist
distinct elements g;,92 € G such that 0 < gy < go < x and g5 — g1 < ¥.
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This yields that there is a sequence (g,) in G such that g1 > g2 > ... > gn >

gnt1 > ...>0and A g, = 0. No subsequence of (g,) belongs to a(d). Thus, since
neN
G is b-sequentially compact, a # a(d). Therefore in view of 3.3, a = a(0).

The symbol a(o0) means the o-convergence in G; now we will denote it by a(o, G)
in order to distinguish it from the o-convergence in R, which will be denoted by
a(o, R). It is clear that

(3) alo,G) = (GN)* na(o,R).

Suppose that there is ¢t € R such that ¢ does not belong to G. Then t' = |t| > 0
and t' ¢ G. For each n € N there exists g, € G such that

1
0<gn<—, gn<t.
n
Since G is archimedean there is n’ € N such that
n'gn <t < (n' +1)gn.

Denote n'gn, = g}, (n' +1)gn, = g2. Thus g; <t' < g2 and g2 — g}, < 1. From these
relations we easily obtain that

gi —a(o,R) tla gi —a(o,R) t'.
(g}) is a bounded sequence in G. If (h,,) is a subsequence of (g’ ), then
hn —a(o,R) t,)

whence in view of (3), (h,) is not convergent with respect to the o-convergence in G.
Thus G is not b-sequentially compact and so we arrive at a contradiction. Therefore
G =R.

Summarizing, we conclude:

3.4. Lemma. Let G be a convergence (-group with the convergence o such that
(i) G is linearly ordered, (ii) G is b-sequentially compact, and (iii) « satisfies the
Urysohn axiom. Then either

a) G is isomorphic to Z and o = a(d),

or

b) G is isomorphic to R and « coincides with the o-convergence.
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4. /-GROUPS WITH ZERO RADICAL

4.1. Lemma. Let G be an archimedean {-group with zero radical. Then G is a
completely subdirect product of linearly ordered groups.

Proof. This is a consequence of Theorem 3.5 and Theorem 5.4 in [2]. O

Proof of (A).
Suppose that G is a convergence /-group with the convergence a such that

a1) the radical of G is zero;
as) G is b-sequentially compact;
az) the Urysohn condition is satisfied.

Then in view of ay) and 1.4, the £-group G is archimedean. Thus according to 4.1,
the £-group G is a completely subdirect product of linearly ordered groups A; (i € I).

Each A; is a direct factor of G. We consider the convergence a; = aa; on A;.
Then in view of 2.8.1, A; is b-sequentially compact. Since a satisfies the Urysohn
axiom, «; satisfies this axiom as well. Thus according to 3.4, some of the conditions
a) or b) from 3.4 holds. O

Proof of (B).

Suppose that the assumptions from (B) are satisfied. Thus in view of 3.4, all G;
are b-sequentially compact.

Let (g,) be a bounded sequence in G. Using translations we see that without loss
of generality it suffices to consider the case when 0 < g, < g for some g € G. Let
gi = g(G;). Then {g;}ics is a disjoint subset of [0,b]. Put I; = {i € I: g; > 0}.
The case I; = () is trivial; suppose that I; # (. Since G satisfies the condition (F),
the set I is finite and we can write I; = {i1,42,...,ix}. Thus [0,0] is a subset of
Giy X Giy X ... x G, = B. Now according to 2.10 there exists a subsequence (h,,) of
(g9n) which is convergent with respect to ap and hence this subsequence is convergent
also with respect to a. Hence G is b-sequentially compact. From the definition of
the radical we obtain that R(G) = {0}. O

The following example shows that the condition (F) in (B) cannot be omitted.
Let G = ] Gi, where I = N and G; = Z for each i € I. If g € G, then the

component (;f6 ; in G; will be denoted by g(z). We consider the discrete convergence
a(d) = a on G. Then for each i € I, ag, is the discrete convergence on G;. Hence
all assumptions of (B) except the validity of (F) are satisfied.

For 0 € =z € R we denote by int z (the integral part of ) the greatest integer y
with y < «.
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Let n € N. We define g, € G as follows. For each ¢ € I we put
1
() — int (_ )
gn(i) =in o

Then we have g1 > g2 > ... > go, where go is the zero element of G. Thus (g,) is
a bounded sequence in G. No subsequence of (g,) is convergent with respect to a.
Hence G fails to be b-sequentially compact.

We conclude by remarking that for each infinite cardinal k& there exists a conver-
gence {-group G such that G is b-sequentially compact and card G = k. Indeed, let

I be a set of indices with card I = k and for each i € I let G; = Z; put Go = [] G:.
i€l
We denote by G the /-subgroup of G consisting of all g € Gy such that the set

{i € I: g(i) # 0} is finite. (In other words, G is a weak direct product of ¢-groups
G;.) Then G satisfies the assumptions of (B) if we put a@ = a(d). Hence the conver-
gence ¢-group G is b-sequentially compact. It is clear that card G = k.
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