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Abstract. It is known that for a nonempty topological space X and a nonsingleton
complete lattice Y endowed with the Scott topology, the partially ordered set [X, Y ] of all
continuous functions from X into Y is a continuous lattice if and only if both Y and the open
set lattice OX are continuous lattices. This result extends to certain classes of Z-distributive
lattices, where Z is a subset system replacing the system D of all directed subsets (for which
the D-distributive complete lattices are just the continuous ones). In particular, it is shown
that if [X, Y ] is a complete lattice then it is supercontinuous (i.e. completely distributive)
iff both Y and OX are supercontinuous. Moreover, the Scott topology on Y is the only one
making that equivalence true for all spaces X with completely distributive topology. On the
way to these results, we find necessary and sufficient conditions for [X, Y ] to be complete,
and some new, purely topological characterizations of continuous lattices by continuity
conditions on their (infinitary) lattice operations.
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1. Introduction: continuous posets,

supercontinuous lattices, and C-spaces

The underlying set of any topological space X is endowed with a natural quasi-

order, the so-called specialization order defined by x 6 y iff x belongs to each closed

set containing y. The resulting quasi-ordered set is denoted by ΩX . Since contin-

uous maps preserve the specialization order, Ω may be regarded as a functor from

the category of topological spaces to that of quasi-ordered sets. If not otherwise

stated, order-theoretical statements about spaces will refer to the specialization or-

der. A topology induces a quasi-order if this is the specialization order of the space.
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A space is T0 iff its specialization order is antisymmetric, that is, a partial order.

Conversely, any partially ordered set P with underlying set |P | carries several ‘in-

trinsic’ order-inducing topologies; the weakest one is the upper or weak topology υP ,

generated by the complements of principal ideals ↓y = {x ∈ P : x 6 y}, while the

strongest one, the Alexandroff topology αP , consists of all upper sets, i.e., subsets

U that are equal to ↑U = {x ∈ P : ∃ y ∈ U (x > y)}; the dually defined lower sets

A = ↓A are just the complements of the upper sets; hence, they are the closed sets

w.r.t. αP . In the present context, the most important order-inducing topology is the

Scott topology σP , whose closed sets are those lower sets which contain all existing

joins of their directed subsets (see Gierz et al. [14], [15], Scott [24]). We write ΣP for

the space (|P |, σP ) and note the equation ΩΣP = P ; similarly, we have ΩΥP = P

for ΥP = (|P |, υP ) and ΩAP = P for AP = (|P |, αP ). A topological space X is

said to be order complete if ΩX is a complete lattice.

For any topological spaces X and Y , the set [X, Y ] of all continuous functions

from X into Y is (quasi-)ordered pointwise by the specialization order of Y . Our

main purpose is an investigation of certain completeness properties and infinite dis-

tributive laws for such ordered function spaces (topologies on [X, Y ] will not concern

us here). We do not assume a priori that Y carries the Scott topology—but that

coincidence will often be a consequence of the continuity or distributivity properties

under consideration.

Let us recall first a few basic order-theoretical definitions and facts (see e.g. [5],

[7], [14], [15], [23], [24]). Given elements x, y of a poset P , write x ≪ y (respectively,

x ≪ y) if x belongs to every directed (every nonempty) lower set having a join

(= supremum) that dominates y. A complete lattice L is said to be continuous

(supercontinuous) if each element y of L is the join of elements x ≪ y (x ≪ y). More

generally, a continuous poset is a poset in which each of the sets ≪ y = {x : x ≪ y}

is directed with join y, and a (continuous) domain is an up-complete continuous

poset (in which all directed subsets have joins). It is not hard to see (cf. Raney [23])

that a complete lattice is supercontinuous if and only if it is completely distributive,

i.e., the identity
∧

{
∨

A : A ∈ X} =
∨⋂

X

holds for all collections X of lower sets. The same identity for all collections of di-

rected lower sets characterizes continuous lattices. It will be convenient to use the ab-

breviation cdl for ‘completely distributive complete lattice’. The relation≪ on a con-

tinuous lattice and the relation ≪ on a cdl are always idempotent (‘interpolation

property’). Consequently, in a cdl, the complements of the sets x ≪ = {y : x ≪ y}

are principal ideals, being lower sets closed under arbitrary joins, whereas the com-

plements of the sets x ≪ = {y : x ≪ y} in continuous lattices or domains are only
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closed under directed joins; in other words, the sets x ≪ are Scott open; moreover,

they form a base for the Scott topology, while in a cdl, the sets x ≪ only form

a subbase for the Scott topology (and for the upper topology).

A topological space is called locally supercompact or a C-space [5], [7], [10] if each

point has a neighborhood base of supercompact sets, where a set C is supercompact

if any open covering of C has a member that contains C. Supercompactness is

equivalent to the existence of a least element w.r.t. the specialization order (warning:

in other contexts, supercompactness may have a different, weaker meaning). The core

↑x of a point x is the intersection of all neighborhoods of x. The cores are precisely

the supercompact upper sets (w.r.t. the specialization order); thus, a space is locally

supercompact iff every point has a neighborhood base consisting of cores. As in the

well-known situation of locally compact spaces, one verifies:

Proposition 1.1. A product of nonempty topological spaces is locally supercom-

pact iff each factor is locally supercompact and almost all factors are supercompact.

In particular, arbitrary powers of an order complete C-space are again order complete

C-spaces.

A monotone convergence space (see [14], [15]) or d-space (see Wyler [27]) is a T0-

space Y such that every directed subset of ΩY has a supremum and converges (as

a net) to that supremum in the specialization order. By definition, the topology of

a d-space Y is always weaker than (i.e. contained in) the Scott topology of ΩY . Thus,

an order complete space Y is a d-space iff the topology OY is weaker than the Scott

topology σΩY . For more background concerning these notions and Theorem 1.1, see

[5], [7], [10], [12], [14], [15], [16].

Theorem 1.1. A topological space Y is locally supercompact iff its open set

lattice OY is a cdl. For locally supercompact T0-spaces Y , the Scott topology of ΩY

is weaker than the topology of Y . Moreover, Y is a locally supercompact d-space iff

Y is the Scott space ΣP of a (unique) continuous domain P .

A central result in the theory of continuous lattices is the following statement

about the function posets [X, ΣL] (see [14, II–4.8] or [15, II–4.7]):

Theorem 1.2. Let X be a nonempty topological space and L a complete nons-

ingleton lattice. Then [X, ΣL] is a continuous lattice if and only if OX and L are

continuous lattices.

In 1998, Klaus Keimel asked whether an analogous result would hold for ‘com-

pletely distributive’ (‘supercontinuous’) instead of ‘continuous’. In a direct response,
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I gave an affirmative answer in an unpublished first draft of this note, which con-

tained Theorems 3.1 and 4.1–4.3 (see [18] for a citation). The present extended

version includes additional results on completeness, continuity and infinite distribu-

tivity properties of ordered function spaces [X, Y ].

An important observation will be that all existing joins (but not all meets) in

[X, Y ] are formed pointwise. Using that fact, we shall find several conditions on

a space Y that are necessary and sufficient for [X, Y ] to be a complete lattice for

each space X . One such condition is that all join operations of arbitrary arity exist in

ΩY and are continuous. As a byproduct, we obtain new descriptions of continuous

lattices by topological continuity properties of the (finitary and infinitary) lattice

operations. More generally, we characterize order complete C-spaces as those spaces

Y in which all meet operations of arbitrary arity exist and are continuous for the

box topology on powers of Y . The Scott spaces of continuous lattices are exactly

those C-spaces Y for which all spaces X with continuous open set lattices OX (and

only these) give rise to continuous lattices [X, Y ]. For continuous lattices L with the

weak topology υL, join operations of arbitrary arity are continuous and the poset

[ΥL, ΥL] is a complete lattice, but in contrast to [ΣL, ΣL], it need not be continuous.

Theorem 3.1 is a strengthened ‘supercontinuous analogue’ of Theorem 1.2: if X

and Y are nontrivial spaces such that [X, Y ] is complete, then supercontinuity of

[X, Y ] is equivalent to that of OX and ΩY . But we give an example of a space Y

with supercontinuous lattices OY and ΩY whose function poset [Y, Y ] is not even

complete. On the other hand, if Y is a space such that for all spaces with supercon-

tinuous topology OX the function posets [X, Y ] are supercontinuous lattices, too,

then Y must necessarily carry the Scott topology. It remains open whether such

a conclusion holds for ‘continuous’ instead of ‘supercontinuous’.

In the last section, some of the results are extended, mutatis mutandis, to the

so-called Z-distributive complete lattices. Here Z is a subset system, that is, a func-

tion associating with all posets certain distinguished collections of subsets that are

preserved under isotone maps. The notions of Z-distributivity and Z-continuity pro-

vide, respectively, obvious common generalizations of continuity and supercontinuity

for complete lattices. But the proofs of the ‘Z-generalized’ statements often require

additional arguments. For subset systems Z and spaces Y with suitable complete-

ness and closedness properties, Z-distributivity of [X, Y ] turns out to be equivalent

to Z-distributivity of OX and ΩY . Surprisingly, this does not lead to an essential

generalization of the two special cases of continuous and supercontinuous lattices, as

long as all directed subsets of bounded posets P are required to be members of ZP : if

Z is a union complete subset system with that property then the Z-distributive com-

plete lattices are either exactly the continuous ones or exactly the supercontinuous

ones. Finally, an example will show that, in contrast to the situation with (super-)
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continuous lattices, the lattice of all Z-join preserving self-maps of a Z-continuous

complete lattice need not be Z-continuous in case Z is the union complete system

of finite subsets.

2. Completeness and continuity of [X, Y ]

For any set I, the I-ary join and meet operations of a complete lattice L are given

by
∨

I
: LI → L, (xi : i ∈ I) 7→

∨

{xi : i ∈ I},
∧

I
: LI → L, (xi : i ∈ I) 7→

∧

{xi : i ∈ I}.

We need a few basic facts concerning the ordered function sets [X, Y ]. The ‘only if’

part of Theorem 1.2 and its analogue for the supercontinuous case is a consequence of

Proposition 2.1. Let X, Y be nonempty topological spaces and suppose ΩY is

a poset containing two elements y < z. Then the Sierpinski space S = Σ({y, z}, 6)

is a subspace of Y , and [X, S] is a complete sublattice of [X, Y ] isomorphic to OX .

Hence, if [X, Y ] is a complete lattice then every identity built by finitary or infinitary

lattice operations and valid in [X, Y ]must also hold inOX and in the complete lattice

ΩY , which is isomorphic to the join- and meet-closed subposet c[X, Y ] of all constant

functions from X to Y .

P r o o f. In order to prevent misunderstandings, we point out that by a complete

sublattice of a partially ordered set (poset) P we mean here a nonempty subset C

such that any nonempty subset of C has a join and a meet in P , and these joins and

meets belong to C (but the least and the greatest element of C need not be the same

as those of P ).

Given y < z in ΩY and U ⊆ Y , the function cU : X → S = {y, z} ⊆ Y with

cU (x) = z for x ∈ U and cU (x) = y for x ∈ X \ U is continuous iff U ∈ OX . For

any nonempty family (cU : U ∈ V) with V ⊆ OX , the continuous function c⋃V is

the pointwise supremum; hence, it is the join in [X, Y ]. Their meet is not obtained

pointwise in general but is the continuous function cW where W is the interior of

the intersection
⋂

V . Indeed, if f is any lower bound of {cU : U ∈ V} in [X, Y ]

then f(x) 6 y for all x ∈ X \
⋂

V , and the continuity of f forces f(x) 6 y for all

x ∈ X \
⋂

V = X \W , because f−1[↓y] = f−1[{y}] is closed; thus, f 6 cW . Sending

U to cU yields an isomorphism between OX and the complete sublattice [X, S] of

[X, Y ]. Thus, all lattice identities valid in [X, Y ] are inherited by [X, S] and then

transferred to OX . The corresponding statement about ΩY ≃ c[X, Y ] is obvious.

�
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E x am p l e 2.1. We have already remarked that meets in [X, Y ] need not be

formed pointwise. This is witnessed by a quick inspection of the (supercontinuous)

complete chain

X = Y = ω + 1 = ω ∪ {ω} = {0, 1, 2, . . . , ω}

endowed with the Scott topology, and the continuous functions fn : X → Y with

fn(x) = 0 for x < n and fn(x) = ω for x > n, whose pointwise meet fω is not

continuous.

In contrast to the situation with meets, joins in [X, Y ] behave stably:

Theorem 2.1. Let X and Y be spaces such that ΩY is a poset with greatest

element.

(1) The isotone (= order preserving) functions from ΩX to ΩY are exactly the

pointwise meets of continuous functions from X to Y .

(2) All joins in [X, Y ] are formed pointwise; that is, if f is the join of a set G in

[X, Y ] then, for each x ∈ X , f(x) is the join of {g(x) : g ∈ G} in ΩY .

(3) [X, Y ] is a complete lattice iff ΩY is such and [X, Y ] is closed under poinwise

joins.

P r o o f. (1) Let f be an isotone function from ΩX to ΩY . Then f is the

pointwise meet of the continuous functions fz : X → Y with fz(x) = f(z) for x 6 z

and fz(x) =
∨

ΩY otherwise: continuity of fz follows from the identities f
−1
z [V ] = X

if f(z) ∈ V = ↑V and f−1
z [V ] = X \ ↓z for all other nonempty open (hence upper)

sets V . We have f 6 fz, because x 6 z implies f(x) 6 f(z) = fz(x), and x 66 z

implies f(x) 6
∨

ΩY = fz(x). And if g : X → Y satisfies g 66 f then there is a z

with g(z) 66 f(z) = fz(z), hence g 66 fz. Thus, f is the greatest lower bound of

continuous functions.

Conversely, recall that all continuous functions from X to Y are isotone as func-

tions from ΩX to ΩY , and that pointwise joins and meets of isotone functions are

isotone.

(2) follows from (1) and a general observation about meet-dense subposets, applied

to P = [X, Y ] and the pointwise ordered set Q of all isotone maps f : ΩX → ΩY :

If P is meet-dense in a poset Q and f is the join of S in P then f is also the join

of S in Q.

(3) is an immediate consequence of (2) and Proposition 2.1. �

The hypothesis that ΩY has a greatest element cannot be omitted in Theorem 2.1:

E x am p l e 2.2. Let S be a 3-element meet-semilattice but not a chain, and let P

be the poset obtained from S by replacing the least element with the chain ω. The

map f : P → S, sending the maximal elements to themselves and all other elements
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to the least element of S, is maximal among the isotone maps from P to S, but it

is not continuous as a map from X = ΥP to Y = ΥS (both posets endowed with

the upper topology). Consequently, f cannot be represented as a pointwise meet of

continuous functions from X to Y . On the other hand, f is the pointwise join of two

continuous functions.

We are now in a position to characterize those spaces Y for which [X, Y ] is always

complete.

Theorem 2.2. For a topological space Y , the following conditions are equivalent:

(a) Y is order complete, and join operations of arbitrary (not only of finite) arity

are continuous as functions from (topological) powers of Y to Y .

(b) Y is a d-space and a topological bounded ∨-semilattice in the specialization

order.

(c) [Y I , Y ] is a complete lattice for each set I.

(d) [X, Y ] is a complete lattice for each space X .

(e) Y is order complete, and [X, Y ] is closed under pointwise joins, for each spaceX .

P r o o f. (a) ⇒ (b): If
∨

D ∈ V for some directed set D ⊆ Y and some open

set V ⊆ Y then, by continuity of the join operation
∨

D : Y D → Y , we find a finite

subset E of D and open neighborhoods Uy of y ∈ D with Uy = Y for y ∈ D \ E

such that the join map
∨

D sends
∏

y∈D Uy into V ; in particular, since Y has a least

element,
∨

E ∈ V . Now, choosing a z ∈ D with y 6 z for all y ∈ E and observing

that V is an upper set with respect to the specialization order, we get z ∈ D ∩ V .

Thus, Y is a d-space.

(b) ⇒ (e): If Y is a d-space and X is an arbitrary space then [X, Y ] is closed

under directed pointwise joins (see [15, II–3.14]). But for a topological bounded ∨-

semilattice Y , the poset [X, Y ] is also closed under finitary pointwise joins, because

for any finite F ⊆ [X, Y ], the maps g : X → Y F , x 7→ (f(x) : f ∈ F ) and
∨

F :

Y F → Y are continuous, so the same holds for the composite map, which is the

pointwise join of F . Combining the two closedness properties, we see that [X, Y ] is

a complete lattice closed under arbitrary pointwise joins.

(e) ⇒ (d): See Theorem 2.1 (3).

(d) ⇒ (c) is a trivial specialization.

(c) ⇒ (a): ΩY is complete, being isomorphic to [Y 0, Y ]. Since [Y I , Y ] is closed

under pointwise joins and the projections from Y I to Y are continuous, so is their

pointwise supremum, the join operation
∨

I : Y I → Y . �

A useful sufficient condition for the properties listed in Theorem 2.2 is given in
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Lemma 2.1. Let Y be an order complete d-space admitting a quasi-approxima-

ting relation ≺ (satisfying y =
∨

{x : x ≺ y} for all y ∈ Y ) such that the sets

x ≺ = {y : x ≺ y} are open. Then arbitrary join operations of Y are continuous.

P r o o f. For any element x = (xi : i ∈ I) ∈ Y I , let D denote the set of all joins

of finite sets F ⊆ Y such that for each z ∈ F there is i ∈ I with z ≺ xi. Then

D is directed, and if x has the join y =
∨

{xi : i ∈ I} then D has the same join

by the approximation property of ≺; thus, as a net, D converges to y. Hence, if

y ∈ V ∈ OY , some finite join
∨

F ∈ D must belong to V . Choose a finite N ⊆ I

such that for each z ∈ F there is an i ∈ N with z ≺ xi. Then the cartesian product

of the sets Ui with Ui =
⋂

{z ≺ : z ∈ F, z ≺ xi} if i ∈ N and Ui = Y if i ∈ I \N is an

open neighborhood of (xi : i ∈ I) in the product space Y I , and this neighborhood is

mapped into the upper set V by the I-ary join operation
∨

I . �

Such a relation ≺ as required in Lemma 2.1 exists if Y is an order complete d-space

and

(1) ΩY is a cdl (take ≺ = ≪), or

(2) ΩY is a continuous lattice and σΩY ⊆ OY (take ≺ = ≪), or

(3) OY is a cdl (take x ≺ y ⇔ y ∈ (↑x)◦, the interior of the core of x).

Note that (1) implies (2) (since σL = υL for cdl L; see [12] or [15, VII–3.4 and

3.12]), and (2) implies (3) for d-spaces, since then OY ⊆ σΩY ; see Theorem 1.1,

which also tells us that the interior relation ≺ of a space Y with completely distribu-

tive OY (that is, of a C-space) has the required approximation property.

Under certain distributivity assumptions, Theorem 2.2 may be improved:

Corollary 2.1. Let Y be a nonsingleton order complete space so that ΩY or OY

is a cdl. Then the statements (a)–(e) in Theorem 2.2 are tantamount to each of the

following ones:

(f) Y is the Scott space ΣL of a continuous lattice L.

(g) Y = ΣΩY .

(h) Y is sober.

(i) Y is a d-space.

(j) OY ⊆ σΩY .

P r o o f. (f) ⇒ (g) is trivial.

(g) ⇒ (h): If Y = ΣΩY and ΩY or OY is completely distributive then ΩY is

a continuous lattice (Theorem 1.1), hence ΣΩY is sober (see [15, II–1.12]).

(h) ⇒ (i) ⇒ (j): See, for example, [15] or [27].

(j) ⇒ (f): If OY is a cdl and contained in σΩY then, by Theorem 1.1, Y must

coincide with ΣΩY , and ΩY is a continuous lattice. The same conclusion holds when
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OY ⊆ σΩY and L = ΩY is a cdl, but the argument is slightly different; in that case,

OY ⊆ σL = υL ⊆ OY .

Finally, by Lemma 2.1 and the remarks thereafter, (i) implies (a) in Theorem 2.2

if ΩY or OY is a cdl. Relating the items in Theorem 2.2 to those in Corollary 2.1,

we arrive at the implication circuit

(a) ⇒ (b) ⇒ (i) ⇒ (j) ⇒ (f) ⇒ (g) ⇒ (h) ⇒ (i) ⇒ (a). �

E x am p l e 2.3. For the A-space Y = A(ω + 1) (cf. Example 2.1), both ΩY and

OY are complete chains, hence completely distributive, but none of the equivalent

properties in Theorem 2.2 and Corollary 2.1 is fulfilled (OY is not contained in σΩY ).

In particular, the infinitary join operations
∨

I : Y I → Y are not continuous!

On the other hand, all complete lattices L equipped with the upper topology υL

have the equivalent properties in Theorem 2.2 (since preimages of principal ideals

under I-ary join operations are principal ideals in the powers LI). Order complete

Scott spaces ΣL are d-spaces (but not always sober, see Isbell [17]), so they share

these properties if and only if they are topological ∨-semilattices. This happens for

all continuous lattices (see Corollary 2.1 or [14], [15]) but not for all join- and meet-

continuous complete lattices. In [13] it is shown that for bounded semilattices S, the

square space Σ(S2) is a topological semilattice iff ΣS is such and Σ(S2) coincides

with (ΣS)2, and examples of atomless complete (hence join- and meet-continuous)

Boolean algebras are given for which the latter coincidence fails.

Now, we say a space Y is a CL-space (continuous lattice space) if

(C1) Y is order complete;

(C2) join operations of arbitrary arity are continuous;

(C3) meet operations of arbitrary arity are box continuous.

Here, box continuity of an operation f : Y I → Y refers to the box topology and

means that for any x ∈ Y I and V ∈ OY with f(x) ∈ V there is a family (Ui : i ∈ I) ∈

(OY )I such that x ∈ U =
∏

i∈I Ui and f [U ] ⊆ V . Demanding continuity for all

(infinitary) meet operations with respect to the product topology would be far too

strong: this property holds only for singleton spaces! On the other hand, condition

(C2) is fulfilled for all order complete spaces with the upper topology. Notice also

that every CL-space is, by definition, a topological lattice in the specialization order.

A rather surprising connection between local supercompactness and property (C3)

is established in the next proposition, generalizing Corollary 6 in [12].

Proposition 2.2. An order complete space is locally supercompact (that is, a C-

space) iff it has box continuous meet operations of arbitrary arity.

P r o o f. Assume first that Y is an order complete C-space, and consider

the meet operation
∧

I : Y I → Y sending x = (xi : i ∈ I) to
∧

{xi : i ∈ I}.
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If
∧

I x = y ∈ V ∈ OY , pick an element w with y ∈ (↑w)◦ ⊆ ↑w ⊆ V . Then

U = ((↑w)◦)I is a box open set with x ∈ U and
∧

I [U ] ⊆ ↑w ⊆ V , proving box

continuity of
∧

I .

Conversely, assume that meet operations of arbitrary arity exist in ΩY and are

box continuous w.r.t. OY . Let − denote the closure operator of Y and −b the closure

operator of the box product space. Using the Axiom of Choice, one easily verifies

the identity
∏

i∈I

A−
i =

(

∏

i∈I

Ai

)−b

for all families of subsets Ai ⊆ Y ; if, in addition, each Ai is a lower set then so is

A−
i , and

⋂

i∈I

A−
i =

{

∧

I
x : x ∈

∏

i∈I

A−
i

}

=
{

∧

I
x : x ∈

(

∏

i∈I

Ai

)−b
}

⊆
{

∧

I
x : x ∈

∏

i∈I

Ai

}−

⊆
(

⋂

i∈I

Ai

)−

⊆
⋂

i∈I

A−
i .

It follows that the closure operator of Y preserves arbitrary meets of lower sets, and

this condition is equivalent to complete distributivity of the lattice of closed open

sets, whence Y is a C-space (see [5], [7], [10]). �

Summarizing the previous thoughts, we now arrive at new topological characteri-

zations of continuous lattices, justifying the chosen nomenclature a posteriori :

Theorem 2.3. The CL-spaces are exactly the Scott spaces ΣL of continuous

lattices L.

Among all C-spaces Y , they are those with the following equivalent properties:

(a) [Y I , Y ] is a complete lattice for all sets I.

(b) [Y I , Y ] is a continuous lattice for all sets I.

(c) [X, Y ] is a complete lattice for all spaces X .

(d) [X, Y ] is a continuous lattice for all spaces X with continuous topologies OX .

P r o o f. By Theorem 2.2 and Proposition 2.2, CL-spaces are order complete

C-d-spaces. By Theorem 1.1, these are precisely the Scott spaces of continuous

lattices. And these in turn are CL-spaces satisfying (c) and (d), by Theorem 1.2,

Proposition 2.2 and Corollary 2.1.

Let Y be a C-space. Then (a) implies that Y is a CL-space: ΩY ≃ [Y 0, Y ]

must be a complete lattice; in other words, Y is order complete. Furthermore, by

Theorem 2.2, completeness of [Y I , Y ] implies that join operations of any arity are

continuous, and by Corollary 2.1, this entails Y = ΣL for a continuous lattice L, using

the hypothesis that Y is a C-space, i.e., OY is completely distributive (Theorem 1.1).
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(b) ⇒ (a) and (c) ⇒ (a) are trivial.

(d) ⇒ (b): ΩY ≃ [Y 0, Y ] is a complete lattice. By Proposition 1.1, Y I is an

order complete C-space if Y is one, and by Theorem 1.1, every C-space has a (su-

per)continuous topology. �

For a fixed space X , it may happen very well that [X, Y ] is a complete lattice for

all order complete spaces Y (and only for these). This is certainly the case whenever

X is an Alexandroff discrete space, alias A-space (see e.g. [7], [8], [10]), meaning that

all upper sets (that is, all intersections of open sets) are open in X ; consequently, the

isotone maps from ΩX to ΩY are just the continuous functions from X to Y ; and

arbitrary pointwise joins of isotone maps are isotone. Surprisingly, the completeness

of [X, Y ] for all order complete spaces Y is characteristic for A-spaces X :

Theorem 2.4. A topological space X is an A-space if and only if [X, Y ] is

a complete lattice for all order complete (A-)spaces Y .

P r o o f. It remains to verify that a space X with the property that [X, Y ]

is complete whenever Y is an order complete A-space must be an A-space, too.

To that aim, denote the open neighborhood filter of x in X by Ox, fix a point

z ∈ X and put L = {
⋂

U : U ⊆ Oz}. Being closed under arbitrary intersections and

ordered by dual inclusion, L becomes a complete lattice with the least element X

and the greatest element ↑z =
⋂

Oz . Hence, Y = AL is an order complete A-space.

Now, define a map f : X → Y by

f(x) = ↑x ∪ ↑z =
⋂

Ox ∪
⋂

Oz =
⋂

(Ox ∩ Oz) ∈ L.

Further, for each U ∈ Oz, define fU : X → Y by

fU (x) = U ∪ ↑z =
⋂

{V ∈ Oz : U ⊆ V } for x ∈ U and fU (x) = X for x ∈ X \ U.

Each of these functions is continuous, since Y is an A-space (i.e., the cores form an

open base) and for any y ∈ Y , the preimage of the open core ↑y is

f−1

U [↑y] = {x ∈ U : U ∪ ↑z ⊆ y} ∪ {x ∈ X \ U : X ⊆ y},

which is equal to X if y = X , to U if U ∪ ↑z ⊆ y but y 6= X , and to ∅ if U ∪ ↑z 6⊆ y.

Moreover, the function f is the pointwise join (= intersection!) of the family (fU :

U ∈ Oz):

f(x) = f(x) ∪ ↑z =
⋂

{U ∪ ↑z : U ∈ Ox ∩Oz} =
⋂

{fU (x) : U ∈ Oz}.
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Now, if [X, Y ] is complete then, by Theorem 2.1, the pointwise join f of the functions

fU ∈ [X, Y ] must be a member of [X, Y ], hence continuous. In particular, the

preimage of the open singleton {↑z} under f has to be open, and this preimage is

just the core ↑z, because x ∈ ↑z is tantamount to f(x) = ↑x ∪ ↑z = ↑z.

As z was chosen arbitrarily in X , we see that all cores in X are open; in other

words, X is an A-space. �

3. Complete distributivity of [X, Y ]

This section deals with results concerning supercontinuity (= complete distribu-

tivity) instead of continuity. The considerations in the previous section together with

some additional arguments lead to a strengthened analogue of Theorem 1.2:

Theorem 3.1. Let X be a nonempty topological space and Y a nonsingleton

space such that [X, Y ] is a complete lattice. Then [X, Y ] is completely distributive

iff so are the complete lattices OX and ΩY .

P r o o f. Although a more general result will be established in Theorem 4.1, we

give an ad hoc proof for the reader’s convenience.

Suppose first that [X, Y ] is a cdl. Then OX and ΩY are cdl’s, too, by Propo-

sition 2.1. For the converse implication, suppose that OX and L = ΩY are com-

pletely distributive lattices. Given g 66 h in [X, Y ], we have to find an f ∈ [X, Y ]

with f ≪ g and f 66 h. Choose u ∈ X with g(u) 66 h(u) and then a y ∈ L with

y ≪ g(u) but y 66 h(u). As mentioned earlier, the set y ≪ is open (being comple-

mentary to a principal ideal, that is, to a point closure). By continuity of g, we have

u ∈ g−1[y ≪] ∈ OX , and since OX is supercontinuous (i.e., X is a C-space), we

find w ∈ g−1[y ≪] with u ∈ U = (↑ w)◦.

Now define f : X → Y by f(x) = y if x ∈ U and f(x) = 0 otherwise. Then

the inverse image of any upper set in L under f is ∅, U or X . In particular, f is

continuous. Clearly, f 66 h since f(u) = y 66 h(u). In order to prove f ≪ g, consider

any subset Z of [X, Y ] with g 6
∨

Z. By the pointwise formation of suprema in

[X, Y ] (see Theorem 2.1), we have the inequality y ≪ g(w) 6
∨

{k(w) : k ∈ Z},

hence y 6 k(w) for some k ∈ Z. But then

f(x) = y 6 k(w) 6 k(x) for x ∈ U and f(x) = 0 6 k(x) for x ∈ X \ U

(notice that x ∈ U = (↑w)◦ entails w 6 x and that the continuous map k preserves

the specialization order). Thus, f 6 k, as desired. �
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A rather simple instance of Theorem 3.1 is this: for nonempty A-spaces X and any

space Y , the ordered set ΩY is a cdl iff [X, Y ] is such, because the latter consists of

all isotone maps from ΩX to ΩY , and these form a complete sublattice of (ΩY )|X|.

But the completeness hypothesis on [X, Y ] cannot be omitted in Theorem 3.1, as the

next example shows.

E x am p l e 3.1. Let X be the complete chain ω + 1 = ω∪ {ω} equipped with the

Scott topology, and let Y be the same chain equipped with the Alexandroff topology

of upper sets. Then X and Y are C-spaces, and both OX and ΩY are completely

distributive lattices. But [X, Y ] is not even complete: the continuous functions

fn : X → Y with fn(x) = min{x, n} (n ∈ ω) have a pointwise supremum, viz the

identity map from X to Y ; however, this function is not continuous, because OX is

properly contained in OY . Thus, [X, Y ] is not closed under pointwise suprema, and

by Theorem 2.1, it cannot be a complete lattice.

Though the completeness hypothesis in Theorem 3.1 is essential, it may be replaced

by several other conditions on Y alone, as listed in Theorem 2.2 and Corollary 2.1.

We have seen that completeness of [X, Y ] for all spaces X forces Y to be an order

complete d-space. The hypothesis of this conclusion may be slightly weakened as

follows:

Lemma 3.1. If Y is a topological space such that [X, Y ] is a complete lattice for

each C-space X then Y is an order complete d-space.

P r o o f. For the A-space AΩY , whose topology consists of all upper sets, any

power X = (AΩY )I is a C-space (but not an A-space unless I is finite). In fact,

every A-space is a C-space, and a product of C-spaces having least elements in

the specialization order is a C-space (see Proposition 1.1). Consequently, [X, Y ]

is complete by hypothesis and closed under pointwise suprema by Theorem 2.1.

The projections from X to Y are continuous; indeed, they are even continuous as

maps from Y I (which has a weaker topology than X) to Y . Hence, their pointwise

supremum, the join map
∨

I : X → Y , is continuous, too. Now, the same argument

as for (a) ⇒ (b) in Theorem 2.2 shows that Y must be a d-space. �

We are now ready to characterize completely distributive complete lattices

equipped with the Scott topology by distributivity properties of the associated

function lattices.

Theorem 3.2. For a topological space Y , the following conditions are equivalent:

(a) Y is the Scott space ΣL (or the weak space ΥL) of a cdl L.

(b) ΩY is a cdl, and Y is a d-space.
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(c) [Y, Y ] is a cdl, and Y is a nonempty d-space.

(d) [Y F , Y ] is a cdl for all finite sets F , and Y is a d-space.

(e) [Y I , Y ] is a cdl for all sets I.

(f) [X, Y ] is a cdl for all C-spaces X (and only for these).

In (b), (c) and (d), ‘d-space’ may be replaced by ‘sober space’.

P r o o f. (a) ⇒ (f): [X, Y ] is complete by Corollary 2.1; and by Theorem 3.1,

[X, Y ] is completely distributive iff so are OX and L = ΩY .

(f)⇒ (b): ΩY is a cdl by Theorem 3.1, and Lemma 3.1 gives the d-space property.

(b) ⇒ (a): See the proof of (j) ⇒ (f) in Corollary 2.1.

(a) ⇒ (e): Since Y is an order complete C-space by Theorem 1.1, so is Y I by

Proposition 1.1, and as we know from the proved implication (a) ⇒ (f), [Y I , Y ] is

then a cdl.

(e) ⇒ (d): See Theorem 2.2 for the d-space property.

(d) ⇒ (c) is clear.

(c) ⇒ (b): See Proposition 2.1.

In all, we have closed the implication circuits

(a)⇒ (f)⇒ (b)⇒ (a) and (a)⇒ (e)⇒ (d)⇒ (c)⇒ (b)⇒ (a). The last statement

in Theorem 3.2 follows from the known fact that ΣL is sober for continuous lattices

L, and that sober spaces are always d-spaces. �

Corollary 3.1. Let Y be a nonempty T0-space whose topology is the Alexandroff

topology αΩY or any topology weaker than the Scott topology σΩY (like the upper

topology υΩY ). Then [Y, Y ] is a cdl iff both OY and ΩY are cdl’s.

In case ΩY is complete and OY ⊆ σΩY , we have a d-space Y , and Theorem 3.2

applies. The argument for αΩY is different: here [Y, Y ] is a complete sublattice of

the cdl (ΩY )|Y |.

Another consequence is obtained for nonempty finite spaces Y such that L = ΩY

is a distributive lattice (hence a cdl): here, Y = ΣL = AL and each power of Y is

a C-space; moreover, [X, Y ] is a cdl for all C-spaces X (and only for these).

We have mentioned earlier that in any space Y with underlying cdl L = ΩY , each

of the sets x ≪ is open, being the complement of a point closure. Moreover, for

y ∈ V ∈ OY , we have
∨

{x : x ≪ y} = y ∈ V ∈ σΩY , hence
∨

F ∈ V for a finite

set F ⊆ {x : x ≪ y}, and it follows that y ∈
⋂

{x ≪ : x ∈ F} ⊆ {↑x : x ≪ y} =

↑
∨

F ⊆ V, showing that Y is a C-space with subbasic open sets x ≪. But, in

contrast to the sets x ≪ in continuous lattices, the sets x ≪ rarely form a base!

E x am p l e 3.2. The real unit square [0, 1]2 is a completely distributive lattice L

in which the sets x ≪ form a subbase but not a base for σL = υL. Indeed, in the
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present example, (x1, x2) ≪ (y1, y2) means

(x1 = 0 and x2 < y2) or (x1 < y1 and x2 = 0)

or (x1 = x2 = y1 = y2 = 0).

Another prominent difference between continuous and supercontinuous lattices

is that for a d-space Y with supercontinuous underlying lattice ΩY , the function

poset [Y, Y ] is a supercontinuous complete lattice, too (see Theorem 3.2), whereas

for d-spaces with continuous lattices OY and ΩY , the function poset [Y, Y ] may be

complete but not continuous.

E x am p l e 3.3. Let L be any infinite lattice of height 2. Then L is an algebraic,

hence continuous lattice; but L is not distributive, all the less supercontinuous.

Equipped with the upper topology, this gives a sober space (hence a d-space) Y = ΥL

in which arbitrary join operations are continuous (because preimages of principal

ideals are principal ideals). The closed subsets are the finitely generated lower sets.

Hence, the upper topology is here strictly weaker than the Scott topology, which

coincides with the Alexandroff topology. By Theorem 2.2, [X, Y ] is a complete

lattice for arbitrary spaces X . But, surprisingly, the complete lattice [Y, Y ] is not

continuous! This can be seen as follows.

Consider a g ∈ [Y, Y ] with g(0) = 0; for the sake of simplicity, we assume that the

top element 1 of L does not belong to the range of g (continuous maps g on Y with

these properties exist in abundance). We claim that the only function f ∈ [Y, Y ]

with f ≪ g is the zero function. Assume f ∈ [Y, Y ] is not the zero function and

observe that F = f−1[{0}] must be finite by continuity. Choose a function h ∈ [Y, Y ]

with h(0) = 0, h(1) = 1 and f(a) 6= h(a) 6= 1 for all a ∈ A \ F , where A = L \ {0, 1}

is the set of all atoms (such a function may be constructed from f by a suitable

fixpoint-free permutation of A \ F ). For each finite E ⊆ A, define hE : Y → Y

by hE(x) = 1 for x ∈ E and hE(y) = h(y) for y ∈ L \ E. Then, in particular,

hE(0) = h(0) = g(0) = f(0) = 0. For continuity of hE , note that if C is closed but

does not contain 1 then C must be finite, and 1 6∈ h−1

E [C] = h−1[C], so that this

preimage is a finite lower set and therefore closed. Thus, hE ∈ [Y, Y ].

The pointwise (directed!) supremum of the functions hE has the constant value 1

for x 6= 0. Hence, g 6
∨

{hE : E ⊆ A, E finite}, but no hE can satisfy f 6 hE ,

since for a ∈ A \ (E ∪ F ) one obtains 0 < f(a) 6= h(a) = hE(a) < 1, which excludes

f(a) 6 hE(a). Thus, f cannot be way below g, as claimed.

On the other hand, a variant of Example 3.1 will show that there are spaces Y

for which OY and ΩY are algebraic completely distributive lattices, and still the

function poset [Y, Y ] is not even a complete lattice.
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E x am p l e 3.4. As in [7] and [10], we mean by a B-space a topological space

with a minimal base (which then consists of all open cores). Every A-space is a B-

space, and every B-space is a C-space, but not conversely. It is known and easy to

see that the B-spaces are exactly those spaces whose lattice of open or closed sets

is superalgebraic, i.e. supercontinuous and algebraic. Simple examples of B-spaces

are the Scott spaces Σκ of ordinals κ, whereas ΣR and Σ[0, 1] are C-spaces but not

B-spaces.

Specifically, let us consider the complete ordinal L = ω2 + 1 = ω2 ∪ {ω2} and the

modified Scott space Y with ΩY = L and OY = σL ∪ {{ω2}}. Then Y is neither

a Scott space nor an Alexandroff space, but it is obviously a B-space. In fact, both

OY and ΩY are superalgebraic lattices, being algebraic complete chains.

Now, define the function g : Y → Y by g(x) = x for x < ω and g(y) = ω2 for

x > ω. As {ω2} is open while its preimage g−1[{ω2}] = L \ ω is not, this g cannot

be continuous. But g is the directed supremum of the functions fn : Y → Y with

fn(x) = x for x ∈ ω ∪ {ω2} and fn(y) = ω · n + y otherwise (n ∈ ω). Here ω · n + y

denotes the ordinal sum ω + . . . + ω + y, putting the ordinal y above the ordinal

sum of the n ω-chains. Each fn is continuous, since preimages of open cores ↑x

(where x is a successor ordinal or x = ω2) are again open cores. This shows that

[Y, Y ] is not even closed under suprema of ω-chains, hence certainly not complete,

by Theorem 2.1.

Another subtle detail has to be pointed out. From Theorem 2.2 we know that if

[Y I , Y ] is a complete lattice for all sets I then Y must be an order complete d-space.

But it does not suffice to require completeness or even supercontinuity of [Y F , Y ] for

all finite F .

E x am p l e 3.5. Let Y be the Alexandroff space AL of some continuous lattice

L (e.g. the real unit interval [0, 1]). For finite F , the power Y F is an A-space, too,

and consequently [Y F , Y ] consists of all isotone maps from LF to L. These form

a complete sublattice of the continuous lattice LI , where I is the underlying set of

LF , and therefore [Y F , Y ] is again a continuous lattice. But Y fails to be a d-space

unless L is noetherian (all ideals are principal), which is necessary and sufficient for

the coincidence of αL with σL.

4. Z-distributivity and Z-continuity of [X, Y ]

In this final section, we are going to establish a common generalization of Theo-

rems 1.2 and 3.1, and also one of Theorems 2.3 and 3.2. For this purpose, we need

the notion of a subset system in the sense of Wright, Wagner and Thatcher [26].
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A subset system is a function Z on the class of all posets assigning to each poset P

a collection ZP of subsets such that for any isotone function f : P → Q and for each

Z ∈ ZP the image f [Z] belongs to ZQ and at least one ZP0 contains a nonempty

member, which entails that each ZP contains all singletons. The collection of all

Z-ideals, i.e., sets of the form ↓Z with Z ∈ ZP , is denoted by Z∧P . A subset

system Z is called union complete if Y ∈ Z∧Z∧P implies
⋃

Y ∈ Z∧P . Simple

examples of union complete subset systems are A (arbitrary subsets), D (directed

subsets), E (one-element subsets), and F (finite subsets), whereas the subset systems

B (binary subsets, having at most two elements) and C (chains, i.e. linearly ordered

subsets) are not union complete. By sending any isotone map f : P → Q to the map

Z∧f : Z∧P → Z∧Q with Z∧f(Z) = ↓f [Z], one may regard Z∧ as an endofunctor

of the category of posets and isotone maps. Moreover, if Z is union complete, Z∧

gives rise to a standard construction or monad (see Erné [6] and Meseguer [20]).

In [1], the notion of continuous posets has been generalized to the setting of ar-

bitrary subset systems Z as follows: a poset P is Z-complete if each Z ∈ ZP has

a join in P . The Z-below relation is then defined by

x ≪Z y ⇔ x ∈ ≪Z y =
⋂

{Z ∈ Z∧P : y 6
∨

Z}.

Now, a Z-complete poset P is called Z-distributive if y =
∨

≪Z y for all y ∈ P

(see [9]), and P is called Z-continuous if, in addition, ≪Z y ∈ Z∧P for all

y ∈ P . If, moreover, the Z-below relation is idempotent (‘interpolative’), one

speaks of a strongly Z-distributive or strongly Z-continuous poset, respectively (cf.

Baranga [3], Venugopalan [25]; see also Erné [9] for results on more general subset

selections Z, and Novak [21] for a different approach).

A straightforward verification shows that a complete lattice L is Z-distributive iff

it satisfies the following distribution law for all X ⊆ Z∧L:

∧

{
∨

Z : Z ∈ X} =
∨⋂

X .

From this it easily follows that if a subset S of a Z-distributive complete lattice is

closed under Z-joins and under arbitrary meets then S is Z-distributive, too. More

generally, the following facts have been established in [1] (see also [11] and [25] for

related results on idempotent isotone operators):

Lemma 4.1. Let Q be the range of a Z-join preserving closure operation on

a poset P . If P is a Z-distributive, Z-continuous or strongly Z-continuous poset

then Q has the same property. This applies to Z-join- and meet-closed subsets of

complete lattices, because they are the ranges of Z-join preserving closure operations.

But, surprisingly, an analogous statement for strong Z-distributivity fails.
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E x am p l e 4.1. Powerset lattices PX are always strongly B-distributive and

strongly F -distributive but not B-continuous for |X | > 2; nevertheless, their B-

below relation coincides with the F -below relation and is idempotent: Y ≪B Z ⇔

Y ≪F Z ⇔ Y ⊆ Z and |Y | 6 1. For an 8-element Boolean lattice L ≃ P3 (where

3 = {0, 1, 2}), the system B∧L is not a complete lattice, being isomorphic to the

poset obtained by omitting the median element

v = (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ y) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ y)

in the free distributive lattice FD3 with three generators x, y, z, and adding a new

bottom element. For the top element ⊤ = x ∨ y ∨ z of FD3, it is easy to see

that v ≪B ⊤ in FD3, but no w ∈ FD3 satisfies v ≪B w ≪B ⊤. Thus, FD3 is

B-distributive but neither B-continuous nor strongly B-distributive, though being

isomorphic to A∧L \ {∅, L}, a complete sublattice of the strongly B-distributive

lattice {A ⊆ L \ {
∨

L} :
∧

L ∈ A} ≃ P6. Similar examples show that a strongly F -

or Am+1-distributive lattice need not be strongly Am-distributive.

⊤

x v y z

FD3 B∧L

L ≃ P3

It is known and easy to see that for union complete Z, every Z-continuous poset

is already strongly Z-continuous; on the other hand, if Z∧P is a complete lattice

(equivalently, a closure system) then Z-distributivity and Z-continuity are equiv-

alent properties for P (see [9]). In particular, D-distributive complete lattices are

already stronglyD-continuous; in fact, they are just the continuous lattices, while the

(strongly) A-continuous (= A-distributive) posets are precisely the supercontinuous

(= completely distributive) lattices. However, for the union complete system F of

finite subsets, an F -distributive complete lattice need not be strongly F -distributive:

all strongly F -distributive complete lattices are cospatial, i.e. isomorphic copies of

closed set lattices of topological spaces, whereas the F -distributive complete lattices

are exactly the complete homomorphic images of such lattices (see [2], [9]); a dual-

ized example of an F -distributive but not cospatial complete lattice has been given
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by Kříž and Pultr [19]. Clearly, all cospatial lattices are F -distributive; but there

are cospatial lattices that fail to be strongly F -distributive:

E x am p l e 4.2. For any infinite set X and any two-element subset Z of X , the

set L = {Y ⊆ X : Z ⊆ Y } ∪ FX is the lattice of closed sets of a topological T1-

space, hence a cospatial lattice and therefore F -distributive. However, the F -below

relation ≪F on L is not idempotent, since Z ≪F X holds but there is no Y ∈ L

with Z ≪F Y ≪F X .

Below, we shall demonstrate that union completeness of Z is not necessary for

the coincidence of Z-continuity and strong Z-continuity. In fact, sometimes one

can show that Z-continuous posets are even Z-algebraic, that is, each element is

the join of a set Z ∈ ZP consisting of elements x ≪Z x, referred to as Z-prime

or Z-compact elements (cf. [8]). Clearly, all Z-algebraic posets are strongly Z-

continuous. Notice that every B- or D-distributive complete Boolean algebra is

already A-algebraic (hence A-continuous), but only finite Boolean algebras are F -

algebraic and F -continuous. Hence, strongly F -distributive complete lattices need

not be F -continuous; indeed, F -continuity is equivalent to F -algebraicity, meaning

that each element is the join of finitely many ∨-primes.

Lemma 4.2. Let P be a Z-complete poset with B∧P ⊆ Z∧P . If x ≪Z y and

u ∨ x = y for some u < y in P then x ≪Z x.

P r o o f. Consider a Z ∈ ZP with x 6
∨

Z. We then have y = u ∨ x 6
∨

{u ∨ z : z ∈ Z} and {u ∨ z : z ∈ Z} ∈ ZP (because z 7→ u ∨ z is isotone). Hence,

x ≪Z y entails x 6 u ∨ z for some z ∈ Z. But then y = u ∨ x 6 u ∨ z and x 66 u

(since u < y = u ∨ x). And now, x ≪Z y together with ↓ {u, z} ∈ B∧P ⊆ Z∧P

implies x 6 z, proving x ≪Z x. �

For any cardinalm, let AmP denote the collection of all subsets having cardinality

less than m. As remarked in [6] and [8], the subset system Am is union complete if

and only if m is a regular cardinal. Specifically, Aω = F is union complete, while

A3 = B is not.

Corollary 4.1. For any cardinal m with 2 < m 6 ω and any poset P , the

following conditions are equivalent:

(a) P is Am-continuous.

(b) P is strongly Am-continuous.

(c) P is Am-algebraic, i.e., it is a ∨-semilattice with 0 in which each element is

a join of less than m ∨-primes.
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P r o o f. (a) ⇒ (c) follows from Lemma 4.2: taking Z ∈ AmP minimal with

≪Am
y = ↓Z, one obtains u < y = u∨x for x ∈ Z and u =

∨

(Z \ {x}). Hence, each

x ∈ Z is Am-prime.

(c) ⇒ (b) ⇒ (a) is obvious. �

Note the following implications for 3 < m < ω:

chain with least element

⇓

B-continuous = strongly B-continuous = B-algebraic

⇓

Am-continuous = strongly Am-continuous = Am-algebraic

⇓

F -continuous = strongly F -continuous = F -algebraic

⇓

strongly B-distributive

⇓

strongly Am-distributive

⇓

strongly F -distributive

⇓

F -distributive

⇓

B-distributive = Am-distributive.

The non-invertibility of the first four implications may be checked by looking at

powerset lattices of sets with 2, m − 1, m or ω elements, respectively. Induction

shows that B-distributive posets are Am-distributive for all m < ω, but are they

always F -distributive?

By a Z∨-ideal of a poset P we mean a Z-join closed lower set A ⊆ P (that is,

if Z ∈ ZP is contained in A and has a join
∨

Z then ↓
∨

Z ⊆ A; cf. [6], [8], [9]).

For example, the usual ideals of a lattice are the F∨-ideals, whereas the principal

ideals of a complete lattice are its A∨-ideals, and the Scott-closed subsets of a poset

are its D∨-ideals. The Z∨-ideals of any poset P form a closure system Z∨P , hence

a complete lattice. Accordingly, the complements of the Z∨-ideals of a poset P

form a kernel system σZP (closed under arbitrary unions), sometimes referred to as

a generalized Scott topology (cf. Baranga [3], [4]). Note the inclusions

σAP ⊆ σDP = σP ⊆ σEP = αP.

278



Observe that σZP need not be a topology unless Z∧P is contained in D∧P . There-

fore, in the sequel, it will be reasonable to extend the considerations from topological

spaces to arbitrary closure spaces. Notions like open, closed, neighborhood, continu-

ous function and specialization order remain meaningful in that general context (see

[11] for an extensive survey of these matters). A quick inspection shows that, for

example, Proposition 2.1 and Theorem 2.1 keep their validity in the extended realm

of closure spaces.

Generalizing the familiar notion of finitary closure systems, we say a (set-

theoretical) closure system X on a poset P is Z-ary if for each element x in

the closure
⋂

{C ∈ X : A ⊆ C} of a lower set A there is a Z ∈ ZP with Z ⊆ A

whose closure contains x. Specifically, ‘F -ary’ means ‘finitary’. For the next two

propositions, see [2] and [9].

Proposition 4.1. A Z-complete poset P is strongly Z-continuous iff the closure

system Z∨P of Z∨-ideals is Z-ary and completely distributive.

Proposition 4.2. If Z is union complete and L as well as Z∧L are complete

lattices, then the following statements are all equivalent:

(a) L is Z-distributive.

(b) L is strongly Z-distributive.

(c) L is Z-continuous.

(d) L is strongly Z-continuous.

(e) The lattice Z∨L of all Z∨-ideals is a cdl.

(f) L is a meet- and Z-join closed subposet of a cdl.

Let us denote by ΣZP the kernel space (|P |, σZP ) or, alternatively, the closure

space (|P |,Z∨P ), by τZP the topology generated by σZP , and by TZP the topo-

logical space (|P |, τZP ). A topological space or closure space Y is said to be Z-fine

if each Z∨-ideal of ΩY is closed, that is, if σZΩY is contained in OY , the kernel

system of all open sets. By definition, the spaces ΣZP and TZP are always Z-fine.

In particular, all Scott spaces ΣP = ΣDP = TDP are D-fine. Examples of Z-fine

C-spaces are all A-spaces AP = ΣAP = TAP , but also the spaces TZP of strongly

Z-continuous ∨-semilattices P :

Lemma 4.3. If P is a strongly Z-continuous ∨-semilattice then TZP is a C-

space.

P r o o f. By Proposition 4.1, the complete lattice Z∨P and its dual σZP are

completely distributive, and the obvious generalization of Theorem 1.1 from topo-

logical spaces to closure spaces (see e.g. [9]) ensures that for y ∈ V ∈ σZP there
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are x ∈ V and a U ∈ σZP with y ∈ U ⊆ ↑x. Since τZP is the topology gener-

ated by σZP , we conclude that for y ∈ W ∈ τZP there are V1, . . . , Vn ∈ σZP with

y ∈ V1∩. . .∩Vn ⊆ W , and then we find xi ∈ Vi and Ui ∈ σZP with y ∈ U1∩. . .∩Un ⊆

↑x1 ∩ . . . ∩ ↑xn = ↑z for z = x1 ∨ . . . ∨ xn. Thus, U = U1 ∩ . . . ∩ Un ∈ τZP satisfies

y ∈ U ⊆ ↑z ⊆ W , and TZP is a C-space. �

Now, to the common generalization of Theorems 1.2 and 3.1:

Theorem 4.1. Let X, Y be nonempty closure spaces such that [X, Y ], the set

of all continuous functions from X to Y with the pointwise specialization order, is

a complete lattice.

(1) If Y is not a singleton and [X, Y ] is Z-distributive or (strongly) Z-continuous,

then OX and ΩY have the corresponding property.

(2) If OX is Z-distributive, Y is Z-fine and ΩY is strongly Z-distributive then

[X, Y ] is Z-distributive.

P r o o f. ΩY is the underlying set of Y , ordered by x 6 y iff x belongs to the

closure of {y}.

As in Proposition 2.1, one observes that L = ΩY is a complete lattice if [X, Y ] is

such.

(1) Referring to Lemma 4.1 and the closure version of Proposition 2.1, one checks

that (no matter how meets are formed in [X, Y ]) the complete sublattices [X, S]

and c[X, Y ] as well as their isomorphic copies, OX and L, must be Z-distributive.

Similarly, these complete sublattices are (strongly) Z-continuous whenever [X, Y ]

has the respective property.

(2) Under the given hypotheses, we have to construct, for g 66 h in [X, Y ], a func-

tion f ∈ [X, Y ] with f ≪Z g but f 66 h. Choose u ∈ X with g(u) 66 h(u) and an

element v ∈ L with v ≪Z g(u) but v 66 h(u). Then V = {z ∈ L : v ≪Z z} is the

complement of a Z∨-ideal: clearly, V is an upper set; for Z ∈ ZL with v ≪Z

∨

Z, the

interpolation property of≪Z in L = ΩY yields a w ∈ L such that v ≪Z w ≪Z

∨

Z,

whence v ≪Z w 6 z for some z ∈ Z, i.e., V meets Z. By the hypothesis that Y

is Z-fine, V is open, and by continuity of g, we conclude that g−1[V ] is an open

neighborhood of u. By Z-distributivity of OX , there is an open neighborhood U of

u with U ≪Z g−1[V ].

Define f : X → Y by f(x) = v if x ∈ U and f(x) = 0 if x ∈ X \ U . The only

inverse images of open (hence upper) sets under f are ∅, U and X ; observe that

X ∈ OX if Y ∈ OY (since [X, Y ] is nonempty, being a complete lattice) and that

f−1[V ] ⊆ U for all V ∈ OY otherwise. Thus, f is continuous, and we have f 66 h

since f(u) = v 66 h(u).
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In order to prove f ≪Z g, consider a Z ∈ Z[X, Y ] with g 6
∨

Z. By the extension

of Theorem 2.1 to closure spaces, joins are formed pointwise in [X, Y ]; thus, for all

x ∈ X we have g(x) 6
∨

{k(x) : k ∈ Z}. For each x ∈ g−1[V ] we have v ≪Z g(x),

and since {k(x) : k ∈ Z} is a member of ZL (being the image of Z ∈ Z[X, Y ]

under the isotone projection onto the x-th coordinate), there exists k ∈ Z with

v ≪Z k(x) (interpolation strikes again), that is, x ∈ k−1[V ] ∈ OX . Thus, we have

g−1[V ] ⊆
⋃

{k−1[V ] : k ∈ Z}. The map k 7→ k−1[V ] from [X, Y ] to OX is isotone

(because k 6 l and x ∈ k−1[V ] imply v ≪Z k(x) 6 l(x) and so x ∈ l−1[V ]). Hence,

{k−1[V ] : k ∈ Z} belongs to ZOX , and from U ≪Z g−1[V ] we conclude that U

must be contained in k−1[V ] for some k ∈ Z. But then f(x) = v ≪Z k(x) for x ∈ U

and f(x) = 0 6 k(x) for x ∈ X \ U , whence f 6 k. �

In view of Theorem 4.1, the following questions (and their strong analogues) arise:

Suppose X, Y are closure spaces such that Y is Z-fine and [X, Y ] is a complete

lattice.

(1) If OX and ΩY are Z-distributive lattices, is [X, Y ] then Z-distributive, too?

(2) If OX and ΩY are Z-continuous lattices, is [X, Y ] then Z-continuous, too?

Whereas (1) remains open, we shall give a negative answer to (2) at the end of this

note. Nevertheless, by Proposition 4.2 and Theorem 4.1, the answers to (1) and (2)

are in the affirmative if the subset system Z is union complete and Z∧L is complete

for each complete lattice L. This happens if Z is the system Dm of all m-directed

subsets, where m is any cardinal number. Dm-continuous complete lattices have

been called m-continuous in [2]; in particular, ‘ω-continuous’ means ‘continuous’,

and ‘2-continuous’ means ‘supercontinuous’.

Corollary 4.2. Suppose Z is a union complete subset system and X, Y are non-

empty closure spaces such that Y is Z-fine and Z∧ΩY as well as [X, Y ] are complete

lattices. Then [X, Y ] is a Z-distributive (i.e. Z-continuous) complete lattice iff so

are both OX and ΩY .

In particular, for nonempty spaces X , Y such that Y is Dm-fine, [X, Y ] is an m-

continuous lattice iff it is complete and both OX and ΩY are m-continuous lattices.

The completeness hypothesis on [X, Y ] may be replaced by requiring that Y is a d-

space.

For general subset systems Z, we have not been able to weaken the assumption

of strong Z-distributivity for ΩY in Theorem 4.1 (2). However, in case Y carries

the Scott topology and ZΩY contains at least all directed sets, the interpolation

property of the Z-below relation is not needed for the desired conclusion.
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Theorem 4.2. Let X be a nonempty closure space and L a nonsingleton poset

with D∧L ⊆ Z∧L. Then [X, ΣL] is a Z-distributive complete lattice iff so are both

OX and L.

P r o o f. The arguments are similar to those for Theorem 4.1. First, observe

that for a Z-distributive complete lattice L, the inclusion D∧L ⊆ Z∧L implies that

L is a continuous lattice (because x ≪Z y entails x ≪ y), so that [X, ΣL] is complete

by Theorem 2.3.

Now, given g 66 h in [X, ΣL], pick u ∈ X with g(u) 66 h(u) and use Z-distributivity

of L three times (interpolation is not needed!) to obtain elements v, y, w ∈ L such

that v ≪Z y ≪Z w ≪Z g(u) and v 66 h(u). The inclusion D∧L ⊆ Z∧L gives

v ≪ y ≪ w ≪ g(u). As L is continuous, the sets V = v ≪ and W = w ≪ are Scott

open; the continuity of g ensures that g−1[W ] is an open neighborhood of u in X ,

and the Z-distributivity of OX yields a U ∈ OX with U ≪Z g−1[W ] and u ∈ U .

For any Z ∈ Z[X, Y ] with g 6
∨

Z we obtain g−1[W ] ⊆
⋃

{k−1[V ] : k ∈ Z}; indeed,

if x ∈ g−1[W ] then y ≪ w 6 g(x) 6
∨

{k(x) : k ∈ Z} and therefore v ≪ y 6 k(x) for

some k ∈ Z, i.e. x ∈ k−1[V ]. Now, {k−1[V ] : k ∈ Z} belongs to ZOX (k 7→ k−1[V ]

is isotone!) and we have U ≪Z g−1[W ], so there is a k ∈ Z such that U ⊆ k−1[V ].

For the continuous function f defined as in the proof of Theorem 4.1 we conclude

that f 6 k (because x ∈ U implies f(x) = v ≪ k(x), and x ∈ X \ U implies

f(x) = 0 6 k(x)). Thus, f ≪Z g and f 66 h (indeed, f(u) = v 66 h(u)), showing

that [X, ΣL] is Z-distributive.

The reverse implication was obtained in Theorem 4.1 (1). �

Notice that the inclusion D∧L ⊆ Z∧L is trivially fulfilled for all noetherian lattices

L (satisfying D∧L = {↓x : x ∈ L}). However, only very few union complete subset

systems Z are known with D∧P ⊆ Z∧P for all posets P . Besides D and A, one

is the system D⊥ of all directed or empty sets, another one is the system A0 of

all nonempty subsets. A third, less trivial one is the system C1 of all nonempty

connected subsets (where connectivity refers to the order relation or, equivalently,

to the Alexandroff topology of all upper sets). A fourth one is the system C2 of all

consistent subsets, where C ⊆ P is consistent if every finite subset of C has an upper

bound in P (not necessarily in C). Clearly, in any bounded poset (having a least

element and a greatest element), every subset is consistent and every nonempty

lower set is connected. Given two subset systems Y and Z, let us write Y ⊑ Z if

Y∧P ⊆ Z∧P holds at least for all bounded posets P , and Y � Z if Y ⊑ Z and

Z ⊑ Y. Thus, C1 � A0 and C2 � A. Clearly, ⊑ is a quasi-order and � is an

equivalence relation.

The next result shows that under the hypothesis of union completeness, Theorems

1.2 and 3.1 are essentially the only two ‘global’ instances of Theorem 4.2.
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Proposition 4.3. Let Z be a union complete subset system with D ⊑ Z. Then

Z � D or Z � D⊥ or Z � A0 or Z � A.

Hence, for complete lattices L, Z∧L is one of the systems D∧L, D∧
⊥L, A∧

0 L, A∧L, and

‘Z-distributive’ means ‘continuous’ or ‘completely distributive’ (‘supercontinuous’).

P r o o f. We consider the case ∅ ∈ ZQ for some bounded poset Q, which entails

∅ ∈ ZP and D∧
⊥P ⊆ Z∧P for all bounded posets P . If this inclusion is proper for

at least one bounded poset P0, choose a nonempty Z ∈ ZP0 \ DP0. Then:

(1) In any four-element Boolean lattice L = {0, a, a′, 1}, the subset {0, a, a′} is

a Z-ideal.

Indeed, since Z is not directed, we find x, y ∈ Z such that no z ∈ Z satisfies x 6 z

and y 6 z. Define the map f : P0 → L as the pointwise supremum of cx,a and cy,a′ ,

where cx,a(u) = a if x 6 u and cx,a(u) = 0 otherwise. Then f is isotone and satisfies

f [Z] = {a, a′} or f [Z] = {0, a, a′}, in any case {0, a, a′} = ↓f [Z] ∈ Z∧L.

(2) A, B ∈ Z∧P implies A ∪ B ∈ Z∧P for all bounded posets P .

Without loss of generality, we may assume A 6⊆ B 6⊆ A. Then L = {{0}, A, B, P}

is a four-element Boolean lattice and a subposet of Z∧P , whence {{0}, A, B} ∈ Z∧L,

by (1). It follows that ↓{A, B} = {C ∈ Z∧P : C ⊆ A or C ⊆ B} ∈ Z∧Z∧P , and

then, by union completeness, A∪B ∈ Z∧P . Now, induction gives (using ↓u ∈ Z∧P

for all u ∈ P ):

(3) ↓F ∈ Z∧P for all bounded posets P and all F ∈ FP .

(4) Z � A, that is, ↓A ∈ Z∧P for all bounded posets P and all A ⊆ P .

Indeed, {↓F : F ∈ FA} ∈ DZ∧P implies ↓A =
⋃

{↓F : F ∈ FA} ∈ Z∧P , by the

hypothesis D∧Z∧P ⊆ Z∧Z∧P and the union completeness of Z (notice that Z∧P

is a bounded poset). Thus, ∅ ∈ ZQ for some poset Q entails Z � D⊥ or Z � A.

The case ∅ 6∈ ZQ is treated analogously and leads to Z � D or Z � A0. �

We come now to the announced common generalization of Theorems 2.3 and 3.2.

Theorem 4.3. Let Z be a union complete subset system and Y a Z-fine topo-

logical space such that Z∧ΩY is a complete lattice. Then the following statements

are equivalent:

(a) Y is the Scott space ΣL of a Z-distributive complete lattice L.

(b) [Y, Y ] is a Z-distributive complete lattice, and Y is a nonempty d-space.

(c) [Y I , Y ] is a Z-distributive complete lattice for all sets I.

(d) Y is a C-space, and [X, Y ] is a Z-distributive complete lattice for all topological

spaces X with Z-distributive open set lattices OX (and only for these).

(e) Y = ΣL = TZL for a continuous and strongly Z-continuous complete lattice L.
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P r o o f. (a) ⇒ (e): By the given hypotheses and Proposition 4.2, L is strongly

Z-continuous. By Lemma 4.3, TZL is a C-space. Since Y is Z-fine, it follows that

σL ⊆ τZL ⊆ OY = σL, hence Y = ΣL = TZL, and that L is a continuous lattice

(Theorem 1.1).

(e)⇒ (d): Y = ΣL is a C-d-space by Theorem 1.1. Completeness of [X, Y ] follows

from Corollary 2.1. Moreover, by Corollary 4.2, [X, Y ] is Z-distributive iff so are

OX and ΩY .

(d) ⇒ (c): Y is order complete by completeness of [1, Y ], and as Y is a C-space,

so is any power X = Y I , by Proposition 1.1. Hence, OX is completely distributive

and, in particular, Z-distributive, so that [X, Y ] is Z-distributive by (d).

(c) ⇒ (b): See Theorem 2.2.

(b)⇒ (a): L = ΩY is a Z-distributive complete lattice by Theorem 4.1; as before,

Lemma 4.3 combined with Theorem 1.1 tells us that TZL is a C-space with σL ⊆

τZL ⊆ OY ; on the other hand, the inclusionOY ⊆ σL follows from the fact that Y is

a d-space. Combining both inclusions, we obtain the equation Y = ΣL = TZL. �

In Example 4.1, the equivalent statements (a)–(d) are fulfilled for the subset system

Z = B (which is not union complete!) and the Scott spaces of the finite lattices

L ≃ P3 and FD3 ≃ AL \ {∅, L}, whereas (e) is violated, although Y = ΣL = TZL.

As a consequence of Theorems 2.3 and 3.2, we note that for continuous (respec-

tively, supercontinuous) lattices L, the complete lattice of all maps from L to L that

preserve directed (arbitrary) joins is again continuous (supercontinuous). We deduce

a common generalization of these remarks from Theorem 4.1 (cf. Feng Qin [22] for

a similar result). As observed already in [6], for any pair of Z-complete posets P , Q,

JZ [P, Q] = [ΣZP, ΣZQ]

is the poset of all Z-join preserving isotone maps from P to Q: these are exactly

the continuous functions from ΣZP to ΣZQ (such that preimages of Z∨-ideals are

Z∨-ideals).

Theorem 4.4. If P and Q are strongly Z-continuous complete lattices then the

function poset JZ [P, Q] of all Z-join preserving maps from P to Q is a Z-distributive

complete lattice.

P r o o f. By definition, the closure spaces X = ΣZP and Y = ΣZQ are Z-fine.

By Proposition 4.1, the closure system Z∨P and consequently the kernel system

σZP = OX are completely distributive, a fortiori Z-distributive. Furthermore,

JZ [P, Q] = [X, Y ] is a complete lattice, because arbitrary pointwise joins of Z-join

preserving maps again preserve Z-joins. By Theorem 4.1, it follows that JZ [P, Q] =

[X, Y ] is Z-distributive. �
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We know that if Z is union complete and Z∧P is a complete lattice then (strong)

Z-continuity of P is equivalent to Z-distributivity. In view of that observation, it

comes as a surprise that the modified conclusion in Theorem 4.4 with ‘Z-continuous’

instead of ‘Z-distributive’ may fail, even if Z is union complete and the specific poset

Z∧P is complete!

E x am p l e 4.3. Another look at the chain L = ω + 1 reveals a further puzzling

property of that seemingly harmless object. This time, we consider the union com-

plete system F of finite subsets. Note first that for the special lattice L = ω + 1,

the descending chain condition ensures that F∧L is actually a closure system, hence

a complete lattice. Like every chain, L is (strongly) F -continuous, since all non-zero

elements in a chain are ∨-prime.

The complete lattice JF [L, L] consists of all functions f : L → L that preserve

finite joins, which here simply means that f is isotone with f(0) = 0. Although

the ∨-prime members of JF [L, L] are rather specific, they form a join-dense subset:

an easy verification shows that the ∨-prime elements of JF [L, L] are exactly those

isotone functions from L to L which have precisely two values, one of which is 0.

(Indeed, if f has at least three values, say f(0) = 0 < f(y) = u < f(z) = v, take y

and z minimal with images u and v, respectively; put g(y) = f(y)−1, h(z) = f(z)−1,

and g(x) = f(x); h(x) = f(x) otherwise. Then g, h ∈ JF [L, L], g < f , h < f and

f = g ∨ h, whence f cannot be ∨-prime.)

Since each f ∈ JF [L, L] is the join of the ∨-prime functions fy ∈ JF [L, L] with

fy(x) = f(y) for x > y and fy(x) = 0 otherwise, we see that the complete lattice

JF [L, L] is cospatial, hence F -distributive. But it cannot be F -continuous, since

finite pointwise joins of ∨-prime elements of JF [L, L] have a finite range, whereas,

for example, the identity map has infinite range.

Finally, consider the algebraic closure space Y whose closed sets are the ideals of

the chain L = ω + 1. For this choice, the lattice [Y, Y ] of continuous self-maps on

Y is equal to JF [L, L]. The previous thoughts show that [Y, Y ] is not F -continuous,

although L = ΩY and OY are (strongly) F -continuous, being complete chains.

Taking F0L = FL \ {∅} instead of FL, one obtains even an A-space Y = AL for

which [Y, Y ] is not F0-continuous.
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