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Abstract. The authors consider the boundary value problem with a two-parameter non-
homogeneous multi-point boundary condition

u + g(t)f(t,u) =0, te(0,1),
u(0) = au(§) + A, u(l) = Bu(n) + p.
Criteria for the existence of nontrivial solutions of the problem are established. The nonlin-
ear term f(t,x) may take negative values and may be unbounded from below. Conditions
are determined by the relationship between the behavior of f(¢,z)/x for z near 0 and +oo,
and the smallest positive characteristic value of an associated linear integral operator. The

analysis mainly relies on topological degree theory. This work complements some recent
results in the literature. The results are illustrated with examples.
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1. INTRODUCTION

In this paper, we study the existence of nontrivial solutions of the boundary value
problem (BVP) cousisting of the equation

(1.1) u’+g(O)f(t,u) =0, te(0,1),
and the nonhomogeneous multi-point boundary condition (BC)
(1.2) u(0) = au(§) + A, u(l) = Bu(n) + p,
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where f: [0,1] x R — R and g: [0,1] — R4 := [0, 00) are continuous with g(¢) # 0
on [0,1], & n € [0,1], and «, B, A\, p € Ry. Throughout this paper, we assume the
following condition holds without further mention:

(H) a(l-=¢) <1, fn<l, and p:= (1 —a)(1—Pn)+ (1 — B)ag > 0.

When f is positone, (i.e., f > 0), existence of solutions of BVP (1.1), (1.2), or
some of its variations, has been extensively investigated. For example, papers [6],
[13], [14] studied BVPs with one-parameter BCs and [8], [9], [10] studied BVPs
with two-parameter BCs. For one-parameter problems, Ma [13] studied the BVP
consisting of Eq. (1.1) and the BC

(13) u(0) = 0, u(1) = Bu(n) + p.

Under certain assumptions, he showed that there exists u* > 0 such that BVP (1.1),
(1.3) has at least one positive solution for 0 < p < p* and has no positive solution

for p > p*; later, Guo et al. [6] and Sun et al. [14] obtained similar results for the
BVPs consisting of Eq. (1.1) and the BCs

u(0) =0, u(l) = Zﬁiu(m) +p and w'(0) =0, u(l) = ZﬁiU(m) + 1

i=1

respectively. As for the two-parameter problems, Kong and Kong [8], [9] studied a
more general form of BVP (1.1), (1.2) with A, u € R, and under certain assumptions,
they proved that there exists a continuous decreasing curve I' separating the (), p)-
plane into two disjoint connected regions A¥ and A, with I' C A¥, such that BVP
(1.1), (1.2) has at least two solutions for (), ) € AP \ T, has at least one solution
for (A, ) € T, and has no solutions for (\, u) € AN.

However, very little has been done in the literature on BVPs with nonhomoge-
neous BCs when the nonlinearities are sign-changing functions. Here we will apply
topological degree theory to derive several new criteria for the existence of nontrivial
solutions of BVP (1.1), (1.2) when the nonlinear term f is a sign-changing function
and not necessarily bounded from below. To the best of our knowledge, this is the
first work to study BVPs with sign-changing nonlinearities and nonhomogeneous
BCs. Some of our existence conditions are determined by the relationship between
the behavior of the quotient f(¢,x)/x for x near 0 and +oo and the smallest positive
characteristic value (given by (3.5) below) of a related linear operator M defined
in (2.7) in Section 2. Our results complement some recent works on BVPs with
nonhomogeneous BCs, especially those in papers [8], [9], [10] for BVP (1.1), (1.2).
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The next section contains some preliminary lemmas, Section 3 contains our main
results and several examples, and the proofs are presented in Section 4.

2. PRELIMINARY RESULTS
We let the bold 0 stand for the zero element in any given Banach space.

Lemma 2.1 ([5, Lemma 2.5.1]). Let Q be a bounded open set in a real Banach
space X with 0 € Q and let T: Q — X be a compact operator. If Tu # Tu for all
u € O and T > 1, then the Leray-Schauder degree is deg(I — T,2,0) = 1.

Let (X, ||-]|) be a real Banach space and L: X — X a linear operator. We recall
that X is an eigenvalue of L with a corresponding eigenvector ¢ if ¢ is nontrivial and
Ly = Ap. The reciprocals of eigenvalues are called the characteristic values of L.
Recall also that a cone P in X is called a total cone if X = P — P. The following
lemma is known as the Krein-Rutman theorem.

Lemma 2.2 ([1, Theorem 19.2]). Assume that P is a total cone in a real Banach
space X. Let L: X — X be a compact linear operator such that L(P) C P and
the spectral radius, rr,, of L satisfies r, > 0. Then ry, is an eigenvalue of L with an
eigenvector in P.

Let X* be the dual space of X, P a total cone in X, and P* the dual cone of
P,ie,P*={le X*: l(u) > 0forall w e P}. Let L, M: X — X be two linear
compact operators such that L(P) C P and M(P) C P. If their spectral radii rp,
and rjs are positive, then by Lemma 2.2 there exist ¢y, o € P\ {0} such that

(2.1) Lo =rper and Moy = ryen-
Assume there exists h € P*\ {0} such that

(2.2) L*h =rph,

where L* is the dual operator of L. Choose § > 0 and define
(2.3) P(h,d) ={u€ P: h(u) = d||ul}.

Then P(h,J) is a cone in X.

In the following, Lemma 2.3 is a generalization of [7, Theorem 2.1]. It is proved
in [12, Lemma 2.5] for the case when L and M are two specific linear operators, but
the proof there also works for any general linear operators L and M satisfying (2.1)
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and (2.2). Lemma 2.4 generalizes [3, Lemma 3.5] and is proved in [4, Lemma 2.5].
From here on, for any R > 0, let B(0,R) = {u € X: ||u|| < R} be the open ball
of X centered at 0 with radius R.

Lemma 2.3. Assume that the following conditions hold:

(A1) there exist ¢, ap € P\ {0} and h € P*\ {0} such that (2.1) and (2.2) hold
and L(P) C P(h,0);

(A2) H: X — P is a continuous operator satisfying | lﬁm [Hul|l/||u|| = 0;

uf|—o0

(A3) F: X — X is a bounded continuous operator and there exists ug € X such
that Fu+ Hu+ ug € P for allu € X;

(A4) there exist vg € X and ¢ > 0 such that LFu > ry (1 +¢)Lu — LHu — vy for
allu € X.

Let T = LF. Then there exists R > 0 such that the Leray-Schauder degree satisfies
deg(I — T, B(0,R),0) = 0.

Remark 2.1. Let K3 =0 try(1+e Y)|h| +]||L|, K2 = || Lug|| + 5~ (rarh(uo)
+ e 'h(vg)), and s € (0,1/K1). By carefully examining the proof of [12, Lemma 2.5],
we see that, in the conclusion of Lemma 2.3, we can choose any R satisfying R >
KQ/(]. - CKl).

Lemma 2.4. Assume that (A1) and the following conditions hold:
(A2)* H: X — P is a continuous operator satisfying | 1i”mO | Hu|l/ |||l = 0;
ul|—

(A3)* F: X — X is a bounded continuous operator and there exists r; > 0 such
that F'u + Hu € P for alluw € X with ||ul| < 71;

(A4)* there exist € > 0 and ry > 0 such that LFu > ry; (1+¢)Lu for allu € X with
lul| < 7.

Let T = LF. Then there exists 0 < R < min{ry, 2} such that the Leray-Schauder
degree satisfies deg(I — T, B(0, R),0) = 0.

The following lemma is a special case of [2, Lemma 2.2].

Lemma 2.5. Let y € C[0,1]. Then a function u(t) is a solution of the BVP
consisting of the equation

v +y(t) =0, te(0,1),
and BC (1.2) with A = p = 0 if and only if
1
u(t) = [ Kt s)uls) ds
0
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where
(2.4) K(t,s) = % [0 (B — 1)t + (1— Bn)) G(&, 8) + B((1 — )t +a€) G (1, 5)] + Gt ),

with o being defined in (H), and

t<s

1—-5), 0
(2.5) G(t,s)z{t( ) . .

5(1 - t)a

NN

L,
1

NN
NN

S

In the remainder of the paper, let the Banach space X := C|[0, 1] be equipped with
the norm |ju|| = m[ax] |u(t)], and define a cone P in X by
tel0,1

(2.6) P={ueX: u(t) >0onR}.

Let linear operators L and M : X — X be defined by

1 1
(2.7) Lu(t):/o K(t,s)g(s)u(s)ds and Mu(t):/o K(s,t)g(s)u(s)ds.

The next lemma provides some information about the operators L and M.

Lemma 2.6. The operators L and M map P into P and are compact. In addition:

(a) The spectral radius, ry,, of L satisfies r;, > 0, and 7y, is an eigenvalue of L with
an eigenvector ¢y, € P.

(b) The spectral radius, ras, of M satisfies rpr > 0, and r) is an eigenvalue of M
with an eigenvector ¢y € P.

Proof. The proof that these operators are compact is standard and will be
omitted. We will only prove (a) since the proof of (b) is similar. From (2.4), it is
clear that there exist ¢1,t2 € (0,1) such that K(¢,s) > 0 for ¢,s € [t1,t2]. Choose
u € C10,1] such that u(t) > 0 on [0, 1], u(t*) > 0 for some t* € [t1, 2], and u(t) =0
for t € [0,1]\ [t1,t2]. Then, for ¢ € [t1,t2], we have

to
Lu(t) > K(t,s)g(s)u(s)ds > 0.
t1
Thus, there exists ¢ > 0 such that cLu(t) > u(t) for t € [0,1]. Now, from [11,
Chapter 5, Theorem 2.1], it follows that r7, > 0. Finally, in view of r;, > 0 and the
fact that the cone P defined by (2.6) is a total cone, the remainder of part (a) readily
follows from Lemma 2.2 and the first statement in this lemma. (]
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3. MAIN RESULTS

For convenience, we introduce the following notation:

¢ t
fo = liminf min M, foo = liminf min f( ,:c)’
z—01 t€[0,1] T 00 te[0,1] T
f(ta (E) f(t, CL‘)

Fy = limsup max ,  Fs =limsup max ,

z—0 t€[0,1] T || — o0 t€[0,1] T
1 k
(31) C= B D= 5 (10 ! s
k1 [, 0(s)g(s)ds k3 [, d(s)g(s)ds
where
(3.2) 6(s)=(B—a)s+s(l—s)+1-pn+as,
(3.3) b = maX{éaf(l — ), AL — ). 1},

6 € (0,1/2) is a fixed constant, and

0(1—0), if a&(1—¢)+pn(l—mn) =0,
0(1 — ) min{otal(1 - €), 071 8n(1 —n), 1}, otherwise.

(3.4) ko = {
In the rest of this paper, we also let

(3.5) pav =1/,

where ras is given in Lemma 2.6 (b). Clearly, pas is the smallest positive character-
istic value of M satisfying oy = paprMear, and by Lemma 4.1 in Section 4 below,
C < pupy < D. We need the following assumptions.

(B1) There exist three nonnegative functions a,b € C[0,1] and ¢ € C(R) such that
¢(x) is even and nondecreasing on R,

(3.6) flt,x) = —a(t) = b(t)e(x) for all (t,z) € [0,1] x R,
and
(3.7) len;O c(x)/z = 0.
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(B2) There exist a constant 0 < r < 1 and two nonnegative functions d € C[0, 1]
and e € C(R) such that e is even and nondecreasing on R,

(3.8) f(t,z) = —d(t)e(z) forall (¢ z)€][0,1] x [-r,0],
and
(3.9) ili% e(z)/x =0.

Remark 3.1. Here we want to emphasize that in (B1) we assume that f(t,z)
is bounded from below by —a(t) — b(t)c(x) for all (¢,x) € [0,1] x R; however, in (B2)
we only require that f(¢,z) is bounded from below by —d(t)e(x) for t € [0, 1] and «
in a small left-neighborhood of 0.

We now state our existence results. The first four results give conditions to guar-
antee that BVP (1.1), (1.2) has a nontrivial solution for (X, ) € R% with A + p
small.

Theorem 3.1. Assume that (B1) holds and Fy < ppy < foo. Then, for each
(A, 1) € R with A+ p sufficiently small, BVP (1.1), (1.2) has at least one nontrivial
solution.

Theorem 3.2. Assume that (B2) holds and Fo, < pa < fo. Then, for each
(A, 1) € R with A+ p sufficiently small, BVP (1.1), (1.2) has at least one nontrivial
solution.

Corollary 3.1. Assume that (Bl) holds and Fy/C < 1 < foo/D. Then the
conclusion of Theorem 3.1 holds.

Corollary 3.2. Assume that (B2) holds and Foo/C < 1 < fo/D. Then the
conclusion of Theorem 3.2 holds.
Theorem 3.3 below provides conditions for the existence of nontrivial solutions of

BVP (1.1), (1.2) for all (A, ) € R?.

Theorem 3.3. Assume F., < C. Then, for each (\,n) € R?\ {0,0}, BVP (1.1),
(1.2) has at least one nontrivial solution. Moreover, for the case where (A, u) = (0,0),
if f(t,0) # 0 on [0, 1], then BVP (1.1), (1.2) has at least one nontrivial solution.
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Remark 3.2. From the proof of Theorem 3.2 it can be seen that in Theorem 3.2
and Corollary 3.2, a set of values for (A, u) guaranteeing the existence of nontrivial
solutions of BVP (1.1), (1.2) is given by {(A, ) € RL: X >0, >0, Aol + ol
< (1}, where ¢ and ¢ are defined in (4.1) below and 0 < ¢; < 1 is such that (4.16)
holds.

In view of Remark 2.1 and Lemma 4.1, and from the proof of Theorem 3.1, we
also can obtain explicit ranges of (A, x) in Theorem 3.1 and Corollary 3.1. Since
these ranges involve relatively more equations and inequalities, for brevity we will
not state them here.

Remark 3.3. Under appropriate assumptions, results similar to Theorems
3.1-3.3 and Corollaries 3.1 and 3.2 can be obtained for the BVP consisting of
Eq. (1.1) and the more general nonhomogeneous multi-point BC

u(0) =Y eu(&) + A u(l) = Biulm) + p,
i=1 =1

where m > 1 is an integer, &, n; € [0,1], and a;, B, A, p € Ry for i =1,...,m. We
omit the discussions here.

Remark 3.4. If the nonlinear term f(t, ) is separable, say f(t,z) = f1(t) f2(z),
then conditions such as py < feo and ppr < fo imply that f1(¢) > 0 on [0,1].
However, the function ¢(¢) in Eq. (1.1) may have zeros on [0, 1].

We conclude this section with several examples.

Example 3.1. In (1.1) and (1.2), let

M=
8
=
=
g@

T e [_17 OO),

.
Il
-

(3.10) ft,z) = 4 ) )
(=1)a;(t) = b(t)|z|" + b(t), x € (—o0,—1),

-

s
I
-

gt) =1on [0,1], « =& =n =1/2, and § = 1, where n > 1 is an integer, a;,
b € C[0,1] with 0 < [lai|| < 6/7 and ay(t) > 0 on [0,1], and 0 < & < 1. Then,
for each (A, 1) € R with X + p sufficiently small, BVP (1.1), (1.2) has at least one
nontrivial solution.
To see this, we first note that f € C([0,1] x R) and assumption (H) is satisfied.
Let a(t) = i lai(t)| + [b()], b(t) = |b(t)], and ¢(z) = |#|*. Then it is easy to see
i=1

1=
that (B1) holds. From (3.1) with # = 1/4 and by a simple calculation, we have
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C =6/7 and D = 32768/177. Moreover, (3.10) implies that

f(t,z)

T

Fy = lim sup max
z—0 t€[0,1]

6 t
= a1 < = and fo = liminf min It 2) = o0.

z—o0 tel0,1] T

Hence, Fy/C < 1 < foo/D. The conclusion then follows from Corollary 3.1.

Example 3.2. In BC (1.2), choose «, 3, £, n € R, such that assumption (H)
holds. Let pps be defined by (3.5). In Eq. (1.1), let

113Y; ((t2+1)x1/3+2t2+3) , T € (—o0,—1),
(3.11) ftz) =< par(t? +2)x?/3, r € [-1,1],
MM(t2_x1/2+3)a S (1,00),

and ¢(t) = 1 —sin(2nt) on [0,1]. Then, for each (A, x) € A, BVP (1.1), (1.2) has at

least one nontrivial solution, where
A={(w) €RL: A= 0, 1> 0, Mgl + pullol < 1/2}

with ¢ and ¢ being defined in (4.1) below.

To see this, we first note that f € C([0,1] x R), g € C[0,1], g(¢) > 0 a.e. on
[0,1], and assumption (H) is satisfied. Let d(t) = > + 1 and e(z) = x?/3. Then,
from (3.11), it is easy to see that (B2) is satisfied for any 0 < r < 1, and
[t x) f(t x)

=0 and fo=Iliminf min —= = o
x

F, = limsup max
z—01 t€[0,1] x

|z]—oo tE€[01]

Then, for C' and D defined in (3.1), we have F,/C < 1 < fo/D. Moreover,
from (3.11) we see that we can choose (; = 1/2 in (4.16). The conclusion then
follows from Corollary 3.2 and Remark 3.2.

Example 3.3. In Eq. (1.1), let
flt,x) = —(t+D|z[Y?+3 and g(t) = (t —1/2)?,

and in BC (1.2), choose a, 3, &, n € R, such that assumption (H) holds. Then, for
each (A, 1) € R?, BVP (1.1), (1.2) has at least one nontrivial solution.

To see this, we first note that f € C([0,1] x R), g € C[0,1], g(t) > 0 a.e. on [0, 1],
and assumption (H) is satisfied. Moreover, for C' defined in (3.1) we have

f(t,x)

X

=0<C.

F, = limsup max
|z|—oo t€[0,1]

Note that f(¢,0) = 3 on [0,1]. The conclusion then follows from Theorem 3.3.
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Remark 3.5. Inthe above examples, the nonlinearity f(¢,z) may take negative
values and is unbounded from below. To the best of our knowledge, no known criteria
can be applied to these examples.

4. PROOFS OF THE MAIN RESULTS

Let

@) e =3[F- D+ (- pn] and v = [(1-a)t+ag].

Clearly, o(t) > 0 and (t) > 0 on [0, 1], and

¢"=0, te(0,1),

©(0) = ap(§) + 1, ©(1) = Be(n),
and

P"'=0, te(0,1),

¥(0) = a(§), ¥(1) = BY(n) + 1.

For any fixed (A, p) € R?, let v := u — A\p — prp. Then BVP (1.1), (1.2) becomes the
BVP consisting of the equation

(4.2) v+ g f(t, v+ Ao+ wp) =0, t € (0,1),
and the homogeneous BC

(4.3) v(0) = av(§),v(1) = Bu(n).

Moreover, if v(t) is a solution of BVP (4.2), (4.3), then u(t) = v(t) + Ap(t) + pp(t)
is a solution of BVP (1.1), (1.2).

Let X, P,L, M be defined by (2.6) and (2.7). By Lemma 2.6, L and M map P
into P and are compact. Define operators F ,, T: X — X by

(4.4) Fyuo(t) = f(t, v+ Ap + w)
and
(4.5) To(t) = Ly polt) = /O K(t, 5)g(s)Fap0(s) ds,

where K is defined by (2.4). Then Fj,: X — X is bounded and T: X — X is
compact. Moreover, by Lemma 2.5, a solution of BVP (4.2), (4.3) is equivalent to a
fixed point of T in X.
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Proof of Theorem 3.1. We first verify that conditions (A1)—(A4) of Lemma 2.3
are satisfied. By Lemma 2.6, there exist ¢r, pa € P\ {0} such that (2.1) holds. To
show (2.2), we let

(4.6) h(v) = /0 em(t)gt)v(t)dt, v e X.

Then h € P*\ {0}, and from (2.1), (2.7), and (4.6),

L) =) = [ Conr(t)g(t) (/ K 8)g(s)(s) ds)
- /Olg(s)’u(s) </01 K (t,)g(t)pn (t) dt) ds = /Olg(s)v(S)MsoM(s)ds = rah(v),

e., h satisfies (2.2). Note from (2.4) and (2.5) that K(¢,0) = K(¢,1) = 0 for
€ [0,1]. Then, from @y = pupMen and (2.7), we see that ©pr(0) = pp(1) =0
and ¢p(t) > 0 on (0,1), which in turn implies that ¢},(0) > 0 and ¢),(1) < 0
Thus,

pm(s) / . e (s) /
= d 1 = — ]. .
s—0+ s(1 — s) #u(0) >0 an el s(1—s) #ar(1) >0

Hence, there exists d; > 0 such that
(4.7) onm(s) = 01s(1 —s) for s €0,1].

From (2.5) we have G(t,s) < s(1 —s) for ¢t,s € [0,1]. Then (2.4) implies that

K(t,s) < l[a((ﬁ—l)t-i-(l—ﬁ??))+ﬂ((1—a)t+a£)+1} (1—8) < ks(l—s),

S

where k = tren[gm%] [a((B—1t+ (1= pn) +B((1 —a)t+ af) +1] /0> 0. Combining

the above inequality with (4.7) yields
(4.8) on(s) = 01k K(t,s) fort,se0,1].

Let 6 = rp 61k~ L. For any v € P and ¢ € [0, 1], (2.7), (4.6), and (4.8) imply

Hence, h(Lv) = §||Lv||, i.e., L(P) C P(h,¢). Therefore, (A1) of Lemma 2.3 holds.
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Since ¢ is nondecreasing on RT, we have c(v(t)) < ¢(||v]]) for all v € P and
t € [0,1]. Then, from the fact that c is even, it follows that c(v(t)) < c¢(||v]|) for
all v € X and t € [0,1]. Thus, |c()|| < ¢(]|v||) for all v € X. From (3.7) we see

that | lHlm lle()]|/]|v]l = 0 for any v € X. Let Ho(t) = be(v(t)) for v € X, where

b= max b(t). Then (A2) of Lemma 2.3 holds.

t€[0,1]
Let (A, 1) € R%, Fy,, be defined by (4.4), and ug(t) = a(t). Then, from (3.6), we
have F ,v+ Hv+ug € P for all v € X. Hence, (A3) of Lemma 2.3 with F' = F) ,
holds.

Since foo > par, there exist € > 0 and N > 0 such that
ft,z) 2 pu(l+e)x for (t,z) € [0,1] x [N, 00).
Then, in view of (3.6), there exists ¢ > 0 such that
f(t,x) > ppr(1+ )z —be(z) — ¢ for (t,z) € [0,1] x [N, 00).

From (3.5) and (4.4) we have

Thus,
LF ,(t) = ry (1 +¢)Lo(t) — LHv(t) — L¢ for all v € X.

Then (A4) of Lemma 2.3 holds with F' = F) ,, and vy = L.
All conditions of Lemma 2.3 hold, so there exists R; > 0 such that

(4.9) deg(I — T, B(0, R;),0) = 0.
Next, since Fy < ppr, there exist 0 < v < 1 and 0 < Ry < R; such that
(4.10) [ft,2)] < par (1 —v)|z| for (t,z) € [0,1] x [-2R2,2Rs].

In what follows, let (X, ) € R% satisfy

(4.11) Al + ] < Re
and

1
@12) o= (1= ) (el + o) ma / K(t, 5)g(s) ds < vR,.
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We claim that
(4.13) Tv#1v forallve dB(0,Rs) and 7 > 1.

If this is not the case, then there exist 7 € 9B(0, Ry) and 7 > 1 such that 77 = 7.
It follows that v = 3§70, where § = 1/7. Clearly, 5 € (0,1]. From (4.4), (4.10),
and (4.11), we have

(4.14) B 0(8)] < par (=) [0(0)+Ap(8)+pap ()] < puar (L=v) ([O(E) [+ Al @l +pl[9]])-

Assume Ry = ||| = |v(t)| for some ¢ € [0,1]. Then, from (2.7), (3.5), (4.5), (4.12),
and (4.14), we obtain that

Ry = [5(0)] = 317500 < | K 5))9(5) Fag#(s)] s
<uli=v) [ K, 9)g()/7(5)| ds
+ uae (1= ) (el + o) | K 9)g(s) ds
= iar(1 = V)OO + pas(1 =) (el + o) [ KT 9)g(s) ds
< (1= v)LRy + Cy =1y (1 = v)LRy + Oy
Consequently,

h(Rs) < 73} (1 — v)R(LRy) + h(Cy) = 3} (1 — v)(L*h)(Rz) + h(Ch)
=73 (1 = v)rarh(Re) + h(Cy) = (1 — v)h(Ra) + h(Ch).
Thus,
(C1 —vR2)h(1) = 0.
Since h(1) > 0, we have C; > vRy. But this contradicts (4.12). Thus, (4.13) holds.
Now, Lemma 2.1 implies

(4.15) deg(I — T, B(0, R»),0) = 1.

By the additivity property of the Leray-Schauder degree, (4.9), and (4.15), we have

deg(I - T, B(Oa Rl) \ B(Ov RZ)) =-L

Then, from the solution property of the Leray-Schauder degree, T has at least one

fixed point v in B(0, R1)\B(0, R2), which is a solution of BVP (4.2), (4.3). Therefore,
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we have shown that, for (X, ) € R% satisfying (4.11) and (4.12), BVP (4.2), (4.3) has
at least one solution v(t) satisfying ||v|| > Ra. Thus, for each (X, ) € R3 with A+ p
sufficiently small, BVP (1.1), (1.2) has at least one solution u(t) = v(¢)+Ap(t)+u(t)
satisfying

lul > ol = [Ag + ol > Ra — Ao + b > 0.

This completes the proof of the theorem. ([

Proof of Theorem 3.2. We first verify that conditions (A1) and (A2)*—(A4)* of
Lemma 2.4 are satisfied. As in the proof of Theorem 3.1, there exist ¢, oar € P\{0}
and h € P*\ {0} defined by (4.6) such that (A1) holds.

From the fact that e is even and nondecreasing on R™, it is easy to see that
e(v(t)) < e(||v]]) for all v € X and ¢ € [0,1]. Thus, |e(v)| < e(||v]]) for all v € X.
This, together with (3.9), implies that Hg}ln—l@ lle(@)]|/]lv|| = 0 for any v € X. Let
Hu(t) = de(v(t)) for v € X, where d = tren[(e)ui d(t). Then (A2)* of Lemma 2.4 holds.

s

Since fo > par, there exist ¢ > 0 and 0 < {3 < 1 such that
(4.16) ft,2) = pup(l+e)z=ryt(1+e)z >0 for (t,x) € [0,1] x [0,2¢].
Let (X, p) € R satisfy

(4.17) Ml + pllvll < G

and let F , be defined by (4.4). Then, from (4.16), we have

(4.18)  Fx uo(t) = par (14 &) (v(t) + Ap(t) + pap(t))
> pa(1+e)o(t) =ry (1 +e)u(t) for all v € P with || < G-
Let r be given in (B2). Now, in view of (3.8) and (4.18), we see that (A3)* of
Lemma 2.4 holds with F' = F) , and 71 = min{r, (1}.
By (3.9) there exists 0 < (2 < min{r, {1} such that —e(z) > d~'r (1 +¢)z for
x € [—(2,0]. Then, from (3.8), we obtain

(4.19)  f(t,z) = dt)d 'ryf (A +e)x =y (1+e)x for (t,x) €[0,1] x [~Co, 0]

From (4.16) and (4.19) it is easy to see that F) ,v(t) = par(1 +€)(v(t) + Ap(t) +
() = par(1+e)v(t) = ryf (1 +e)v(t) for all v € X with ||v|| < o, which clearly
implies that LFy ,v(t) >y (1 +¢)Lo(t) for all v € X with |lu|| < (o. Hence, (A4)*
of Lemma 2.4 holds with F' = F , and ry = (s.
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All conditions of Lemma 2.4 hold, so there exists R3 > 0 such that
(4.20) deg(I — T, B(0, R3),0) = 0.
Next, since Fi, < s, there exist 0 < 7 < 1 and R > R3 such that

421)  |f(t2)] < par(L = D)la] = ry/ (1= D)|z| for (t,]2]) € [0,1] x (R, o).

Let

42 Gzt D)+ ulvl) s [ KG9
and

(4.23) Cs :te[oﬁlﬁ);\gzz f(t, )l tren(@)a)i]/ K(t,s)g

Then 0 < C3, C3 < co. Choose R4 large enough so that

(4.24) Ry > max{R, v~ }(Cy + Cs3)}.

We claim that

(4.25) Tv#71v forallve dB(0,Ry) and 7 > 1

If this is not the case, then there exist o € 0B(0, R4) and 7 > 1 such that 7% = 70. It
follows that & = 370, where § = 1/7. Clearly, 5 € (0,1]. Assume R, = ||7|| = |5(f)]
for some # € [0,1]. Let Jy(3) = {t € [0,1]: |5(t) + Ao(t) + pp(t)] > R}, Ja2(0) =
[0, 1]\ J1(9), p(8(t)) = min{|5(t) + Ap(t) + pab(t)|, R} for t € [0,1]. Then, from (2.7),
(4.4), (4.5), and (4.21)—(4.23), it follows that

Ry =|03(t)| = / K(t,5)g(s)|F\,.0(s)| ds

/ K(t,s)g(s)[Faut(s)lds+ [ K(L,s)g(s)|Fxut(s)|ds
J1(9) J2(D

)
/ K( t $)g(s)|o(s |ds+ K t s)g )|F)\7up( 0(s))| ds
+ A (L= )Ml + alll) / K(E, 5)g(s) ds
<ryf(L=2)Lw@)| + Co + C3 =13/ (1 = D) LRy + Co + Cs,
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since L|v(f)| = fo s)|v(s)|ds. Hence, for h defined by (4.6), we have

h(Ry) <13} (1= D)h(LRy) + h(Ca + Cs) = r} (1 = D) (L*h)(R4) + h(Ca + Cs)
= TM (1 — V)?“Mh(R4) + h(CQ + 03) = (1 — D)h(R;l) + h(CQ + 03),

which implies (ZR4 — Co — C3)h(1) < 0. In view of the fact that h(1) > 0, it follows
that Ry < 7~ (Cy+ C3). This contradicts (4.24) and so (4.25) holds. By Lemma 2.1

we have
(4.26) deg(I — T, B(0,R,),0) = 1.

By the additivity property of the Leray-Schauder degree, (4.20), and (4.26), we
obtain
deg(I —T,B(0,R4) \ B(0,R3)) =
Thus, from the solution property of the Leray-Schauder degree, T has at least one
fixed point v in B(0, R4)\B(0, R3), which is a solution of BVP (4.2), (4.3). Therefore,
we have shown that, for (X, ;1) € R% satisfying (4.17), BVP (4.2), (4.3) has at least
one solution v(t) satisfying |[v]| > Rs. Thus, for each (A\,pu) € R3 with X + p
sufficiently small, BVP (1.1), (1.2) has at least one solution u(t) = v(¢)+Ap(t)+u(t)
satisfying
[ull = [loll = [[A¢ + pbll = Rs = [|Ap + pap|| > 0.

This completes the proof of the theorem. O

Lemma 4.1. Let up be defined by (3.5). Then C < up < D, where C and D
are given by (3.1).

Proof. From (2.4) we have

(4.27) K(s,t) = %[a((ﬁ )5+ (1 )G D)

+68((1 —a)s +af)G(n,t)] + G(s,t).

We first show that

(4.28) K(s,t) < k16(s) for t,s € ]0,1]
and
(4.29) K(s,t) = ka26(s) for (t,s) € [0,1—46] x[0,1],

where (s), k1, and ko are defined by (3.2)—(3.4), respectively.
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In fact, from (2.5),
t(1—1%)s(1—s) <G(s,t) <s(l—s) fort,sel0,1].

This, together with (4.27), implies that

K(s,t) < %af(l —O[B-1Ds+ (1—-pn)] + %ﬁn(l —n)[(1—a)s+at] +5(1—s)

< max{ 2ag(1 = €, 2001 =)L} (9 - @)s + 5(1 = 5) + 1= G-+ o

= kl(S(S)

for ¢, s € [0, 1], and

K(s,t) > gaea — )01 - 0)[(8— 1)s + (1 — fn)]

+ %677(1 — 01— 0)[(1 - a)s + ag] +0(1 — 0)s(1 - s)

> [(B—a)s+s(1—s)+1—p0n+af
y {9(1 — ), if ag(1 =€) + pn(1 —n) =0,
0(1 — ) min{o~'a&(1 —£), 0" Bn(1 —n), 1}, otherwise,
= kod(s)

for (¢,s) € [0,1 — 0] x [0,1]. Thus, (4.28) and (4.29) hold.
Let wpr be given as in Lemma 2.6 (b). Then par(t) = uapr Mo (t), ie.,

(4.30) erilt) = v [ K(s.0a(s)om (5)ds

Thus, from (4.28) and (4.29),

om(t) < uMk'l/O 3(s)g(s)pam(s)ds fort e [0,1]
and )
em(t) = ,ung/O 0(s)g(s)enm(s)ds forte[h,1—140].

Hence,

k
en(®) > 2 llomll fort € 16,16,
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This, together with (4.29) and (4.30), implies that

1-0

om(t) = pnr ; K(s,t)g(s)pm(s)ds

k2 1-60
>MM]€—?H<PMH/6 d(s)g(s)ds forte[f,1—4).

As a result,
k1

g 2 r1—0 =
k3 |, 5(s)g(s)ds
On the other hand, from (4.28) and (4.30) we have

123,78

1
onr(t) < parks lon | / 5(s)g(s)ds for ¢ € [0,1].
0

Thus,
1

2 ———=0C
k1 [y 0(s)g(s)ds

1237

This completes the proof of the lemma. O

Proof of Corollary 3.1. The conclusion follows from Theorem 3.1 and Lem-
ma 4.1. O

Proof of Corollary 3.2. The conclusion follows from Theorem 3.2 and Lem-
ma 4.1. 0

Proof of Theorem 3.3. Let (\, ) € R? be fixed. Since F,, < C, there exist
0 < Cys < C and 11 > 0 such that

(4.31) |f(t,z)] < Cyl|z| for (¢, |x]) €[0,1] X (71, 00).
Let
N, = t,x)|.
A  ACE]
Then
(4.32) [f(t,z)] < N1 for (¢, |2]) € [0,1] x [0,71].

In view of the fact that Cy < C and the definition of C in (3.1), we have

k1C4/O d(s)g(s)ds < 1.
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Thus, we can choose 7 > 7 large enough so that

1
(4.33) k1[N1 + Ca(ma + Al + ulll/JH)]/o d(s)g(s) ds < 72.

Let
S={veX: ||v|]| <}

For v € S, define
I7 ={t €[0,1]: |v(t) + Ap(t) + pp(t)| < 1}

and
I3 ={t € [0,1]: [u(t) + Ap(t) + pp(t)] > 71}

Clearly, IY U IY =[0,1] and I N I{ = (. Now, (4.4) and (4.31) imply that

(4.34) [Ex o) < Calo(t) + Ap(t) + pip ()]

<
< Cu(ma + Al + pllgll)  for t € 1.

From (4.5), (4.28), (4.32)—(4.34) it follows that

ITo(®)] < by ( /

<k (Nl

0(8)g(s)|Fx,pv(s)|ds + /

I3

5(8)g(s)|Fx,uv(s)] ds)

S(s)a(e)ds + Catra + Al + i) [ 3(9)(5) s )

Iy

1
< ka[N1 + Ca(m + Mol + all])] / 5(s)g(s) ds <

for ¢ € [0,1]. Thus, T'(S) C S. By the Schauder fixed point theorem, T has at least
one fixed point v in S, which is a solution of BVP (4.2), (4.3). Therefore, we have
shown that, for any fixed (), 1) € R?, BVP (4.2), (4.3) has at least one solution v(t).
Consequently, BVP (1.1), (1.2) has at least one solution u(t) = v(t) + Ap(¢t) + u(¢).
Clearly, if (A, ) # (0,0), from (1.2) we see that u(¢) is nontrivial, and if (A, u) =
(0,0), from (1.1) and the assumption that f(¢,0) #Z 0 on [0, 1], it also follows that
u(t) is nontrivial. This completes the proof of the theorem. O
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