

IONIZATION AND ION SOURCES, DETECTOR, VACUUM SYSTEMS

MASS SPECTROMETER

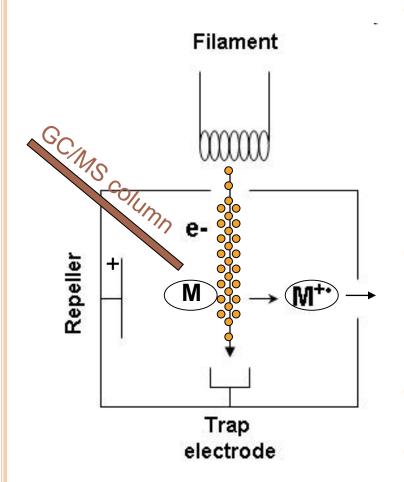
- Ion source devices which produce positive or negative electrically charged molecules in gas phase
- Mass analysers separate the ions according to their mass-to-charge ratio (m/z)
- Detectors record the charge induced or the current produced, when an ion passes by or hits a surface

ION SOURCE

Produce **positive** or negative electrically charged molecules in **gas phase**

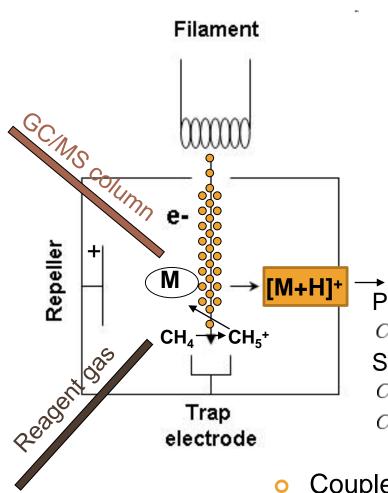
- Choice depends on compound
 - Universal ionization technique does not exist
- Differentiation
 - By energy
 - Hard (EI)
 - Cation radical with high energy fragmentation in ion source many fragments in the spectra
 - o Soft (CI, ESI, APCI, MALDI,...)
 - Molecular adduct with low energy no or a few fragments in the spectra
 - By pressure
 - Vacuum (EI, CI, MALDI,...)
 - Atmospheric pressure (ESI, APCI, APPI, AP MALDI,...)
 - Ambient ionization technique
- o lons
 - M + e⁻ → M^{+•} + 2 e⁻ • M + HA → [M+H]⁺ + A⁻ • M + B⁻ → [M-H]⁻ + HB

Cation radicals Molecular adducts Deprotonatet molecules


DIFFERENT IONIZATION TECHNIQUE

o Molecular Analysis

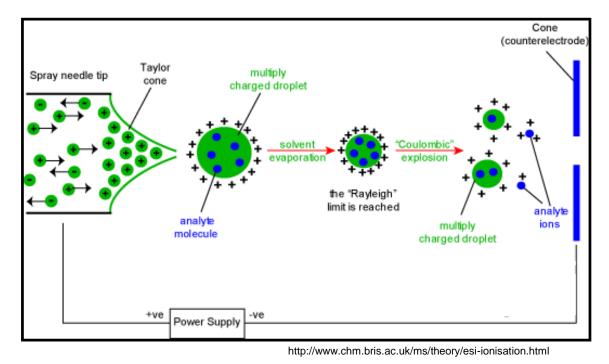
- Electron Ionization (EI)
- Chemical Ionization (CI)
- Electrospray (ESI)
 - Nanoelektrospray (nanoESI)
- Atmospheric Pressure Chemical Ionization (APCI)
- Atmospheric Pressure Photoionization (APPI)
- Matrix-Assisted Laser Desorption/Ionization (MALDI)
- Laser Desorption Ionization (LDI)
- Secondary Ion Mass Spectrometry (SIMS)
- Fast Atom Bombardment (FAB)
- Termospray (TSI)
 - Ambient ionization technique
 - Desorption Electrospray Ionization (DESI)
 - Desorption Atmospheric Pressure Photoionization (DAPPI)
 - Direct Analysis in Real Time (DART)


• • • • • •

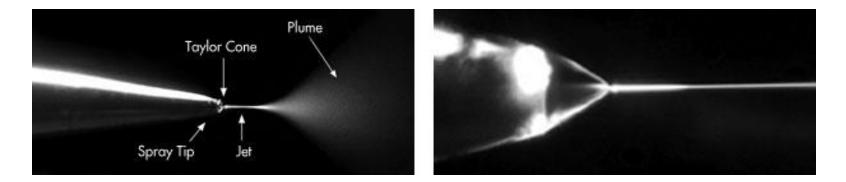
ELECTRON IONIZATION (EI)

- An ionization method in which energetic electrons interact with gas phase molecules to produce ions.
 - Electron emission by heating a tungsten wire filament
 - Good reproducibility spectral library easy interpretation
 - (energy of the electrons 70eV)
- M + e⁻ → M⁺⁺ + 2 e⁻
 - M is the analyte molecule being ionized
 - e⁻ is the electron and
 - M⁺ is the resulting ion
- Widely used for volatile organic molecules
- Often coupled with GC = GC/EI-MS

CHEMICAL IONIZATION (CI)

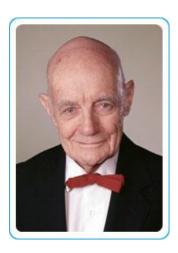

- Analyzed ions are produced through the collision of the analyte with ions of a reagent gas, that are present in the ion source
 - **Methane**, ammonia, isobutane, acetonitrile,.....
- Soft ionization technique
 - [M+H] ⁺, [M+ reagent gas]⁺, fragments (depend on condition)
- o Example
 - CH₄ as a reagent gas

Primary ion formation
 $CH_4 + e^- \rightarrow CH_4^+ + 2e^-$ Product ion formation
 $M + CH_5^+ \rightarrow CH_4 + [M + H]^+$ Secondary reagent ions
 $CH_4 + CH_4^+ \rightarrow CH_5^+ + CH_3$ $AH + CH_3^+ \rightarrow CH_4 + A^+$
 $M + CH_5^+ \rightarrow [M + CH_5]^+$
 $A + CH_4^+ \rightarrow CH_4 + A^+$


- Coupled with GC = GC/CI-MS
- Used for volatile organic molecules

ELECTROSPRAY (ESI)

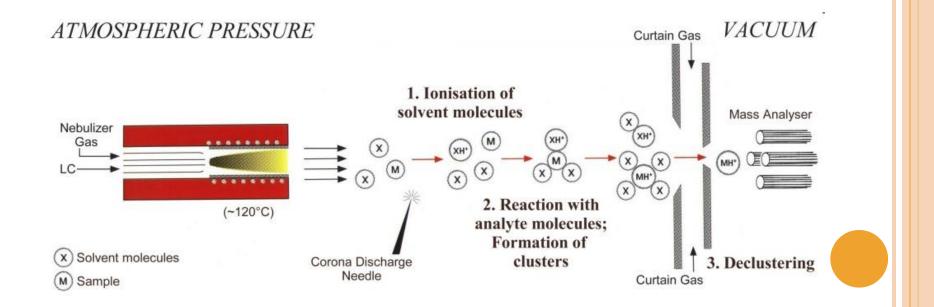
- The liquid containing the analyte(s) is dispersed by electrospray into an aerosol
 - Charged droplets
 - Solvent evaporation
 - Coulombic explosion
- Soft ionization technique
 - [M+H] +, [M+ Na]+, [M+ K]+, molecular adducts
 - Multiply charged ions, dimers


NANOELECTROSPRAY (NANOESI)

- Flow of mobile phase usually hundreds nl/min
 - Higher sensitivity
 - [M+H]+, [M+Na]+, [M+K]+,
 - Easer interpretation of the spectra
- Important parameters
 - Mobile Phase Flow
 - Tip Inner Diameters (IDs)
 - Mobile Phase Composition
 - Applied Voltage

ELECTROSPRAY TECHNIQUE

- Polar analytes in broad mass range
- Obtaining multiply charged
 - Analysis of molecules with Mr behind the range of analyzer
- Coupled with HPLC or UHPLC
 - Polar solvent (mobile phase) as a donor of H⁺

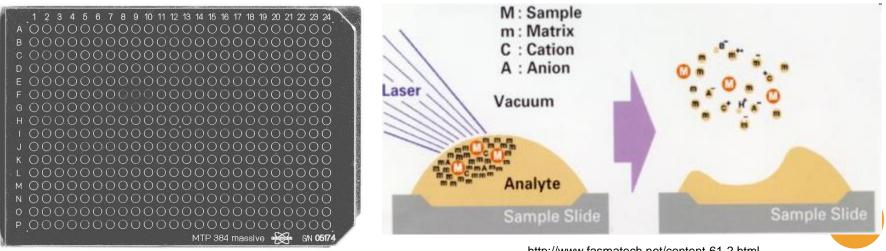

Electrospray Wings for Molecular Elephants (Nobel Lecture)

John B. Fenn Nobel prize in Chemistry 2002

ATMOSPHERIC PRESSURE CHEMICAL IONIZATION (APCI)

- The mobile phase containing eluting analyte is heated to high temperature (above 400°C), sprayed with high flow rates of nitrogen
- Molecules of solvent and gas are ionized by corona discharge
- Analyte are ionized by ionized gas molecules and solvent

ATMOSPHERIC PRESSURE CHEMICAL IONIZATION (APCI)


• APCI can be performed in a modified ESI source

- Device similar to ESI source
- However, mechanism of ionization similar to CI
- The ionization occurs in the gas phase
- APCI is a less "soft" ionization technique than ESI
 - Generates more fragment ions
- Coupled with HPLC or UHPLC
 - Advantage of APCI it is possible to use a nonpolar solvent (mobile phase)

MATRIX-ASSISTED LASER DESORPTION/IONIZATION (MALDI)

- Laser-based soft ionization method
 - Matrix and analyt are mixed on the target plate
 - The laser (**UV**, IR) shoots the mixture
 - The energy is transferred to the matrix, which is vaporized, carrying analyte into the vapour phase and charging it

o The mechanism of MALDI is still debated

http://www.fasmatech.net/content-61-2.html

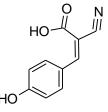
www.ms-textbook.com

MATRIX-ASSISTED LASER DESORPTION/IONIZATION (MALDI)

- o Analysis of
 - Biomolecules (DNA, proteins, peptides and sugars)
 - Large organic molecules (polymers, dendrimeres,...)
 - Which tend to fragment, when are ionized by more conventional ionization methods.
 - Singly charged molecular adduct
 - Molecular adducts ([M+H]⁺, [2M+H]⁺, [M+2H]²⁺) or loss of proton [M-H]⁻
 - Other molecular adducts [M+metal]⁺ with salts in sample (Na, K,,)

Franz Hillenkamp

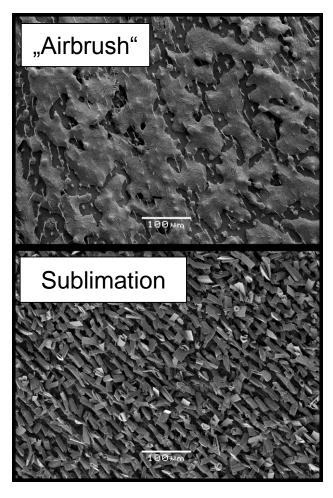
Koichi Tanaka



Nobel prize in Chemistry 2002

MALDI MATRICES: PROPERTIES AND REQUIREMENTS

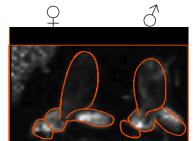
- Small molecules, usually small organic acids
 - 2,5-dihydroxybenzoic acid, sinapic acid, α-cyano-4-hydroxycinnamic acid,.....

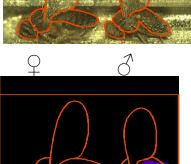


- The MALDI matrix of requirements
 - Be able to embed analytes (by co-crystallization)
 - Be soluble in solvents compatible with analyte
 - Be vacuum stable

HO

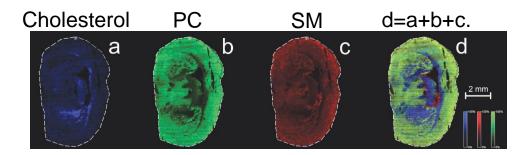
- Absorb the laser wavelength
- Cause co-desorption of the analyte upon laser irradiation
- Promote analyte ionization


MALDI IMAGING

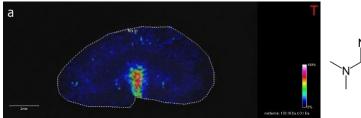

V. Vrkoslav, A. Muck, J. Cvačka, A. Svatoš, *J. Am. Soc. Mass Spectrom.* **21** (2010) 220–231

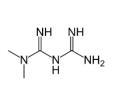
D. melanogaster

TIC



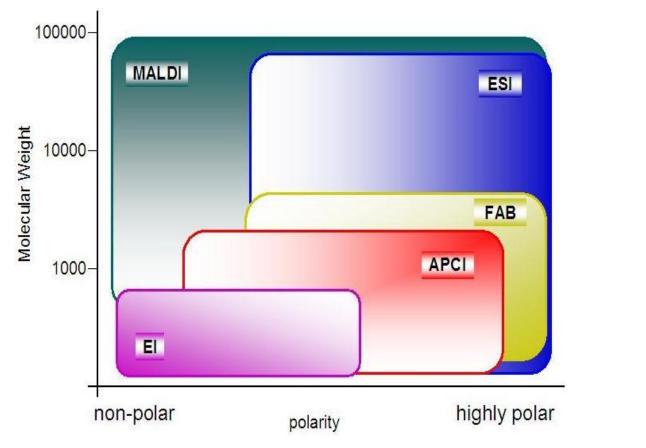
3


 \bigcirc

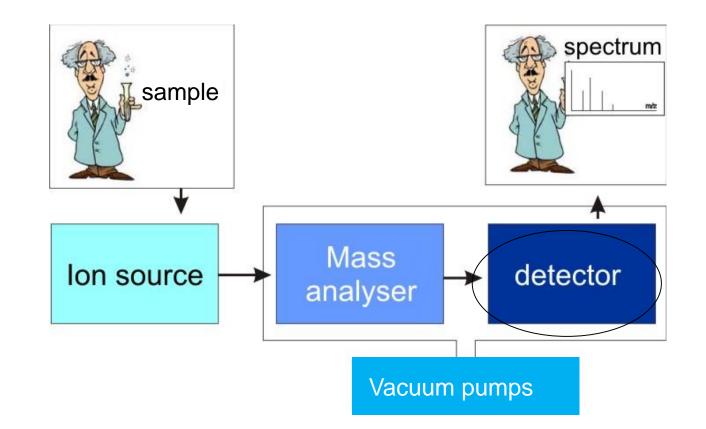

Fot

cis-vacenyl acetate

Metformin - [M+H]+; m/z 130,16


LASER DESORPTOIN/IONIZATION (LDI)

• LDI (laser desorption/ionization)


- Energy of laser is directly absorbed by analyte
- Without matrix
- For small molecules only
 - Spectra without matrix ions
 - Better reproducibility then MALDI
 - Harder ionization technique then MALDI fragments in spectra
 - Sensitivity depends on analyte
- Useful for imaging
- Instrumentation is same as for MALDI

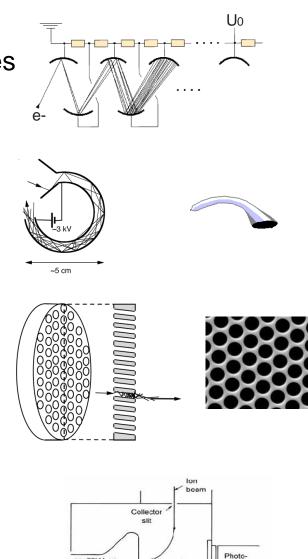
CHOICE OF IONIZATION TECHNIQUE

- Almost all compounds can by ionized by more then one technique
 - Depends on molecular mass, polarity, ionization energy, solubility, ...

DETECTOR

• Detectors - record the charge induced or the current produced, when an ion passes by or hits a surface

DETECTORS


Records the current produced, when an ion hits a surface of detector

In commercial instrument detectors with conversion dynode

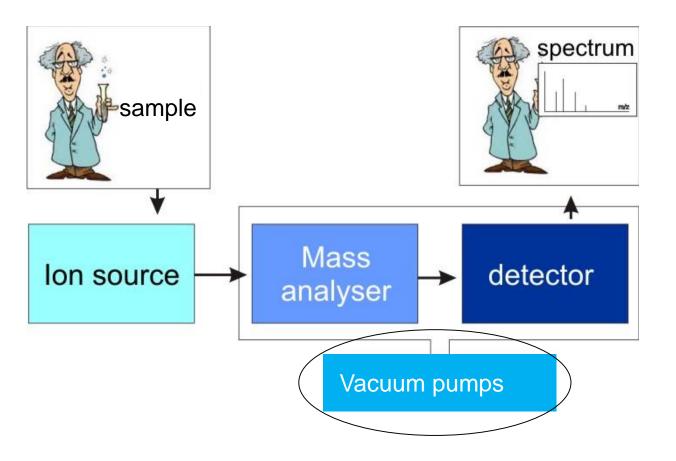
- Ions strike a conversion dynode to produce electrons electron multiplied by
 - Electron multiplier
 - Ion-to-photon detector
- Record the charge induced, when an ion passes by
 - FT-ICR-MS and Orbitrap
 - The detector is part of analyser
 - lons only pass near the electrodes

DETECTORS

- Elektromultiplier with discrete dynodes
 - Amplification 10⁶
- Chaneltron
 - PbO sensitive surface
 - Amplification 10⁶
- Microchannel Plate Detectors (MCP)
 - PbO sensitive service
 - Amplification 10³
 - Two detectors 10⁶
 - For TOF analyser
- Ion-to-photon detector
 - Electron strike a phosphor and the resulting photons are detected by a photomultiplier

Electron

Vacuum system


multiplier

Window

Phosphor

ca. 20kV -ve

VACUUM SYSTEM

VACUUM SYSTEMS

Usually two steps

- <u>Rough</u> vacuum (roughing pump membrane pump, scroll pump, oilsealed roughing pump)
 - 100 − 0.1 Pa
 - o all type of instruments
- <u>High vacuum (turbomolecular pump,</u> diffusion pump)
 - <mark>∘</mark> 0.1-10⁻⁶ Pa,
 - o TOF, Q, IT
- Ultra-high vacuum (turbomolecular pump)
 - o (10⁻¹⁰-10⁻¹² Pa)
 - Orbitrap, ICR

