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Abstract 
 
 AE source recognition procedures using artificial neural networks (ANN) were already ap-
plied successfully to AE data from numerical models and simple structures. One of the main 
problems in general data recognition is proper selection of extracted data features. Some of 
commonly used AE-signal parameters are redundant or lowly significant. Such parameters (data 
features) only complicate the recognition problem. Therefore, several modifications of the stan-
dard AE-signal parameterization are proposed in this paper to reduce data redundancy. The set of 
AE parameters is optimized by PCA (principal component analysis) and sensitivity analysis of 
trained neural networks used for pattern recognition. The optimization process is illustrated on 
recognition of various AE sources, detected during fatigue test of an aircraft structural part. Re-
sulting optimized feature set of AE signals provides the maximal information with minimized 
number of selected parameters. 
 
Introduction 
 
 Acoustic emission source identification represents one of the most difficult problems in AE 
analysis. The lack of exact knowledge about the influence of geometrical dispersion effects is 
one of the most important constraining factors in AE-source classification. In many practical ap-
plications, the complete inverse solution is not necessary for diagnostic decision, and simplified 
AE-source-identification procedure is sufficient. Example of such procedure is statistical pattern 
recognition of the source described by significant signal parameters. AE signals may be often 
generated not only by structural defects but also by undesirable acoustic interference. Reliable 
AE-source classification and following diagnostic decision should take into account only the 
emission sources related with damage processes in tested structure. Therefore, AE-source classi-
fier using optimized number of signal parameters is described in following sections. 
 
Experiments 
 
 Well-identifiable data set is a necessary condition for any AE-source-classifier design and 
testing. AE signals recorded during laboratory fatigue tests of a small aircraft part satisfy re-
quirements on reliable data set as AE source localization revealed two dominant AE-activity re-
gions. 
 Tested object was a steering actuator bracket (SAB), which is a part of the aircraft nose land-
ing gear. The bracket was loaded under pulsating stress cycles (R = 0, frequency 0.5 Hz) on In-
stron-Schenck 100 kN uniaxial loading machine to the maximal load level of 43 kN causing the 
maximum stress of about of 870 MPa in the critical points. AE was monitored during the loading 
cycles by DAKEL XEDO AE system. All AE signals were stored, and after certain loading peri-
ods, the detailed AE event-location analysis using an “Expert AE localization procedure” was 
performed so as to detect crack initiation. Most AE events arose near “expected” crack formation 
area ("A" in Fig. 1). 
 Another AE accumulation was observed around one hole in the left part of SAB (area "B" in 
Fig. 1). The task of source-classifier design is to recognize signal types, "A" and "B", originating 
in both areas where the different source mechanisms are supposed. 
 



 
Fig. 1. Steering actuator bracket. 

 
Definition of Signal Parameters 
 
 The main purpose of AE-signal parameterization is to reduce large waveform data to the low-
est number of signal features carrying maximum of important information. The number and type 
of signal features are selected so as to comply with various criteria (diagnostic purpose, device 
capabilities, simple and effective processing, etc.). AE source-identification procedures are 
mostly based on signal parameters in both time and frequency domain. Due to some inadequacies 
of standard AE signal parameters (e.g., phase sensitivity of peak amplitude and rise time), we 
propose several new signal characteristics derived from the auxiliary local gravity-center vector, 
g, used in the expert signal-arrival-detection procedure [1]. It is the i-th element in the magnitude 
of gravity center GCY(|si|) around the i-th sample in signal segment si: 

 
where existing signal part si  and "measuring window length" k are considered as: 

 
Vector z = {z (i)∣i =1...N} consists of logical values 0 and 1, determining whether the sample re-
cord is less than one-third of the peak amplitude: 

   
The following AE parameters (numbered 1-19) in time and frequency (spectral) domains 

were also computed: 

 Time domain: (1) signal amplitude, (2) vector g amplitude, (3) signal rise time, (4) vector g 
rise time, (5) signal RMS, (6) signal energy moment, (7-10) 1st to 4th central moments of vector 
g in terms of probability density function. 
  Frequency spectrum parameters: (11-15) parameters of signal power spectral density func-
tion f(ω):  

    



where G is overall frequency range and arbitrarily chosen five frequency bands X are related to 
the Nyquist frequency ωN as follow: 
 A:(0-0.05)* ωN; B:(0.05-0.1)* ωN; C:(0.1-0.15)* ωN; D:(0.15-0.3)* ωN; E:(0.3-0.5)* ωN. 

(16-19) 1st - 4th central moments of f(ω) in terms of probability density function. 
 
Analysis of AE Signal Parametrization 
 
 The main goal of any parameterization is to extract maximum of useful information on given 
data whereas the redundancy of computed parameters should be minimized. The factor analysis  
(FA) [2] and the neural-network sensitivity analysis are helpful tools to reduce the number of ex-
tracted parameters. Both methods show us the features that carry the most important information 
about existing problem and whether the parameters are independent among each other. 
 
Factor analysis: FA is a method frequently used to find linear relations among parameters and to 
compute new, hypothetical variables (factors) explaining variance of parameters. FA is based on 
principal component analysis (PCA), which has three effects: 

1. Orthogonalizing transformed input-vector components as they become uncorrelated; 
2. Organizing orthogonalized (principal) components with the component having the largest 
variance as the first; 
3. Eliminating components that contribute only little to the data set variance. 

The loss of information is minimized, corresponding to the difference between original and trans-
formed data. In most cases, PCA and FA usually yield similar results. However, PCA is preferred 
in data reduction, while FA is better for the recognition of data structure. FA represents linear 
data transform (orthogonal rotation followed by scaling). It can be expressed as a matrix multi-
plication Z = AP, where the original data are stored in matrix Z, new hypothetical variables (fac-
tors) in matrix P and the factor scheme A represents the regression coefficients of factors to 
original variables. Interpretation of factors is somewhat difficult since the problem solution may 
be any rotation of the factor scheme. The goal of all rotational strategies (e.g. VARIMAX) is to 
obtain a clear pattern of factor loadings (the simplest structure). 
 

Sensitivity analysis of artificial neural networks (ANN): Proper selection of input data is very 
important when the ANN is used for AE-source classification [3]. It is important also to recog-
nize significant pattern features within initially large, redundant feature set, and discard insignifi-
cant features for the correct ANN decision. In many real cases, the input features may be interde-
pendent and the system output is then influenced by relationships between inputs rather than by 
the separate input values. When the number of input features is small, a quasi-exhaustive search 
may be used to select the best feature subset. However, the number of possible combinations 
grows rapidly with the number of attributes. An alternative, sensitivity-analysis approach to fea-
ture selection (called FSS) is proposed in [4]. It comprises following steps: 

●  Back-propagation (BP)-network training by all possible feature candidates; 
●  For all training patterns p with corresponding network outputs yp,j  and inputs xp,i , are com-

puted sensitivity coefficients sj,i, defined as: 

   
●  Elimination of "dummy" features with small values of sj,i  coefficients. High values of the 

sensitivity coefficients indicate "important'' features for the trained BP-networks. 
 
AE Source Classifier 
 
Factor scores calculation: We used the factor scores (i.e. the values of new hypothetical features 
given by FA) as classifier-input parameters. PCA showed that only 6 factors can interpret 96% of 
total data variance. Table 1 represents rotated factor scheme for all 19 original parameters. Factor 



loadings are shadowed by values. It is evident that the first factor is saturated by signal-shape 
features, such as the amplitude, RMS and central moments of vector g. Next, well-interpretable 
factors are clearly determined by lower spectral band parameters, Nos. 11-13 (factor 2), and the 
shape of power spectral density function (factor 4). The application of factor analysis has proven 
that the proposed features of power spectral density shape (parameters Nos. 16 to 19) represent 
new, linearly independent information. Desirable factor scores (new uncorrelated signal features) 
were computed as P = A'⋅R−1⋅Z', where R is correlation matrix of standardized data Z [2]. 
 

Table 1. Factor analysis. 

 
 

Neural network learning: Following the previous good experience with AE source-model recog-
nition [5], we used the BP-networks with two hidden layers as a classifier basis. Only the signals 
from one sensor (sensor #1) were considered in the classifier. The number of factors determines 
the number of input neurons. The optimal architecture of the applied network versions was about 
9 neurons in the first and 7 neurons in the second hidden layer with sigmoidal transfer functions. 
The third layer has two neurons with linear transfer function computing an estimate of classifica-
tion weights. During the ANN learning process, weights and biases of the network were itera-
tively adjusted by fast resilient back-propagation training algorithm with momentum and gener-
alization-improvement regularization. For given factor scores, corresponding to AE sources of A 
and B types, the trained network outputs should be close to vectors [1,0] and [0,1], respectively. 
As the training data set, one half of all 900 processed signals have been used, while the rest of 
them served for testing. Initial weights and biases considerably affect the ANN learning process 
along with its sensitivity to input-data variance. The starting neuron potentials should lie in inter-
val of the highest slope of sigmoidal transfer function, i.e., in a symmetric interval with zero 



midpoint. For that reason, the initial weights were adjusted by statistical optimization of starting 
neuron potentials. 

After approximately 100 cycles of training algorithm, the value of MSETRAIN (mean of square 
errors of training data with normalized means and standard deviations) was 0.000187, while the 
generalization error MSETEST (i.e., MSE considered for all data with normalized means and stan-
dard deviations) was 0.0034. The table in Fig. 2 represents sensitivity coefficients shadowed by 
values. Each of two columns contains six values for respective network inputs. We can see that 
the most important input corresponds to the second factor saturated by the original lower fre-
quency spectral band parameters. This result reflects the fact that two AE signal types are almost 
linearly separable with some spectral parameters and, theoretically, one perceptron should be suf-
ficient to distinguish the AE source types. However, this preliminary information served only for 
methodology verification, and was not used in the classifier design. 

The right part of Fig. 2 illustrates results of recognition for the whole testing data set. Nearly 
all signals were successfully assigned to correct location areas. Second ANN output of 1 or 0 al-
locates the AE origin to area "B" or "A", respectively. 

 
Fig. 2. Classifier results. 

 

 
 

Conclusions 
 

A simple AE-source classifier and optimization of AE signal parameters is proposed in the 
paper. The aim of the ANN-based recognition method is to reliably eliminate undesirable AE 
signals. Due to some inadequacies of standard AE parameters, new signal characteristics were 
introduced. The original data structure was interpreted and simplified by factor analysis, where 
six extracted factors clarified 96% of total data variance. Only these six new uncorrelated signal 
features were used as ANN-classifier inputs. Sensitivity analysis of the trained ANNs indicated 
the second extracted factor as the most significant new AE signal feature suitable for AE source 
identification. This enclosure corresponds well with the prior information about data structure 
and can be easily interpreted in a frame of elastic wave-propagation theory. The advantages of 
proposed methodology were demonstrated on an AE-data example recorded during the fatigue 
testing of an aircraft structural part. Results of proposed classification method are promising for 
further use on complex AE data. 
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