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      The seminal Navier-Stokes equations have been stated yet before creation of 

principles of thermodynamics and the first and second laws. In the literature there is the 

common opinion that the Navier-Stokes equations cannot be taken as  a 

thermodynamically correct model of “working fluid” which is able to describe 

transformation of “ heat” into “work” and vice versa.  Therefore, in the paper, a new 

exposition of thermodynamically consistent Navier-Stokes equations is presented.  

Keeping the line of reasoning, based on the Gyftopoulos and Beretta concept of 

thermodynamics [1], we will introduce the basic concepts of thermodynamics with the 

notion of “heating” and “working” fluxes, and will extend the Gyftopoulos and Beretta 

approach into three-dimensional continuum thermodynamics. 

 In our approach notion of “energy” and “energy interactions” play a dominant 

role. The main inconsistencies connected with the internal energy concept as a form of 

,,energy storage’’ and the transformations of different forms of energy are evaluated. 

Thus, the balance of energy is finally presented as a sum of internal, kinetic, potential 

and radiation energies in the system that are compensated by the total energy flux, 

which consists of working, heating, chemical, electric, magnetic and radiation energy 

fluxes at the system boundaries. The law of energy conservation can be considered as 

the most important one which is superior over any other laws of nature.  

  Let us consider as shortly as possible an example of the Gyftopoulos-Beretta 

exposition of thermodynamics strictly adopted to the classical Navier-Stokes-Fourier 

equations. It leads to a neo-classical Navier-Stokes model of working fluid which is a 

simple viscoelastic, “heat” conducting fluid. The recoverable constitutive relations are 

expressed only by the intensive state parameters: velocity v


 (specific density of 

momentum); specific volume v  and specific entropy  . Specific internal energy is a 

function of intensive parameters: ),(  v . 

 Let start from the primal energy balance in the form of a global equality: 

                        dAn
dt

d

V
heatwork


  FFKU )Φ(     .                         (1) 

Here for our system A  [e.g.  a simply connected body  B], with a total volume V  and 

a boundary  V , oriented with a normal vector  n


, we have denoted internal energy, 

by:  
V

ρε dVU ; kinetic energy, by: 
V

 dVρK ;  potential energy of body 

forces, by: 
V

 dVρ . Equation (1) reads, that total change of stored energy of a 

body B  is compensated by energy being supplied (extracted) through the mechanical 

energy flux: Vwork hpvt


F    and the thermal energy flux: Sheat h


F . Definitions for 

these fluxes are fundamental for the primal statement of energy balance in the Carnot 

sense – they contain total, and not only reversible, momentum flux t


 and total not only 

diffusive flux of entropy Sh


 as well as the volume flux Vh


. 
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 Even though the mechanical and thermal energy fluxes are applied on disjoint side 

surfaces workheat AAV  , there is no mathematical obstacle whatsoever, to employ 

Stokes’ theorem on the divergence. Assuming, that: 0div  v
dt

d 
  or, in other 

words – satisfaction of mass balance, equation (1) may be rewritten: 

0)](div)()div)([(  dVhphvtv sv
V





   .        (2) 

This equation is always true, regardless the set of governing equations (that is, equations 

for mass, momentum, volume and entropy balances) is satisfied or not. It will now be 

shown that, if the fields and parameters of state satisfy conditions laid on by governing 

equations, equation of energy receives a very important form allowing for further 

restrictions to describing fields – it means that even though the solutions may satisfy 

conservation equations for mass, momentum, volume and entropy, they need not to 

satisfy conservation equation for energy, and in consequence lead to generating energy 

ex nihilo.  

 In eq. (2), according to Brenner’s [2] concept of volume balance, we introduce the 

following splitting of the volume flux:  

                                                vv hvh '


         ,                                             (3) 

what is consistent with postulate that the volume flux is identical with the volume 

velocity: pvvh Bvv grad


 [2].    

Material derivatives of kinetic and potential energy are vv
   and 

vbx
x


 







 , respectively. The following identities also occur:  

vtvtvt


graddiv)(div   and  graddiv)(div S  SS hhh


.  According to the 

well-accepted tradition, the velocity gradient will be denoted by vl


grad  and 

decomposed into symmetric and anti-symmetric parts  wdl


 . Temperature gradient 

will be denoted by  gradSg


 and pressure gradient by pV gradg


 [3].  

 Through addition and subtraction of )( Sn    and )( Vnvp    , the 

integral of equation (2) becomes: 

 
V

SS nhvvbt  )div()div([ 



                  

)div)(()div( vpvnh VV





   

0]'')()(  dVlthhnvpn VVSSVS


 gg   .             (4) 

Once the fields vhhvt VS ,,,,,,


  satisfy balance equations of mass, momentum, 

moment of momentum 
Ttt


  as well as volume and entropy, including, that 

dtlt


 , and Iptt


'  energy equation (4) reduces to : 

0]'')()([ 
V

VVSSVS dVdthhnvpn


 gg  .           (5) 

Even if an thermo-elastic fluid is expressed via scalar state parameters ,v , what is 

much simple then in solids, the mechanism of the internal energy storage is more 

complex, since of multiplicative, not additive, contribution to  ),( v  . The time 
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material (not the spatial one) rate of internal energy is: v
v


















 . Therefore, by 

taking material derivative of the internal energy, we obtain : 

0]'')()([ 









V
VVSSVS dVdthhpnnvp

v


 gg







  .   (6) 

Working fluid will be thermo-elastic in the Carnot sense if, and only if thermodynamic 

pressure and thermodynamic temperature are connected with internal energy by 

equations of state
v

p






; 









 . These two constitutive relations are fundamental for 

proving that balance of total energy can be fulfilled in any processes governed by 

balance of mass, momentum, moment of momentum, volume and entropy.  In a case of 

ideal gas, the internal energy depends on two constitutive coefficients vc and pc  - the 

specific heat in constant volume and pressure, respectively. From this pair; pv cc , , one 

can obtains an another pair – Carnot : (1824) vp ccR   and  Poisson (1831): 
v

p

c

c
 :                       

)exp()(
1

1
),( )1/(1

vc
vv




  


  ,                                         (7) 

which leads to the well-established constitutive equations : 

 )exp(
vc

vp
  ;  


 


 1)(

1

1
v  .                                     (8) 

Finally, remaining part of the balance of energy is :  

 0]''[ 
V

VVSSVSe dVdthhpnn


ggS   .                  (9)   

This say that dissipative contribution to energy balance should be self-equilibrated, 

since dissipation does not mean creation ex nihilo. Equation (9) can be also interpreted 

as an “inner dissipative conversion of energy”. Thus, in some sense eq. (9) could be 

treated to be definitions of irreversible contribution Vn  (volume production) and Sn  

(entropy production). If these contribution would be non-negative 0Vn , 0Sn  then 

remaining parts are also non-negative 0 SSh g


; 0'  VVh g


; 0' dt


.   

 The condition of self-equilibrated dissipation (9) can be fulfilled also if we define  

Vn  and Sn  in form of specific dissipation potential  .  In fluid the momentum flux 

tensor 't


 becomes an additive composition of spherical and shape viscous 

contributions; ea. : 


 Ipt )(' . In general, the viscous part is traceless: 0)(tr 


, 

and the volume-like viscous part is a spherical one: Ip


)(  . Thus, the expression dt

'   

in eq.(9)  turns into :  dvp


  div)( , and  

                     dvphhnpn SSVVVS


  div)(' gg  .                  (10)  

However, the viscous and work and heat diffusion properties depend on the following 

dissipative potential:  

     
2

3

2

2

1

2

1
)tr)('()( dddkd VVBSSSV


   gggg,g,g ,            (11)   
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where: k  is an entropy diffusion coefficient connected with the Fourier conductivity 

coefficient k  simply as:  kk   ;  and   and '  are  the Stokes shape and volumetric 

viscosity coefficients and B  is the Brenner coefficient. Making use of (10) and the 

definitions of diffusive fluxes: 
d










 , 

S

Sh
g










, 

V

Vh
g










' , 

d
p 

tr





  finally we 

obtain the well-established constitutive equations:  

                SS kh g


  , VBVh g


'  ; Idd


)tr(2
3

2
   ,  dp


tr'   .       (12) 

Additionally, several restrictions are imposed on constitutive coefficients – there are – 

the Petite inequalities  0 vp cc  ; the Lamè-Kowalski inequality 0k , the Duhem 

inequalities 0 , 0'32    and so on. From positivity of dissipation functional it 

follows also positivity of the Brenner coefficient  0B  [3].  

 Summarizing of the consequences of the Gyftopoulos-Beretta thermodynamics 

exposition – the presented above  mathematical model of continuum – the neo-classical 

Navier-Stokes - has a thermodynamic consistency, what means that unknown fields 

assigned from a proper set of governing equations  must additionally fulfill the 

condition of not creating energy from nothing [ 0eS , eq.(9)].  

 Second consequence is: energy conversion within the working fluid is impossible 

if state parameters are defined by other than eq. (8) constitutive equations. For 

multiplicative form of specific energy, like eq.(7) is, the energy conversion is possible 

without additional assumption, however, for an additive expression of internal energy, 

like in thermo-elastic solids, or thermo-electric  fluids, convertibility is assurance only 

by additional crossing term in constitutive relations.          

 Third consequence is the condition of self-equilibrated dissipation which follows 

from condition of 0eS  and frequently postulated in the literature the principle of 

mutual “inner conversion” of dissipative energy. Therefore, numerous inequalities [like 

the Drucker-Prager inequality for granular solids] used in the literature have their 

sources in the first, not in the second, law of thermodynamics.  Finally, it means that the 

classical Clausius-Duhem inequalities have no deeper foundations and nowadays should 

be treated as historic no right composition of Clausius’ global entropy inequality with 

Duhem’s local energy inequality.   

 Fourth consequence is a new role of vector of entropy flux for which we have 

proposed an independent constitutive equation (12)1.  It is helpful solution, since the 

seminal question of interrelation between thermal energy flux and entropy flux is now 

eliminated.   
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