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In this contribution we model flow of an incompressible fluid in a domain §2* which consists
of subdomains €2; which are disjoint and moved each other in one direction and we formulate
steady, non-steady and time-periodic problem. We denote by €2 one of this subdomains ({2 =
(2p). We describe the flow by the system of the non-steady Navier-Stokes equations on a domain
Q) with boundary conditions which are ”space-periodic in this direction”.

At first we describe domains €2 and 2*. Suppose that

e O C R?is a bounded domain.

ac€R,a>0, @Z = (a,0,0) is a vector.

00 =T,UTlyUTs, I'y, 'y and I'5 are open disjoint subsets of 0f2.

TyNTs = 0.

one-dimensional measures of I'; N ' and I'; N T'5 are zero.

(Q+ 1}) N Q2 = I'3 (By the symbol A + 12 we mean set of all points [z + a,y,y] € R®
where [z,y, 2] € A.)

Ty + 1 =T,

By the symbol * we denote Ujc(_o,... 00} (7 - ¥ + Q).
Let ]", uo be functions on €2 such that

flx+ay z) = flz,y,z)
and
’J'O(x +a,y, Z) = ,ujO(l‘ﬂ% Z)

For simplicity we denote f = fl|o, = fla, w0 = uolo, = uola, @ = @ x (0,7), where
(0,7 is a time interval, 0 < T' < co. We deal with the system



du/dt —vAu+ (u-Vu+VP = f on Q, (D

divu = 0 on @, (2)

u(.,0) = ~ on 2, 3)

u|F1 = 0, 4)

u‘FQ = u|F37 (5)

(=Pn+vou/n)lr, = (=Pn+vou/n)|p,. (6)

Here uw = (uy, . .., u,,) denotes the velocity, P represents the pressure, v denotes the kine-
matic viscosity, g is a body force, o is a prescribed vector function on I'y, n = (ny,...,n,,) is

the outer normal vector on 0f2 and =y is an initial velocity. We suppose for simplicity that v = 1
throughout the whole paper.

Suppose that there exists a strong solution of problem (1)—-(11) for given data. To prove
result of existence of a strong solution for a data which are small perturbation of the previous
one we use methods which is motiveted by the technique described in [1]-[7].

Corresponding steady problem is the following:

—vAu+ (u-V)u+VP = g on €2, (7)
divu = 0 on €2, (8)

ulr, = 0, 9)

ulr, = ulr,, (10)
(=Pn+vou/n)|lr, = (—Pn+vou/n)|r,. (11)

Here, we want to prove local solvability in the neighbourhood of famous solution also.
Moreover, we want to prove regularity of corresponding Stokes solution.
We formulate also time-periodic problem on time interval (0,7). .

du/dt —vAu+ (u-Vu+VP = f on @, (12)
divae = 0 on Q, (13)

u(.,0) = wu(.,,7) on, (14)

ulp, = 0, (15)

ulr, = ulr,, (16)

(=Pn+vou/n)|lr, = (—Pn+vou/n)|r,. (17)

Here, we want to characterize the set of solution such that the problem is local solvable in
their neighbourhood.
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