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Complex dynamics in the atmosphere

1980’s low dimensional chaos (Nicolis & Nicolis, Tsonis &
Elsner, Fraedrich)

criticism by Grassberger, Lorenz
Paluš & Novotná 1994: linearity of x(t) – x(t + τ)
interactions in temperature data
x(t) – y(t) interactions – next talk by J. Hlinka

Tsonis 2012 subsystems of low dimensionality
long-range dependence, fractality (Koscielny-Bunde et al.,
1998, Bunde & Havlin 2002, Eichner et al., 2002 ...)

criticism by Maraun et al., 2004

multifractality (Schmitt et al. 1995, Ashkenazy et al., 2003,
Zhou et al., 2010)
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Complex dynamics in the atmosphere

Cyclic phenomena hidden in colored noise
Monte Carlo SSA (Ghil et al., Allen & Smith)
Enhanced MC SSA (Paluš & Novotná) cycles of higher
regularity than filtered noise
detection and extraction of cycles −→ interactions

Feliks et al.: phase synchronization in 7–8 yr cycles
between areas – teleconnection
Paluš & Novotná: phase synchronization in 7–8 yr cycles
between temperature and solar/geomagnetic activity –
solar-terrestrial relations
Stein et al. 2011: phase synchronization of El-Niño and
annual cycle
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Emergent phenomena in complex systems

COMPLEX DYNAMICS
Not explained by a sum of properties of system components

INTERACTIONS OF SYSTEM COMPONENTS
EMERGENT PHENOMENA

STUDY OF INTERACTIONS
clues to understanding complex behaviour
facts for model building
characterization – diagnostics
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Measures from Information Theory

variable X , probability distribution p(x)

H(X ) = −
∑
x∈Ξ

p(x) log p(x) (1)

H(X ,Y ) = −
∑
x∈Ξ

∑
y∈Υ

p(x , y) log p(x , y) (2)

H(Y |X ) = −
∑
x∈Ξ

∑
y∈Υ

p(x , y) log p(y |x) (3)
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Mutual Information, Conditional MI

I(X ;Y ) = H(X ) + H(Y )− H(X ,Y ) (4)

I(X ;Y |Z ) = H(X |Z ) + H(Y |Z )− H(X ,Y |Z ) (5)

I(X ;Y |Z ) = I(X ;Y ;Z )− I(X ;Z )− I(Y ;Z ) (6)
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Estimating H(X), I(X,Y) from time series
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Abstract

Synchronization, a basic nonlinear phenomenon, is widely observed in diverse complex systems studied in physical, biological
and other natural sciences, as well as in social sciences, economy and finance. While studying such complex systems, it is important
not only to detect synchronized states, but also to identify causal relationships (i.e. who drives whom) between concerned (sub)
systems. The knowledge of information-theoretic measures (i.e. mutual information, conditional entropy) is essential for the analysis
of information flow between two systems or between constituent subsystems of a complex system. However, the estimation of these
measures from a set of finite samples is not trivial. The current extensive literatures on entropy and mutual information estimation
provides a wide variety of approaches, from approximation-statistical, studying rate of convergence or consistency of an estimator
for a general distribution, over learning algorithms operating on partitioned data space to heuristical approaches. The aim of this
paper is to provide a detailed overview of information theoretic approaches for measuring causal influence in multivariate time series
and to focus on diverse approaches to the entropy and mutual information estimation.
© 2007 Elsevier B.V. All rights reserved.

PACS: 05.10.−a; 0.45.−a; 07.05.−t

Keywords: Causality; Entropy; Mutual information; Estimation

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Causal measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Information theory as a tool for causality detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1. Definitions of basic information theoretic functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Information, entropy and dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Coarse-grained entropy and information rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4. Conditional mutual information and transfer entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

∗ Corresponding author. Tel.: +43 1 515 81 6708; fax: +43 1 20501 18900.
E-mail addresses: katerina.schindler@assoc.oeaw.ac.at, katerina.schindler@networld.at (K. Hlaváčková-Schindler).
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CONDITIONAL MUTUAL INFORMATION

I
(
~Y (t); ~X (t + τ)|~X (t)

)
=

I
((

y(t), y(t − ρ), . . . , y(t − (m − 1)ρ)
)
; x(t + τ)|(

x(t), x(t − η), . . . , x(t − (n − 1)η)
))

= I
(

y(t); x(t + τ)|
(
x(t), x(t − η), . . . , x(t − (n − 1)η)

))
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SCALE-SPECIFIC INTERACTIONS

OSCILLATORY PROCESS – specific frequency

BROAD-BAND SIGNALS

DIGITAL FILTERING
WAVELET DECOMPOSITION
EMPIRICAL MODE DECOMPOSITION
SINGULAR SPECTRUM ANALYSIS

SCALE-SPECIFIC SYNCHRONIZATION
SCALE-SPECIFIC GRANGER CAUSALITY
CROSS-SCALE INTERACTIONS
CROSS-FREQUENCY COUPLING

M. Paluš Cross-frequency interactions in air temperature records



Phase dynamics approach

ANALYTIC SIGNAL

ψ(t) = s(t) + j ŝ(t) = A(t)ejφ(t) (7)

INSTANTANEOUS PHASE

φ(t) = arctan
ŝ(t)
s(t)

(8)

INSTANTANEOUS AMPLITUDE

A(t) =
√

ŝ(t)2 + s(t)2 (9)

FILTERING −→ HILBERT TRANSFORM
COMPLEX CONTINUOUS WAVELET TRANSFORM
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CROSS-SCALE INTERACTIONS

Cross-frequency interactions

phase–phase
amplitude–amplitude
phase–amplitude

neurophysiology: phase of slow oscillations (δ, θ)
modulates the amplitude of fast oscillations (γ)
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CROSS-SCALE INTERACTIONS

CAUSAL PHASE –> AMPLITUDE INTERACTIONS
in about a century long records of daily near-surface air
temperature records from European stations

phase φ1 of slow oscillations (around 10 year period)
amplitude A2 of higher-frequency variability (periods 5
years and less)
I(φ1(t);A2(t + τ)|A2(t),A2(t − η), . . . ,A2(t −mη))
testing using surrogate data approach

Fourier transform (FT) surrogate data (Theiler et al.)
multifractal (MF) surrogate data (Paluš)
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TESTING INTERACTIONS WITH & WITHIN
MULTISCALE PROCESSES

Bootstrapping Multifractals: Surrogate Data from Random Cascades on Wavelet Dyadic Trees

Milan Paluš*

Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věžı́ 2, 182 07 Prague 8, Czech Republic
(Received 30 March 2007; revised manuscript received 21 June 2008; published 25 September 2008)

A method for random resampling of time series from multiscale processes is proposed. Bootstrapped

series—realizations of surrogate data obtained from random cascades on wavelet dyadic trees—preserve

the multifractal properties of input data, namely, interactions among scales and nonlinear dependence

structures. The proposed approach opens the possibility for rigorous Monte Carlo testing of nonlinear

dependence within, with, between, or among time series from multifractal processes.

DOI: 10.1103/PhysRevLett.101.134101 PACS numbers: 05.45.Tp, 05.45.Df, 89.75.Da

The estimation of any quantity from experimental data,
with the aim to characterize an underlying process or its
change, is incomplete without assessing the confidence of
the obtained values or significance of their difference from
natural variability. With the increasing performance and
availability of powerful computers, Efron [1] proposed to
replace (not always possible) analytical derivations based
on (not always realistic) narrow assumptions by computa-
tional estimation of empirical distributions of quantities
under interest using so-called Monte Carlo randomization
procedures. In statistics, the term ‘‘bootstrap’’ [2] is coined
for random resampling of experimental data, usually with
the aim to estimate confidence intervals (‘‘error bars’’).
Theoretically different, but sometimes technically similar
applications of the resampling approaches have been de-
veloped in the field of hypothesis testing. The latter has
entered physics and nonlinear dynamics with the question
of detection of chaotic dynamics in experimental data [3].
With the aim to prove that nonlinearity (and possibly,
chaos) is present in analyzed data, ‘‘surrogate data’’ are
constructed which preserve ‘‘linear properties’’ of the an-
alyzed data but otherwise are realizations of a random pro-
cess. The standard approach [3] uses the fast Fourier trans-
form (FFT). Randomization of the phases of the complex
Fourier coefficients and the inverse FFT provides realiza-
tions of a Gaussian process reproducing the sample spec-
trum and autocorrelation function of the analyzed data.
Common preservation of spectra and amplitude distribu-
tions are solved by appropriate amplitude transformation
and iterative procedures [3]. Breakspear et al. [4] have in-
troduced surrogate data based on the wavelet transform [5].
The randomization is performed by one of the following
three ways of manipulating the wavelet coefficients within
each scale: (i) random permutation; (ii) cyclic rotation with
a random offset; and (iii) block resampling, i.e., random
permutation of blocks of the wavelet coefficients. Keylock
[6] combines both the techniques in the sense that the
wavelet coefficients within each scale undergo the iterative
amplitude-adjusted FFT randomization combined with cy-
clic rotation in order to align extrema in coefficient values.

Generally, all these approaches reproduce the ‘‘linear
properties’’ (the first and the second moments) of analyzed

data in combinations with some constraints. Possible non-
linear dependence between a signal sðtÞ and its history
sðt� �Þ is destroyed, as well as interactions among vari-
ous scales in a potentially hierarchical, multiscale process.
Multiscale processes that exhibit hierarchical information
flow or energy transfer from large to small scales, success-
fully described by using the multifractal concepts (see [7]
and references therein) have been observed in diverse fields
from turbulence to finance [8], through cardiovascular
physiology [9] or hydrology, meteorology, and climatology
[10]. Angelini et al. [11] express the need for resampling
techniques in evaluating data from atmospheric turbulence
and other hierarchical processes. They apply a sophisti-
cated block resampling of the wavelet coefficients; how-
ever, the multifractal properties of the tested data are only
partially reproduced in the resampled data [11]. The
‘‘twin’’ surrogates [12] reproduce nonlinear dependence
in trajectories, using the recurrence properties of dynami-
cal systems evolving on or near attracting sets; however,
they are not suitable for randomization of multiscale pro-
cesses violating the recurrence condition.
In this Letter we propose a method for random resam-

pling of time series frommultifractal processes in the sense
that the resampled data replicate the multifractal properties
of the original (input) data. The method reproduces the
interactions among scales, so that multifractal spectra as
well as nonlinear dependence structures are preserved. The
proposed construction of such, let us call them multifractal
surrogate data, is based on the idea of synthesis of multi-
fractal signals using an orthonormal wavelet basis pro-
posed by Arneodo et al. [7].
Let us consider a set f j;kg of periodic wavelets that form

an orthonormal basis of L2ð½0; L�Þ. Thus any function f 2
L2ð½0; L�Þ can be written as

fðxÞ ¼ Xþ1

j¼0

X2j�1

k¼0

cj;k j;kðxÞ; (1)

where cj;k¼h j;kjfi¼
R
L j;kðxÞfðxÞdx,  j;k¼

2j=2 ð2�jx�kÞ. To construct a self-similar process whose
properties are defined multiplicatively from coarse to fine
scales, Arneodo et al. [7] propose to define a cascade using

PRL 101, 134101 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

26 SEPTEMBER 2008

0031-9007=08=101(13)=134101(4) 134101-1 � 2008 The American Physical Society
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS

I(φ1(t);A2(t + τ)|A2(t),A2(t − η), . . . ,A2(t −mη))

series length 32768
forward lags τ = 1− 750 days
backward condition lags η = 1/4 of the slow period
Gaussian process estimator
conditioning dimension: stable results from 3
raw data include annual cycle
seasonal mean and variance removed before surrogate
randomization
seasonal mean and variance added back to surrogate
realizations
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS
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CAUSAL PHASE –> AMPLITUDE INTERACTIONS
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EFFECT PHASE –> AMPLITUDE COUPLING

HOW TO QUANTIFY THE EFFECT
OF PHASE –> AMPLITUDE COUPLING ?
EXTRACT THE CYCLE WITH PERIOD
AROUND 8 YEARS
EXTRACT ITS PHASE
DIVIDE THE PHASE INTO 8 BINS
COMPUTE CONDITIONAL TEMPERATURE MEANS
< T |φ ∈ (φ1, φ2) >
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SSA-extracted "7–8 yr cycle"
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EFFECT PHASE –> AMPLITUDE COUPLING
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CONCLUSION
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