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ABSTRACT. We show that the existence of a homeomorphism between wg
and w7 entails the existence of a non-trivial autohomeomorphism of wg. This
answers Problem 441 in [7].

We also discuss the joint consistency of various consequences of w( and wj
being homeomorphic.

INTRODUCTION

The Katowice problem, posed by Marian Turzanski, is about Cech-Stone remain-
ders of discrete spaces. Let k and A be two infinite cardinals, endowed with the
discrete topology. The Katowice problem asks

If the remainders k* and A* are homeomorphic must the cardinals
and A be equal?

Since the weight of k* is equal to 2% it is immediate that the Generalized Con-
tinuum Hypothesis implies a yes answer. In joint work Balcar and Frankiewicz
established that the answer is actually positive without any additional assump-
tions, except possibly for the first two infinite cardinals. More precisely

Theorem ([1,4]). If (k,A) # (Ro,Ry) and k < X then the remainders k* and A*

are not homeomorphic.
This leaves open the following problem.
Question. Is it consistent that w§ and w] are homeomorphic?

Through the years various consequences of “w§ and w] are homeomorphic” were
collected in the hope that their conjunction would imply 0 = 1 and thus yield a full
positive answer to the Katowice problem.

In the present paper we add another consequence, namely that there is a non-
trivial autohomeomorphism of wj. Whether this is a consequence was asked by
Nyikos in [6], right after he mentioned the relatively easy fact that wj has a non-
trivial autohomeomorphism if w§ and wj are homeomorphic, see the end of Sec-
tion 1.

After some preliminaries in Section 1 we construct our non-trivial autohomeo-
morphism of wg in Section 2. In Section 3 we shall discuss the consequences alluded
to above and formulate a structural question related to them; Section 4 contains
some consistency results regarding that structural question.
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1. PRELIMINARIES

We deal with Cech-Stone compactifications of discrete spaces exclusively. Prob-
ably the most direct way of defining Sk, for a cardinal x with the discrete topology,
is as the space of ultrafilters of the Boolean algebra P(k), as explained in [5] for
example.

The remainder Bk \ k is denoted k* and we extend the notation A* to denote
cl AN k* for all subsets of k. It is well known that {A* : A C &} is exactly the
family of clopen subsets of x*.

All relations between sets of the form A* translate back to the original sets by
adding the modifier “modulo finite sets”. Thus, A* = 0 iff A is finite, A* C B* iff
A\ B is finite and so on.

This means that we can also look at our question as an algebraic problem:

Question. Is it consistent that the Boolean algebras P(wp)/fin and P(wy)/fin are
isomorphic?

Here fin denotes the ideal of finite sets. Indeed, the algebraically inclined reader
can interpret A* as the equivalence class of A in the quotient algebra and read the
proof in Section 2 below as establishing that there is a non-trivial automorphism
of the Boolean algebra P(wo)/fin.

1.1. Auto(homeo)morphisms. It is straightforward to define autohomeomor-
phisms of spaces of the form x*: take a bijection o : Kk — k and let it act in
the obvious way on the set of ultrafilters to get an autohomeomorphism of Sk that
leaves k* invariant. In fact, if we want to induce a map on k* it suffices to take a
bijection between cofinite subsets of k.

For example the simple shift s : n+— n+ 1 on wy determines an autohomeomor-
phism s* of wg. We shall call an autohomeomorphism of £* trivial if it is induced
in the above way, otherwise we shall call it non-trivial.

A non-trivial autohomeomorphism for wi. To give the flavour of the arguments
in the next section we prove that the autohomeomorphism s* of wg, introduced
above, has no non-trivial invariant clopen sets. Indeed assume A C wy is such that
s*[A*] = A*; translated back to wp this means that the symmetric difference of s[A]
and A is finite. Now if & belongs to the symmetric difference then either k € A\ s[A4]
and so k —1 ¢ Aor k € s|[A]\ A and so k — 1 does belong to A. Conversely, if
k is such that {k,k 4+ 1} N A consists of one point then that point belongs to the
symmetric difference of A and s[A4]

Now let K € wg be so large that the symmetric difference is contained in K.
It follows that for all & > K the intersection {k,k + 1} N A consists of zero or
two points. Now consider {K, K + 1} N A; if it is empty then, by induction, so is
{k,k+1} N Afor all k > K, and we conclude that A is finite and A* = (). The
opposite case, when {K, K +1} C A, leads to {k : k > K} C A and hence A* = w§.

It is an elementary fact about w; that for every subset A of w; and every map
f + A — w; there are uncountably many o < wp such that f[ANa] C «; in
particular, if f is a bijection between cofinite sets A and B one has f[ANa] = BN«
for arbitrarily large o. This then implies that trivial autohomeomorphisms of wj
have many non-trivial clopen invariant sets.

And so, if w§ and wi are homeomorphic then w] must have a non-trivial auto-
homeomorphism.

2. A NON-TRIVIAL AUTO(HOMEO)MORPHISM

In this section we prove our main result. We let v : w§ — w] be a homeomor-
phism and use it to construct a non-trivial autohomeomorphism of wg.
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We consider the discrete space of cardinality ¥; in the guise of Z x wy. A natural
bijection of this set to itself is the shift to the right, defined by o(n, ) = (n+1, «).
The restriction, o*, of its Cech-Stone extension, So, to (Z x w;)* is an autohome-
omorphism. We prove that p = v~ 0 0* o v is a non-trivial autohomeomorphism
of wg.

To this end we assume there is a bijection g : A — B between cofinite sets that
induces p and establish a contradiction.

2.1. Properties of ¢* and (Z x w1)*. We define three types of sets that will be
useful in the proof: vertical lines V,, = {n} x wi, horizontal lines H, = Z x {a}
and end sets F, = Z X [o,w1).

These have the following properties.

Claim 2.1.1. o*[V,7] = V5| for all n. O

Claim 2.1.2. {H} : o < w1} is a mazimal disjoint family of o*-invariant clopen
sets.

Proof. It is clear that o*[H] = H for all a.

To establish maximality of the family let C' C Z x w; be infinite and such that
CNH, =*0 for all o; then A = {a: CN H, # 0} is infinite.

For each a € A let no = max{n : (n,a) € C}; then {(no+1,a) : @ € A} is an
infinite subset of o[C] \ C, and hence o*[C*] # C*. O

Claim 2.1.3. If C C Z x wy is such that HZ C C* for uncountably many o then
there are a subset S of Vo such that S* N EX: #£ 0 for all a and (¢*)"[S*] C C* for
all but finitely many n in Z.

Proof. For each a such that HY C C* let F,, be the finite set {n : (n,a) ¢ C}.
There are a fixed finite set F' and an uncountable subset A of wy such that F, = F
for all « € A; S = {0} x A is as required. O

2.2. Translation to wy and w§. We choose infinite subsets v, (for n € Z), and h,,
and e, (for @ € wy) such that for all n and o we have v} =y [V¥], b, =y [H],
and e, =y [EX].

Thus we obtain an almost disjoint family {v, : n € Z} U {hy : @ € wy} with
properties analogous to those of the family {V,, : n € Z}U{H, : & € w;}, these are

Claim 2.2.1. g[v,] =* vy41 for all n. O

Claim 2.2.2. {h} : a < w1} is a mazimal disjoint family of g*-invariant clopen
sets. ([

Claim 2.2.3. If ¢ is infinite and ho C* ¢ for uncountably many o then there is a
subset s of vg such that s N ey is infinite for all o and such that g"[s] C* ¢ for all
but finitely many n in 7Z. O

2.3. Orbits of g. By defining finitely many extra values we can assume that one
of A and B is equal to w and, upon replacing ¢ by its inverse, we may as well
assume that A = w.

For k € w we let I, = {n € Z: g"(k) is defined} and Oy = {¢g"(k) : n € I;;} (the
orbit of k).

Claim 2.3.1. Fach h, splits only finitely many orbits.

Proof. If h, splits O then there is an n € I such that ¢"(k) € h, but (at
least) one of g"*1(k) and g"~1(k) is not in h,. So either g"*1(k) € g[ha] \ ho or
9" (k) € ha \ g[hal.



4 CHODOUNSKY, DOW, HART, AND DE VRIES

It follows that each orbit split by h, meets the symmetric difference of g[hs]
and h,; as the latter set is finite and orbits are disjoint only finitely many orbits
can intersect it. O

We divide w into two sets: F', the union of all finite g-orbits, and G, the union
of all infinite g-orbits.

Claim 2.3.2. If Oy is infinite then there are at most two as for which Ok N he, is
infinite.

Proof. First we let k € w\ B; in this case I = w. The set O is g*-invariant, hence
Op N hy, is infinite for some «. In fact: Op C* h, (and so « is unique); for let
J={n:g"(k) € ho and g"T (k) ¢ ha}, then {g"T1(k) : n € J} C g[ha] \ ha so
that J is finite.

It follows that the set X = (J{Ok : k € w\ B} is, save for a finite set, covered
by finitely many of the hg.

Next let k£ € w\ X; in this case Iy = Z and both sets {¢g"(k) : n < 0}*
and {g"(k) : n > 0}* are g*-invariant. The argument above applied to both
sets yields ay and ag (possibly identical) such that {g™(k) : n < 0} C* h,, and
{g"(k) :n =20} C* hy,. O

The following claim is the last step towards our final contradiction.
Claim 2.3.3. For all but countably many o we have hy, C* F.

Proof. By Claim 2.3.2 the set D of those « for which h, meets an infinite orbit in
an infinite set is countable: each such orbit meets at most two h,s and there are
only countably many orbits of course.

If « ¢ D then h,, meets every infinite orbit in a finite set and it splits only finitely
many of these, which means that it intersects only finitely many infinite orbits, and
hence that it meets G in a finite set. O

2.4. The final contradiction. We now apply Claim 2.2.3 to F'. It follows that
there is an infinite subset s of vy such that ¢™[s] C* F for all but finitely many n.
In fact, as F' is g-invariant one ng suffices: we can then first assume that g"°[s] C F'
(drop finitely many points from s) and then use g-invariance of F' to deduce that
g"[s] C F for all n.

Let E = e, Ok; as a union of orbits this set is g-invariant. There must

therefore be an « such that E'Nh,, is infinite. Now there are infinitely many k € £
such that h, intersects Og; by Claim 2.3.1 h, must contain all but finitely many of
these. This means that Oy C h, for infinitely many k& € s and hence that h, N vy
is infinite, which is a contradiction because h, and vy were assumed to be almost
disjoint.
2.5. An alternative contradiction. For each o the set H splits into two mini-
mal o*-invariant clopen sets, to wit {(n,a) : n < 0}* and {(n,a) : n > 0}* (apply
the argument in subsection 1.1). Therefore the same is true for each h, with respect
to p. However, with the notation as above we find uncountably many p-invariant
clopen subsets of h},, for every infinite subset ¢ of s we can take ({J,c, O)*

3. A QUESTION

Our result does not settle the Katowice problem but it may point toward a final
solution. We list the known consequences of the existence of a homeomorphism
between w( and wy.

(1) 2% = 2%
(2) o=1
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(3) there is a strong-Q-sequence
(4) there is a strictly increasing wq-sequence O of clopen sets in wg such that
JO is dense and w§ \ |J O contains no P-points

A strong-Q-sequence is a sequence (A, : a € wi) of infinite subsets of w with
the property that for every choice (x, : o € wy) of subsets (z, C A,) there is a
single subset x of w such that z, =* A, Na for all a. In [8] Steprans showed the
consistency of the existence of strong-Q-sequences with ZFC.

Not only is each of these consequences consistent with ZFC but in [2] Chodounsky
provides a model where these consequences hold simultaneously.

The three structural consequences can all be obtained using the same sets that
we employed in the construction of the non-trivial autohomeomorphism. We use
the sets v,, to make w resemble Z x w: first make them pairwise disjoint and then
identify v, with {n} x w via some bijection between w and Z X w.

Our consequences are now obtained as follows

(2) For every o < wy define f, : Z = w by fo(m) = min{n : (m,n) € ey}; the
family {fq : @ < w1} witnesses 0 = Ny: for every f : Z — w there is an «
such that {n: f(n) > fo(n)} is finite.

(3) The family {hy : @ € w1} is a strong-Q-sequence: assume a subset z,
of hy is given for all «; then there is a single subset x of w such that
x* N hE = xf for all a. To see this take X, C H, such that X* = ~v[z%]
and put X = J, Xo then X N H, = X, and hence v [X*] N A}, = z}, for
all a.

(4) Let b, be the complement of e, and let B, be the complement of E,. Then
(b + @ < wy) is the required sequence: in wj the complement of |J, B
consists of the uniform ultrafilters on wi; none of these is a P-point.

To this list we can now add the existence of a non-trivial auto(homeo)morphism p

and a disjoint family {v, : n € Z} of infinite subsets of wy such that

) {on:n €Z}U{hy: @ <wi} is almost disjoint,

) ploy] = vy for all n,

) {h% :a <wi}is a maximal disjoint family of p-invariant sets, and

8) for each a the sets (ha N, vn)" and (ha NUU,,50 vn)* are minimal clopen
p-invariant sets.

(5
(6
(7
(

Since the family {h, : @ < w1} is a strong-Q-sequence one can find for any (un-
countable) subset A of wy an infinite set X4 such that h, C* X4 if & € A and
ha N X4 =*0if a ¢ A.

Our proof shows that p is in fact not trivial on every such set X 4 whenever A is
uncountable.

Remark 3.1. Consequence (1) above is the equality 2% = 2%1; it does not specify
the common value any further. We can actually assume, without loss of generality,
that 2% = 2% = R,. Indeed, one can collapse 2% to Ry by adding a Cohen
subset of wq; this forcing adds no new subsets of wy of cardinality Ny or less, so any
isomorphism between P(wo)/fin and P(w1)/fin will survive.

Remark 3.2. Tt is straightforward to show that the completions of P(wq)/fin and
P(w1)/fin are isomorphic, e.g., by taking maximal almost families of countable sets
in both P(wp) and P(wy) of cardinality c¢. These represent maximal antichains in the
completions consisting of mutually isomorphic elements and a global isomorphism
will be the result of combining the local isomorphisms. This argument works for all
cardinals  that satisfy k™0 = ¢, see [2, Corollary 1.2.7]. Thus, it will most likely
be the incompleteness properties of the algebras that decide the outcome of the
Katowice problem.
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4. SOME CONSISTENCY

To see what is possible consistency-wise we indicate how some of the features of
the edifice that we erected, based on the assumption that wj§ and wj are homeo-
morphic, can occur simultaneously. For this we consider the ideal Z generated by
the finite sets together with the sets b, (the complements of the sets e, ). This ideal
satisfies the following properties:

(1) 7 is non-meager,

(2) 7 intersects every P-point,

(3) T is generated by the increasing tower {b, : @ < w;}, and
(4) the differences by41 \ bo form a strong-Q-sequence.

We have already established properties (2), (3) and (4).

We are left with property (1); that Z must be non-meager was already known to
B. Balcar and P. Simon.

We recall that a family of subsets of w is said to be meager if, upon identifying
sets with their characteristic functions, it is meager in the product space 2.

Lemma 4.1. 7 s not meager.

Proof. We assume 7 is meager and use a countable cover by closed nowhere dense
sets to construct a sequence (F,, : n € w) of pairwise disjoint finite sets such that
for every infinite set X the set F'x = (J,,c x Fn does not belong to Z — this means
that y[F%] is associated to an uncountable subset Gx of Z x wy.

Fix a family {X; : s € <¥2} of infinite subsets of w such that X; O X;, and
hence Gx, D* Gx,, whenever s C ¢, and XsN X; = 0, and hence Gx, NGx, =* 0,
whenever s and ¢ are incompatible. Using this we can fix a € w; such that all
exceptions in the previous sentence occur in Z X a.

Therefore the family {Gx, N E, : s € <“2} satisfies the relations above without
the modifier ‘modulo finite sets’. This implies that if n € Z and 8 > « then there
is at most one branch y, g in the binary tree <“2 such that (n,3) € Gx, for all
5 € Yn,B-

Now, since 2% = 2% there is a branch, y, different from all Yn,3- We can take
an infinite set X such that X C* X for all s € y. This means of course that Gx is
uncountable and that Gx C* Gx, for all s € y and hence that there is 5 > a such
that Gx \ Gx, C Z x 8 for all s. However, if (n,v) € Gx and v > 3 then we
should have both (n,v) € (¢, Gx, by the above and (n,7v) ¢ (,c, Gx, because

Y F Yn,ye O

The methods from [2] and [3] can be used to establish the consistency of » = ¥y
with the existence of an ideal with the properties (1) through (4) of Z — let us call
such an ideal countable-like. We have the following result, which is Theorem 4.5.1
from [2].

Theorem 4.2. It is consistent with ZFC that 0 = Ny and there is countable-like
ideal T on w.

Proof. We start with a model of ZFC+ GCH and take an increasing tower 7 = {7, :
a € w1} in P(w) that generates a non-meager ideal and let A denote the almost
disjoint family of differences {To4+1 \ T : @ € w1} — we write Ay = Toy1 \ Ta-
Because of the GCH we can arrange that {w \ T, : @ € w1} generates a P-point,
which more than suffices for our purposes.

We set up an iterated forcing construction, with countable supports, of proper
“w-bounding partial orders that will produce a model in which o = R; and the
ideal Z generated by 7T is countable-like. By the “w-bounding property we get
0 = N; and the non-meagerness of Z for free.
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To turn A into a strong-Q-sequence we use guided Grigorieff forcing, as in [3]:
given a choice F' = (F, : « € wy), where each F,, is a subset of A,, we let Gr(T, F)
be the partial order whose elements are functions of the form p : T, — 2, with
the property that p~ (1) N Ag =* Fp for all 8 < «. The ordering is by extension:
p < q if p O ¢g. This partial order is proper and “w-bounding and if G is generic
on Gr(7T, F) then X = (|JG)* (1) is such that XNA, =* F, for all @. As indicated
in [3], by appropriate bookkeeping one can set up an iteration that turns A into a
strong-Q-sequence.

One can interleave this iteration with one that destroys all P-points; this estab-
lishes property (2) of countable-like ideals in a particularly strong way. For every
ideal Z that is dual to a non-meager P-filter one considers the ‘normal’ Grigorieff
partial order Gr(Z) associated to Z, which consists of functions with domain in 7
and {0, 1} as codomain. The power Gr(Z)“ and proper and “w-bounding and forc-
ing with it creates countably many sets that prevent the filter dual to Z from being
extended to a P-point, even in further extensions by proper “w-bounding partial
orders.

All bookkeeping can be arranged so that all potential choices for A and all
potential non-meager P-filters can be dealt with. (I

We end on a cautionary note. Though the result above raises the hope of build-
ing a model in which one has a structure akin to that in Section 3, the construction
has the tendency of going completely in the wrong direction as regards autohome-
omorphisms of wj. As explained in Chapter 5 of [2], if one has an autohomeo-
morphism ¢ that is not trivial on any element of the filter dual to Z then the
generic filter on Gr(Z) destroys ¢ in the following sense: there is no possible value
for p(X*), where X = (|JG)*(1). The reason is that this value should satisfy
e(pT(1)*) € @(X*) and ¢(p*(0)*) N(X*) = 0 for all p € G and a density
argument shows that no such set exists in VI[G].

Thus, if things go really wrong one ends up with a model in which for every
non-meager P-filter F and every autohomeomorphism there is a member of F on
which ¢ must be trivial. This would be in contradiction with the last sentence just
before Remark 3.1; moreover, Theorem 5.3.12 in [2] shows that with some extra
partial orders this can actually be made to happen.
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