INSTITUTE of MATHEMATICS # The Katowice problem and autohomeomorphisms of ω_0^* David Chodounský Alan Dow Klaas Pieter Hart Harm de Vries > Preprint No. 44-2015 PRAHA 2015 ## THE KATOWICE PROBLEM AND AUTOHOMEOMORPHISMS OF ω_0^* DAVID CHODOUNSK݆, ALAN DOW‡, KLAAS PIETER HART, AND HARM DE VRIES The other authors dedicate this paper to Alan, who doesn't look a year over 59 ABSTRACT. We show that the existence of a homeomorphism between ω_0^* and ω_1^* entails the existence of a non-trivial autohomeomorphism of ω_0^* . This answers Problem 441 in [7]. We also discuss the joint consistency of various consequences of ω_0^* and ω_1^* being homeomorphic. #### Introduction The Katowice problem, posed by Marian Turzański, is about Čech-Stone remainders of discrete spaces. Let κ and λ be two infinite cardinals, endowed with the discrete topology. The Katowice problem asks If the remainders κ^* and λ^* are homeomorphic must the cardinals κ and λ be equal? Since the weight of κ^* is equal to 2^{κ} it is immediate that the Generalized Continuum Hypothesis implies a yes answer. In joint work Balcar and Frankiewicz established that the answer is actually positive without any additional assumptions, except possibly for the first two infinite cardinals. More precisely **Theorem** ([1,4]). If $\langle \kappa, \lambda \rangle \neq \langle \aleph_0, \aleph_1 \rangle$ and $\kappa < \lambda$ then the remainders κ^* and λ^* are not homeomorphic. This leaves open the following problem. Question. Is it consistent that ω_0^* and ω_1^* are homeomorphic? Through the years various consequences of " ω_0^* and ω_1^* are homeomorphic" were collected in the hope that their conjunction would imply 0 = 1 and thus yield a full positive answer to the Katowice problem. In the present paper we add another consequence, namely that there is a non-trivial autohomeomorphism of ω_0^* . Whether this is a consequence was asked by Nyikos in [6], right after he mentioned the relatively easy fact that ω_1^* has a non-trivial autohomeomorphism if ω_0^* and ω_1^* are homeomorphic, see the end of Section 1. After some preliminaries in Section 1 we construct our non-trivial autohomeomorphism of ω_0^* in Section 2. In Section 3 we shall discuss the consequences alluded to above and formulate a structural question related to them; Section 4 contains some consistency results regarding that structural question. Date: Thursday 06-08-2015 at 14:21:29 (cest). ¹⁹⁹¹ Mathematics Subject Classification. Primary: 54D40. Secondary: 03E05, 03E35, 06E05, 06E15. 54A35. 54D80. Key words and phrases. Katowice problem, homeomorphism, non-trivial autohomeomorphism, Čech-Stone remainder, ω_0^* , ω_1^* , isomorphism, non-trivial automorphism, quotient algebra, $\mathcal{P}(\omega_0)/fin$, $\mathcal{P}(\omega_1)/fin$. [†]Research of this author was supported by the GACR project I 1921-N25 and RVO: 67985840. ‡Research of this author was supported by NSF grant No. NSF-DMS-0901168. #### 1. Preliminaries We deal with Čech-Stone compactifications of discrete spaces exclusively. Probably the most direct way of defining $\beta \kappa$, for a cardinal κ with the discrete topology, is as the space of ultrafilters of the Boolean algebra $\mathcal{P}(\kappa)$, as explained in [5] for example. The remainder $\beta \kappa \setminus \kappa$ is denoted κ^* and we extend the notation A^* to denote $\operatorname{cl} A \cap \kappa^*$ for all subsets of κ . It is well known that $\{A^* : A \subseteq \kappa\}$ is exactly the family of clopen subsets of κ^* . All relations between sets of the form A^* translate back to the original sets by adding the modifier "modulo finite sets". Thus, $A^* = \emptyset$ iff A is finite, $A^* \subseteq B^*$ iff $A \setminus B$ is finite and so on. This means that we can also look at our question as an algebraic problem: Question. Is it consistent that the Boolean algebras $\mathcal{P}(\omega_0)/fin$ and $\mathcal{P}(\omega_1)/fin$ are isomorphic? Here fin denotes the ideal of finite sets. Indeed, the algebraically inclined reader can interpret A^* as the equivalence class of A in the quotient algebra and read the proof in Section 2 below as establishing that there is a non-trivial automorphism of the Boolean algebra $\mathcal{P}(\omega_0)/fin$. 1.1. Auto(homeo)morphisms. It is straightforward to define autohomeomorphisms of spaces of the form κ^* : take a bijection $\sigma: \kappa \to \kappa$ and let it act in the obvious way on the set of ultrafilters to get an autohomeomorphism of $\beta \kappa$ that leaves κ^* invariant. In fact, if we want to induce a map on κ^* it suffices to take a bijection between cofinite subsets of κ . For example the simple shift $s: n \mapsto n+1$ on ω_0 determines an autohomeomorphism s^* of ω_0^* . We shall call an autohomeomorphism of κ^* trivial if it is induced in the above way, otherwise we shall call it non-trivial. A non-trivial autohomeomorphism for ω_1^* . To give the flavour of the arguments in the next section we prove that the autohomeomorphism s^* of ω_0^* , introduced above, has no non-trivial invariant clopen sets. Indeed assume $A \subseteq \omega_0$ is such that $s^*[A^*] = A^*$; translated back to ω_0 this means that the symmetric difference of s[A] and A is finite. Now if k belongs to the symmetric difference then either $k \in A \setminus s[A]$ and so $k-1 \notin A$ or $k \in s[A] \setminus A$ and so k-1 does belong to A. Conversely, if k is such that $\{k, k+1\} \cap A$ consists of one point then that point belongs to the symmetric difference of A and s[A] Now let $K \in \omega_0$ be so large that the symmetric difference is contained in K. It follows that for all $k \geq K$ the intersection $\{k, k+1\} \cap A$ consists of zero or two points. Now consider $\{K, K+1\} \cap A$; if it is empty then, by induction, so is $\{k, k+1\} \cap A$ for all $k \geq K$, and we conclude that A is finite and $A^* = \emptyset$. The opposite case, when $\{K, K+1\} \subseteq A$, leads to $\{k: k \geq K\} \subseteq A$ and hence $A^* = \omega_0^*$. It is an elementary fact about ω_1 that for every subset A of ω_1 and every map $f:A\to\omega_1$ there are uncountably many $\alpha<\omega_1$ such that $f[A\cap\alpha]\subseteq\alpha$; in particular, if f is a bijection between cofinite sets A and B one has $f[A\cap\alpha]=B\cap\alpha$ for arbitrarily large α . This then implies that trivial autohomeomorphisms of ω_1^* have many non-trivial clopen invariant sets. And so, if ω_0^* and ω_1^* are homeomorphic then ω_1^* must have a non-trivial auto-homeomorphism. #### 2. A non-trivial auto(homeo)morphism In this section we prove our main result. We let $\gamma: \omega_0^* \to \omega_1^*$ be a homeomorphism and use it to construct a non-trivial autohomeomorphism of ω_0^* . We consider the discrete space of cardinality \aleph_1 in the guise of $\mathbb{Z} \times \omega_1$. A natural bijection of this set to itself is the shift to the right, defined by $\sigma(n,\alpha) = \langle n+1,\alpha \rangle$. The restriction, σ^* , of its Čech-Stone extension, $\beta\sigma$, to $(\mathbb{Z} \times \omega_1)^*$ is an autohomeomorphism. We prove that $\rho = \gamma^{-1} \circ \sigma^* \circ \gamma$ is a non-trivial autohomeomorphism of ω_0^* . To this end we assume there is a bijection $g:A\to B$ between cofinite sets that induces ρ and establish a contradiction. 2.1. **Properties of** σ^* and $(\mathbb{Z} \times \omega_1)^*$. We define three types of sets that will be useful in the proof: vertical lines $V_n = \{n\} \times \omega_1$, horizontal lines $H_\alpha = \mathbb{Z} \times \{\alpha\}$ and end sets $E_\alpha = \mathbb{Z} \times [\alpha, \omega_1)$. These have the following properties. Claim 2.1.1. $$\sigma^*[V_n^*] = V_{n+1}^*$$ for all n . Claim 2.1.2. $\{H_{\alpha}^* : \alpha < \omega_1\}$ is a maximal disjoint family of σ^* -invariant clopen sets. *Proof.* It is clear that $\sigma^*[H_\alpha^*] = H_\alpha^*$ for all α . To establish maximality of the family let $C \subseteq \mathbb{Z} \times \omega_1$ be infinite and such that $C \cap H_{\alpha} =^* \emptyset$ for all α ; then $A = \{\alpha : C \cap H_{\alpha} \neq \emptyset\}$ is infinite. For each $\alpha \in A$ let $n_{\alpha} = \max\{n : \langle n, \alpha \rangle \in C\}$; then $\{\langle n_{\alpha} + 1, \alpha \rangle : \alpha \in A\}$ is an infinite subset of $\sigma[C] \setminus C$, and hence $\sigma^*[C^*] \neq C^*$. Claim 2.1.3. If $C \subseteq \mathbb{Z} \times \omega_1$ is such that $H^*_{\alpha} \subseteq C^*$ for uncountably many α then there are a subset S of V_0 such that $S^* \cap E^*_{\alpha} \neq \emptyset$ for all α and $(\sigma^*)^n[S^*] \subseteq C^*$ for all but finitely many n in \mathbb{Z} . *Proof.* For each α such that $H_{\alpha}^* \subseteq C^*$ let F_{α} be the finite set $\{n : \langle n, \alpha \rangle \notin C\}$. There are a fixed finite set F and an uncountable subset A of ω_1 such that $F_{\alpha} = F$ for all $\alpha \in A$; $S = \{0\} \times A$ is as required. 2.2. Translation to ω_0 and ω_0^* . We choose infinite subsets v_n (for $n \in \mathbb{Z}$), and h_{α} and e_{α} (for $\alpha \in \omega_1$) such that for all n and α we have $v_n^* = \gamma^{\leftarrow}[V_n^*]$, $h_{\alpha}^* = \gamma^{\leftarrow}[H_{\alpha}^*]$, and $e_{\alpha}^* = \gamma^{\leftarrow}[E_{\alpha}^*]$. Thus we obtain an almost disjoint family $\{v_n : n \in \mathbb{Z}\} \cup \{h_\alpha : \alpha \in \omega_1\}$ with properties analogous to those of the family $\{V_n : n \in \mathbb{Z}\} \cup \{H_\alpha : \alpha \in \omega_1\}$, these are Claim 2.2.1. $$g[v_n] = v_{n+1}$$ for all n . Claim 2.2.2. $\{h_{\alpha}^* : \alpha < \omega_1\}$ is a maximal disjoint family of g^* -invariant clopen sets Claim 2.2.3. If c is infinite and $h_{\alpha} \subseteq^* c$ for uncountably many α then there is a subset s of v_0 such that $s \cap e_{\alpha}$ is infinite for all α and such that $g^n[s] \subseteq^* c$ for all but finitely many n in \mathbb{Z} . 2.3. **Orbits of** g. By defining finitely many extra values we can assume that one of A and B is equal to ω and, upon replacing σ by its inverse, we may as well assume that $A = \omega$. For $k \in \omega$ we let $I_k = \{n \in \mathbb{Z} : g^n(k) \text{ is defined}\}$ and $O_k = \{g^n(k) : n \in I_k\}$ (the orbit of k). Claim 2.3.1. Each h_{α} splits only finitely many orbits. *Proof.* If h_{α} splits O_k then there is an $n \in I_k$ such that $g^n(k) \in h_{\alpha}$ but (at least) one of $g^{n+1}(k)$ and $g^{n-1}(k)$ is not in h_{α} . So either $g^{n+1}(k) \in g[h_{\alpha}] \setminus h_{\alpha}$ or $g^n(k) \in h_{\alpha} \setminus g[h_{\alpha}]$. It follows that each orbit split by h_{α} meets the symmetric difference of $g[h_{\alpha}]$ and h_{α} ; as the latter set is finite and orbits are disjoint only finitely many orbits can intersect it. We divide ω into two sets: F, the union of all finite g-orbits, and G, the union of all infinite g-orbits. **Claim 2.3.2.** If O_k is infinite then there are at most two αs for which $O_k \cap h_\alpha$ is infinite. *Proof.* First we let $k \in \omega \setminus B$; in this case $I_k = \omega$. The set O_k^* is g^* -invariant, hence $O_k \cap h_\alpha$ is infinite for some α . In fact: $O_k \subseteq^* h_\alpha$ (and so α is unique); for let $J = \{n : g^n(k) \in h_\alpha \text{ and } g^{n+1}(k) \notin h_\alpha\}$, then $\{g^{n+1}(k) : n \in J\} \subseteq g[h_\alpha] \setminus h_\alpha$ so that J is finite. It follows that the set $X = \bigcup \{O_k : k \in \omega \setminus B\}$ is, save for a finite set, covered by finitely many of the h_{α} . Next let $k \in \omega \setminus X$; in this case $I_k = \mathbb{Z}$ and both sets $\{g^n(k) : n < 0\}^*$ and $\{g^n(k) : n \geq 0\}^*$ are g^* -invariant. The argument above applied to both sets yields α_1 and α_2 (possibly identical) such that $\{g^n(k) : n < 0\} \subseteq h_{\alpha_1}$ and $\{g^n(k) : n \geq 0\} \subseteq h_{\alpha_2}$. The following claim is the last step towards our final contradiction. Claim 2.3.3. For all but countably many α we have $h_{\alpha} \subseteq^* F$. *Proof.* By Claim 2.3.2 the set D of those α for which h_{α} meets an infinite orbit in an infinite set is countable: each such orbit meets at most two h_{α} s and there are only countably many orbits of course. If $\alpha \notin D$ then h_{α} meets every infinite orbit in a finite set and it splits only finitely many of these, which means that it intersects only finitely many infinite orbits, and hence that it meets G in a finite set. - 2.4. The final contradiction. We now apply Claim 2.2.3 to F. It follows that there is an infinite subset s of v_0 such that $g^n[s] \subseteq^* F$ for all but finitely many n. In fact, as F is g-invariant one n_0 suffices: we can then first assume that $g^{n_0}[s] \subseteq F$ (drop finitely many points from s) and then use g-invariance of F to deduce that $g^n[s] \subseteq F$ for all n. - Let $E = \bigcup_{k \in s} O_k$; as a union of orbits this set is g-invariant. There must therefore be an α such that $E \cap h_{\alpha}$ is infinite. Now there are infinitely many $k \in E$ such that h_{α} intersects O_k ; by Claim 2.3.1 h_{α} must contain all but finitely many of these. This means that $O_k \subset h_{\alpha}$ for infinitely many $k \in s$ and hence that $h_{\alpha} \cap v_0$ is infinite, which is a contradiction because h_{α} and v_0 were assumed to be almost disjoint. - 2.5. An alternative contradiction. For each α the set H^*_{α} splits into two minimal σ^* -invariant clopen sets, to wit $\{\langle n,\alpha\rangle:n<0\}^*$ and $\{\langle n,\alpha\rangle:n\geqslant0\}^*$ (apply the argument in subsection 1.1). Therefore the same is true for each h^*_{α} with respect to ρ . However, with the notation as above we find uncountably many ρ -invariant clopen subsets of h^*_{α} , for every infinite subset t of s we can take $(\bigcup_{k\in t}O_k)^*$. ### 3. A QUESTION Our result does not settle the Katowice problem but it may point toward a final solution. We list the known consequences of the existence of a homeomorphism between ω_0^* and ω_1^* . - (1) $2^{\aleph_0} = 2^{\aleph_1}$ - (2) $\mathfrak{d} = \aleph_1$ - (3) there is a strong-Q-sequence - (4) there is a strictly increasing ω_1 -sequence \mathcal{O} of clopen sets in ω_0^* such that $\bigcup \mathcal{O}$ is dense and $\omega_0^* \setminus \bigcup \mathcal{O}$ contains no P-points A strong-Q-sequence is a sequence $\langle A_{\alpha} : \alpha \in \omega_1 \rangle$ of infinite subsets of ω with the property that for every choice $\langle x_{\alpha} : \alpha \in \omega_1 \rangle$ of subsets $(x_{\alpha} \subseteq A_{\alpha})$ there is a single subset x of ω such that $x_{\alpha} = A_{\alpha} \cap x$ for all α . In [8] Steprāns showed the consistency of the existence of strong-Q-sequences with ZFC. Not only is each of these consequences consistent with ZFC but in [2] Chodounský provides a model where these consequences hold simultaneously. The three structural consequences can all be obtained using the same sets that we employed in the construction of the non-trivial autohomeomorphism. We use the sets v_n to make ω resemble $\mathbb{Z} \times \omega$: first make them pairwise disjoint and then identify v_n with $\{n\} \times \omega$ via some bijection between ω and $\mathbb{Z} \times \omega$. Our consequences are now obtained as follows - (2) For every $\alpha < \omega_1$ define $f_\alpha : \mathbb{Z} \to \omega$ by $f_\alpha(m) = \min\{n : \langle m, n \rangle \in e_\alpha\}$; the family $\{f_\alpha : \alpha < \omega_1\}$ witnesses $\mathfrak{d} = \aleph_1$: for every $f : \mathbb{Z} \to \omega$ there is an α such that $\{n : f(n) \geqslant f_\alpha(n)\}$ is finite. - (3) The family $\{h_{\alpha}: \alpha \in \omega_1\}$ is a strong-Q-sequence: assume a subset x_{α} of h_{α} is given for all α ; then there is a single subset x of ω such that $x^* \cap h_{\alpha}^* = x_{\alpha}^*$ for all α . To see this take $X_{\alpha} \subseteq H_{\alpha}$ such that $X_{\alpha}^* = \gamma[x_{\alpha}^*]$ and put $X = \bigcup_{\alpha} X_{\alpha}$ then $X \cap H_{\alpha} = X_{\alpha}$ and hence $\gamma^{\leftarrow}[X^*] \cap h_{\alpha}^* = x_{\alpha}^*$ for all α . - (4) Let b_{α} be the complement of e_{α} and let B_{α} be the complement of E_{α} . Then $\langle b_{\alpha}^* : \alpha < \omega_1 \rangle$ is the required sequence: in ω_1^* the complement of $\bigcup_{\alpha} B_{\alpha}^*$ consists of the uniform ultrafilters on ω_1 ; none of these is a P-point. To this list we can now add the existence of a non-trivial auto(homeo)morphism ρ and a disjoint family $\{v_n : n \in \mathbb{Z}\}$ of infinite subsets of ω_0 such that - (5) $\{v_n : n \in \mathbb{Z}\} \cup \{h_\alpha : \alpha < \omega_1\}$ is almost disjoint, - (6) $\rho[v_n^*] = v_{n+1}^*$ for all n, - (7) $\{h_{\alpha}^* : \alpha < \omega_1\}$ is a maximal disjoint family of ρ -invariant sets, and - (8) for each α the sets $(h_{\alpha} \cap \bigcup_{n < 0} v_n)^*$ and $(h_{\alpha} \cap \bigcup_{n \ge 0} v_n)^*$ are minimal clopen ρ -invariant sets. Since the family $\{h_{\alpha}: \alpha < \omega_1\}$ is a strong-Q-sequence one can find for any (uncountable) subset A of ω_1 an infinite set X_A such that $h_{\alpha} \subseteq^* X_A$ if $\alpha \in A$ and $h_{\alpha} \cap X_A =^* \emptyset$ if $\alpha \notin A$. Our proof shows that ρ is in fact not trivial on every such set X_A whenever A is uncountable. Remark 3.1. Consequence (1) above is the equality $2^{\aleph_0} = 2^{\aleph_1}$; it does not specify the common value any further. We can actually assume, without loss of generality, that $2^{\aleph_0} = 2^{\aleph_1} = \aleph_2$. Indeed, one can collapse 2^{\aleph_1} to \aleph_2 by adding a Cohen subset of ω_2 ; this forcing adds no new subsets of ω_1 of cardinality \aleph_1 or less, so any isomorphism between $\mathcal{P}(\omega_0)/fin$ and $\mathcal{P}(\omega_1)/fin$ will survive. Remark 3.2. It is straightforward to show that the completions of $\mathcal{P}(\omega_0)/fin$ and $\mathcal{P}(\omega_1)/fin$ are isomorphic, e.g., by taking maximal almost families of countable sets in both $\mathcal{P}(\omega_0)$ and $\mathcal{P}(\omega_1)$ of cardinality \mathfrak{c} . These represent maximal antichains in the completions consisting of mutually isomorphic elements and a global isomorphism will be the result of combining the local isomorphisms. This argument works for all cardinals κ that satisfy $\kappa^{\aleph_0} = \mathfrak{c}$, see [2, Corollary 1.2.7]. Thus, it will most likely be the incompleteness properties of the algebras that decide the outcome of the Katowice problem. #### 4. Some consistency To see what is possible consistency-wise we indicate how some of the features of the edifice that we erected, based on the assumption that ω_0^* and ω_1^* are homeomorphic, can occur simultaneously. For this we consider the ideal \mathcal{I} generated by the finite sets together with the sets b_{α} (the complements of the sets e_{α}). This ideal satisfies the following properties: - (1) \mathcal{I} is non-meager, - (2) \mathcal{I} intersects every P-point, - (3) \mathcal{I} is generated by the increasing tower $\{b_{\alpha}: \alpha < \omega_1\}$, and - (4) the differences $b_{\alpha+1} \setminus b_{\alpha}$ form a strong-Q-sequence. We have already established properties (2), (3) and (4). We are left with property (1); that \mathcal{I} must be non-meager was already known to B. Balcar and P. Simon. We recall that a family of subsets of ω is said to be meager if, upon identifying sets with their characteristic functions, it is meager in the product space 2^{ω} . #### **Lemma 4.1.** \mathcal{I} is not meager. *Proof.* We assume \mathcal{I} is meager and use a countable cover by closed nowhere dense sets to construct a sequence $\langle F_n : n \in \omega \rangle$ of pairwise disjoint finite sets such that for every infinite set X the set $F_X = \bigcup_{n \in X} F_n$ does not belong to \mathcal{I} — this means that $\gamma[F_X^*]$ is associated to an uncountable subset G_X of $\mathbb{Z} \times \omega_1$. Fix a family $\{X_s: s \in {}^{<\omega}2\}$ of infinite subsets of ω such that $X_s \supseteq X_t$, and hence $G_{X_s} \supseteq^* G_{X_t}$, whenever $s \subseteq t$, and $X_s \cap X_t = \emptyset$, and hence $G_{X_s} \cap G_{X_t} =^* \emptyset$, whenever s and t are incompatible. Using this we can fix $\alpha \in \omega_1$ such that all exceptions in the previous sentence occur in $\mathbb{Z} \times \alpha$. Therefore the family $\{G_{X_s} \cap E_\alpha : s \in {}^{<\omega}2\}$ satisfies the relations above without the modifier 'modulo finite sets'. This implies that if $n \in \mathbb{Z}$ and $\beta \geqslant \alpha$ then there is at most one branch $y_{n,\beta}$ in the binary tree ${}^{<\omega}2$ such that $\langle n,\beta \rangle \in G_{X_s}$ for all $s \in y_{n,\beta}$. Now, since $2^{\aleph_0} = 2^{\aleph_1}$ there is a branch, y, different from all $y_{n,\beta}$. We can take an infinite set X such that $X \subseteq^* X_s$ for all $s \in y$. This means of course that G_X is uncountable and that $G_X \subseteq^* G_{X_s}$ for all $s \in y$ and hence that there is $\beta \geqslant \alpha$ such that $G_X \setminus G_{X_s} \subseteq \mathbb{Z} \times \beta$ for all s. However, if $\langle n, \gamma \rangle \in G_X$ and $\gamma \geqslant \beta$ then we should have both $\langle n, \gamma \rangle \in \bigcap_{s \in y} G_{X_s}$ by the above and $\langle n, \gamma \rangle \notin \bigcap_{s \in y} G_{X_s}$ because $y \neq y_{n,\gamma}$. The methods from [2] and [3] can be used to establish the consistency of $\mathfrak{d} = \aleph_1$ with the existence of an ideal with the properties (1) through (4) of \mathcal{I} — let us call such an ideal countable-like. We have the following result, which is Theorem 4.5.1 from [2]. **Theorem 4.2.** It is consistent with ZFC that $\mathfrak{d} = \aleph_1$ and there is countable-like ideal \mathcal{I} on ω . *Proof.* We start with a model of ZFC+GCH and take an increasing tower $\mathcal{T} = \{T_{\alpha} : \alpha \in \omega_1\}$ in $\mathcal{P}(\omega)$ that generates a non-meager ideal and let \mathcal{A} denote the almost disjoint family of differences $\{T_{\alpha+1} \setminus T_{\alpha} : \alpha \in \omega_1\}$ — we write $A_{\alpha} = T_{\alpha+1} \setminus T_{\alpha}$. Because of the GCH we can arrange that $\{\omega \setminus T_{\alpha} : \alpha \in \omega_1\}$ generates a P-point, which more than suffices for our purposes. We set up an iterated forcing construction, with countable supports, of proper ${}^{\omega}\omega$ -bounding partial orders that will produce a model in which $\mathfrak{d}=\aleph_1$ and the ideal $\mathcal I$ generated by $\mathcal T$ is countable-like. By the ${}^{\omega}\omega$ -bounding property we get $\mathfrak{d}=\aleph_1$ and the non-meagerness of $\mathcal I$ for free. To turn \mathcal{A} into a strong-Q-sequence we use guided Grigorieff forcing, as in [3]: given a choice $F = \langle F_{\alpha} : \alpha \in \omega_1 \rangle$, where each F_{α} is a subset of A_{α} , we let $\operatorname{Gr}(\mathcal{T}, F)$ be the partial order whose elements are functions of the form $p: T_{\alpha} \to 2$, with the property that $p^{\leftarrow}(1) \cap A_{\beta} =^* F_{\beta}$ for all $\beta < \alpha$. The ordering is by extension: $p \leqslant q$ if $p \supseteq q$. This partial order is proper and " ω -bounding and if G is generic on $\operatorname{Gr}(\mathcal{T}, F)$ then $X = (\bigcup G)^{\leftarrow}(1)$ is such that $X \cap A_{\alpha} =^* F_{\alpha}$ for all α . As indicated in [3], by appropriate bookkeeping one can set up an iteration that turns \mathcal{A} into a strong-Q-sequence. One can interleave this iteration with one that destroys all P-points; this establishes property (2) of countable-like ideals in a particularly strong way. For every ideal \mathcal{I} that is dual to a non-meager P-filter one considers the 'normal' Grigorieff partial order $Gr(\mathcal{I})$ associated to \mathcal{I} , which consists of functions with domain in \mathcal{I} and $\{0,1\}$ as codomain. The power $Gr(\mathcal{I})^{\omega}$ and proper and $^{\omega}\omega$ -bounding and forcing with it creates countably many sets that prevent the filter dual to \mathcal{I} from being extended to a P-point, even in further extensions by proper $^{\omega}\omega$ -bounding partial orders. All bookkeeping can be arranged so that all potential choices for A and all potential non-meager P-filters can be dealt with. We end on a cautionary note. Though the result above raises the hope of building a model in which one has a structure akin to that in Section 3, the construction has the tendency of going completely in the wrong direction as regards autohomeomorphisms of ω_0^* . As explained in Chapter 5 of [2], if one has an autohomeomorphism φ that is not trivial on any element of the filter dual to $\mathcal I$ then the generic filter on $\operatorname{Gr}(\mathcal I)$ destroys φ in the following sense: there is no possible value for $\varphi(X^*)$, where $X=(\bigcup G)^{\leftarrow}(1)$. The reason is that this value should satisfy $\varphi(p^{\leftarrow}(1)^*)\subseteq \varphi(X^*)$ and $\varphi(p^{\leftarrow}(0)^*)\cap \varphi(X^*)=\emptyset$ for all $p\in G$ and a density argument shows that no such set exists in V[G]. Thus, if things go really wrong one ends up with a model in which for every non-meager P-filter \mathcal{F} and every autohomeomorphism there is a member of \mathcal{F} on which φ must be trivial. This would be in contradiction with the last sentence just before Remark 3.1; moreover, Theorem 5.3.12 in [2] shows that with some extra partial orders this can actually be made to happen. #### REFERENCES - Bohuslav Balcar and Ryszard Frankiewicz, To distinguish topologically the spaces m*. II, Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 26 (1978), no. 6, 521–523 (English, with Russian summary). MR511955 (80b:54026) - [2] David Chodounský, On the Katowice problem, PhD thesis, Charles University, Prague, 2011. - [3] _____, Strong-Q-sequences and small $\mathfrak d$, Topology and its Applications **159** (2012), no. 13, 2942–2946, DOI 10.1016/j.topol.2012.05.012. MR2944766 - [4] Ryszard Frankiewicz, To distinguish topologically the space m*, Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 25 (1977), no. 9, 891–893 (English, with Russian summary). MR0461444 (57 #1429) - [5] Jan van Mill, An introduction to $\beta\omega$, Handbook of set-theoretic topology (Kenneth Kunen and Jerry E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 503–567. MR776630 (86f:54027) - [6] Peter J. Nyikos, Čech-Stone remainders of discrete spaces, Open problems in topology. II (Elliott Pearl, ed.), Elsevier B.V., Amsterdam, 2007, pp. 207–216. - [7] Elliott Pearl (ed.), Open problems in topology. II, Elsevier B.V., Amsterdam, 2007. MR2367385 (2008j:54001) - [8] Juris Steprāns, Strong-Q-sequences and variations on Martin's axiom, Canadian Journal of Mathematics 37 (1985), no. 4, 730–746, DOI 10.4153/CJM-1985-039-6. MR801424 (87c:03106) Institute of Mathematics, AS CR, Žitná 25, 115 67 Praha I, Czech Republic $E\text{-}mail\ address$: david.chodounsky@matfyz.cz Department of Mathematics, UNC-Charlotte, 9201 University City Blvd., Charlotte, NC 28223-0001 E-mail address: adow@uncc.edu URL : http://www.math.uncc.edu/~adow Faculty of Electrical Engineering, Mathematics and Computer Science, TU Delft, Postbus $5031,\,2600~{\rm GA}~{\rm Delft},$ the Netherlands $\begin{tabular}{ll} E-mail~address: $k.p.hart@tudelft.nl \\ $URL:$ $http://fa.its.tudelft.nl/~hart \\ \end{tabular}$ Haarlemmerstraat 146, 2312 GE $\,$ Leiden, the Netherlands $E\text{-}mail\ address{:}\ \mathtt{vries101@gmail.com}$