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Abstract

We investigate the pointwise asymptotic behavior of solutions to the stationary
Navier-Stokes equation in Rn (n ≥ 3). We show the existence of a unique solution
{u, p} such that |∇ju(x)| = O(|x|1−n−j) and |∇kp(x)| = O(|x|−n−k) (j, k = 0, 1, . . .)
as |x| → ∞, assuming the smallness of the external force and the rapid decay of its
derivatives. The solution {u, p} decays more rapidly than the Stokes fundamental
solution.

1 Introduction

We study decay properties of solutions to the stationary Navier-Stokes equation in Rn

with n ≥ 3:

(1.1)


−∆u+ u · ∇u+∇p = div F in Rn,

div u = 0 in Rn,

u(x)→ 0 as |x| → ∞.

Here u = (u1, · · · , un) and p denote, respectively, the unknown velocity and pressure
of a viscous incompressible fluid, while F = (Fij)

n
i,j=1 is a given tensor with div F =

(
∑n

i=1 ∂xiFij)
n

j=1 denoting the external force.

It is well known that for every F ∈ L2(Rn) there exists at least one weak solution u
to (1.1) with finite Dirichlet integral ([9, 3]). Decay properties of the weak solution in
[9, 3] are still open problems in spite of their importance in the study of, for instance,
uniqueness and stability. In this paper we are especially interested in the pointwise decay
at infinity of solutions to (1.1). Frehse-Růžička[2] proved, in the case n = 3, that (1.1)
possesses a weak solution u decaying like |x|−1+δ (0 < δ < 1) without restricting the size of
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the external force with compact support. Novotny-Padula[13] and Borchers-Miyakawa[1]
established the existence of a unique solution u such that

(1.2) |u(x)| = O(|x|2−n), |∇u(x)| = O(|x|1−n) as |x| → ∞,

assuming that both F and ∇F are small in an appropriate sense, see also [5]. The decay
rates (1.2) coincide with those of the Stokes fundamental solution and thus look natural.
In three-dimensional exterior problems, (1.2) are optimal decay rates in the sense that
solutions which decay as |x| → ∞ more rapidly than (1.2) exist only under a special
situation ([6, 1, 7]), however, this is not the case with the whole space problem (1.1).
Miyakawa[11] constructed a unique solution {u, p} of (1.1) satisfying

|∇ju(x)| = O(|x|1−n−j) (j = 0, 1, 2), |∇kp(x)| = O(|x|−n−k) (k = 0, 1)

as |x| → ∞, under stronger conditions on the smallness and decay of F and its derivatives
than [13, 1]. The solution in [11] decays more rapidly than the Stokes fundamental
solution, and it is not known whether its decay rate is optimal.

In this paper, we slightly extend the result of [11]. We shall show that if F is sufficiently
small in a sense and ∇jF decays rapidly at infinity for all j = 0, 1, . . . ,m (m ≥ 1), then
there exists a unique solution {u, p} of (1.1) such that

(1.3)
|∇ju(x)| = O(|x|1−n−j) (j = 0, 1, . . . ,m),

|∇kp(x)| = O(|x|−n−k) (k = 0, . . . ,m− 1),

as |x| → ∞. Our result can describe the decay rates of higher derivatives of the solution
and the case m ≥ 3 is not covered by [11]. It should be emphasized that in our result we
assume the smallness of only F , while, as far as the author checked, the size of ∇F as
well as F is restricted in the proof of [11, Theorem 1.1 (i)] although it is not mentioned
in the paper. Furthermore, we allow F and its derivatives to decay more slowly than [11],
see Remark 2.2 below.

The proof is based on the analysis of the representation formula of solutions via the
Stokes fundamental solution. The existence of a solution u decaying like |x|1−n can be
obtained in the same way as [11] and thus we mainly study the decay rates of its deriva-
tives. In order to obtain the decay property (1.3) without assuming the smallness of ∇jF
(j ≥ 1), we use the important property of the Stokes fundamental solution that its second
derivative is the Calderón-Zygmund kernel ([14]). With this property and basic estimates
for the fundamental solution in hand, we show slow decay estimates for derivatives of u
and then employ the bootstrap argument to get the desired decay property (1.3).

2 Main result

Before stating our result, we introduce some function spaces. In what follows, we adopt
the same symbols for vector and scalar function spaces as long as there is no confusion.
For 1 ≤ q ≤ ∞, we denote by Lq(Rn) the usual Lebesgue space with norm ‖ · ‖q. Let
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C∞0,σ(Rn) be the set of smooth solenoidal vector fields with compact support in Rn and

we define the homogeneous Sobolev space Ḣ1
0,σ(Rn) by the completion of C∞0,σ(Rn) in the

norm ‖∇ · ‖2. For µ > 0 we introduce the space Xµ defined by

Xµ := {u ∈ L∞(Rn); sup
x∈Rn

(|x|+ 1)µ|u(x)| <∞}

with norm
‖u‖Xµ := sup

x∈Rn
(|x|+ 1)µ|u(x)|.

It is easy to check that Xµ1 ⊂ Xµ2 if µ2 < µ1. Furthermore, for f ∈ Xµ3 and g ∈ Xµ4 we
have fg ∈ Xµ3+µ4 . We also need some notation for derivatives. Let us set Diu(x) := ∂xiu.
By α = (α1, . . . , αn) we denote a multiindex of order |α| = α1 + · · ·+ αn and Dαu(x) :=
Dα1

1 · · ·Dαn
n u.

Recall the Stokes fundamental solution E = (Eij)
n
i,j=1 and Q = (Qi)

n
i=1 with compo-

nents

Eij(x) =
1

2ωn

(
δij
n− 2

|x|2−n +
xixj
|x|n

)
, Qi(x) =

xi
ωn|x|n

.

Here ωn is the surface area of the unit sphere in Rn. We consider (1.1) in the form of the
integral equation

(2.1) u(x) =

∫
Rn
∇E(x− y)(F − u⊗ u)(y) dy,

where u ⊗ u = (uiuj)
n
i,j=1. Note that, under suitable decay conditions on u and F , a

solution u of (2.1) can be written as

u(x) =

∫
Rn
E(x− y)(div F − u · ∇u)(y) dy.

The associated pressure p, uniquely determined up to addition of constants, is given by

p(x) =

∫
Rn
Q(x− y) · (div F − u · ∇u)(y) dy.

The main result of this paper is stated in the following theorem.

Theorem 2.1. Let m be a positive integer and 0 < δ < 1. Suppose

(2.2) F ∈ Xn+δ and ∇jF ∈ Xn+j for all j = 1, . . . ,m.

If F is sufficiently small in Xn+δ, then (2.1) admits a solution u ∈ Xn−1 such that

(2.3) ∇ju ∈ Xn−1+j for all j = 1, . . . ,m,

and
∇m+1u ∈ L1,∞(Rn) ∩ Lq(Rn) for 1 < q <∞,

where L1,∞(Rn) is the weak-L1 space. The solution u is unique in the class of solutions
v ∈ Xn−1 with ∇v ∈ Xn to (2.1). Furthermore, the associated pressure p satisfies

(2.4) ∇kp ∈ Xn+k for all k = 0, . . . ,m− 1.
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Remark 2.1. The natural class of F seems to be the space Xn. However, the proof of
Theorem 2.1 does not work if we have only F ∈ Xn, since the case µ = n is not contained
in Lemma 3.1 below. We introduced the constant 0 < δ < 1 and assumed F ∈ Xn+δ so
that Lemma 3.1 is applicable and F is integrable in Rn.

Remark 2.2. Our classes of F and its derivatives in (2.2) are larger than those in [11].
Indeed, Miyakawa[11] assumed ∇jF ∈ X2n−2+j (j = 0, 1, 2) and we note that X2n−2 ⊂
Xn+δ and X2n−2+k ⊂ Xn+k (k = 1, 2).

Remark 2.3. The fast decay property of the solution in Theorem 2.1 enables us to apply
some uniqueness criteria such as [4, 10, 8, 12], and the uniqueness holds in larger classes of
solutions, see the proof of Theorem 2.1 below. (The results of [4, 10, 8, 12] are concerned
with the exterior problems, however, they are still valid for the whole space problem
(1.1).) In particular, as a consequence of Theorem 2.1 and [4, 10], we can deduce that if
F satisfies (2.2) and is sufficiently small in Xn+δ, then every weak solution u ∈ Ḣ1

0,σ(Rn)
with the energy inequality ‖∇u‖22 ≤ −

∫
Rn F · ∇u dx of (1.1) in the sense of [9, 3] satisfies

|∇ju(x)| = O(|x|1−n−j) as |x| → ∞ for all j = 0, 1, . . . ,m.

3 Proof of Theorem 2.1

We begin with the estimates of weakly singular integrals. The estimates below must be
more or less well-known, however, we give the proof for the reader’s convenience. In what
follows, we denote by C various constants and note, in particular, that all constants C
appearing in this paper are independent of x ∈ Rn.

Lemma 3.1. Let 0 < λ < n and µ > 0 with λ + µ > n. There exist constants C > 0
depending only on n, λ and µ such that∫

Rn

dy

|x− y|λ(|y|+ 1)µ
≤

{
C(|x|+ 1)n−λ−µ if 0 < µ < n,

C(|x|+ 1)−λ if µ > n.

Proof. We first consider the case 0 < µ < n. If |x| ≥ 1/5, by [4, II, Lemma 7.2] we have∫
Rn

dy

|x− y|λ(|y|+ 1)µ
≤ C|x|n−λ−µ ≤ 6λ+µ−nC(|x|+ 1)n−λ−µ.

For 0 ≤ |x| < 1/5, we write∫
Rn

dy

|x− y|λ(|y|+ 1)µ

=

∫
|x−y|< |x|+1

2

dy

|x− y|λ(|y|+ 1)µ
+

∫
|x−y|> |x|+1

2

dy

|x− y|λ(|y|+ 1)µ

=: I1 + I2.
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Since |x − y| < (|x| + 1)/2 implies (|x| − 1)/2 < |y| < (3|x| + 1)/2 and since λ < n, we
obtain

(3.1) I1 ≤
2µ

(|x|+ 1)µ

∫
|x−y|< |x|+1

2

dy

|x− y|λ
≤ C(|x|+ 1)n−λ−µ.

For 0 ≤ |x| < 1/5 and |x− y| > (|x|+ 1)/2 there holds

|x|+ |y| ≥ |x− y| > (|x|+ 1)/2 > 3|x|,

so that |y|/2 > |x| and

I2 ≤ 2λ
∫
|x−y|> |x|+1

2

dy

|y|λ(|y|+ 1)µ
≤ 2λ

∫
Rn

dy

|y|λ(|y|+ 1)µ
.

By the assumptions on λ and µ, the integral on the right-hand side converges. Thus

(3.2) I2 ≤ C ≤
(

6

5

)λ+µ−n
C(|x|+ 1)n−λ−µ.

The desired estimate for 0 ≤ |x| < 1/5 follows from (3.1) and (3.2).
Next, we assume µ > n. Since the estimate (3.1) for I1 is valid for all x ∈ Rn, we have

only to estimate I2. The assumption µ > n leads us to

I2 ≤
2λ

(|x|+ 1)λ

∫
|x−y|> |x|+1

2

dy

(|y|+ 1)µ

≤ 2λ

(|x|+ 1)λ

∫
Rn

dy

(|y|+ 1)µ

≤ C(|x|+ 1)−λ.

Therefore, we deduce∫
Rn

dy

|x− y|λ(|y|+ 1)µ
≤ C

{
(|x|+ 1)n−λ−µ + (|x|+ 1)−λ

}
≤ C(|x|+ 1)−λ.

The proof is complete.

In order to show the decay property (2.3) of a solution u ∈ Xn−1 to (2.1), we need
slow decay estimates for the derivatives. Following the argument due to Miyakawa [11,
Theorem 1.1 (iii)], we prove the slow decay property in the next lemma. The property of
the Stokes fundamental solution that ∇2E is the Calderón-Zygmund kernel ([14]) plays a
crucial role to get information on the class of ∇ju (j ≥ 1) without assuming the smallness
of ∇jF .

Lemma 3.2. Let m be a positive integer and 0 < δ < 1. Suppose F ∈ Xn+δ and
u ∈ Xn−1 is a solution of (2.1). If ∇jF ∈ Xn+δ for all j = 1, . . . ,m, then ∇ju ∈ Xn−1
for all j = 1, . . . ,m.
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Proof. We prove by induction on m. The case m = 1 follows from the argument below,
by letting m = 0 formally, and thus we omit the proof for m = 1. Assume, in addition
to ∇jF ∈ Xn+δ for all j = 1, . . . ,m, that ∇m+1F ∈ Xn+δ and ∇ju ∈ Xn−1 for all
j = 1, . . . ,m. We observe that ∇m+1u ∈ L∞(Rn). Let α be any multiindex of order
m + 1. Since m + 1 ≥ 2, there holds αi ≥ 1 for some 1 ≤ i ≤ n and, without loss of
generality, we may assume α1 ≥ 1. Put α̃ = (1, 0, . . . , 0) and we write

Dαu(x) =

∫
Rn
Dα̃∇E(x− y)Dα−α̃(F − u⊗ u)(y) dy.

Since ∇2E is the Calderón-Zygmund kernel and Dα−α̃(F − u⊗ u) ∈ Xn+δ, we see Dαu ∈
Lq(Rn) for all 1 < q < ∞. This implies u ⊗ Dαu ∈ Lr(Rn) for all 1 ≤ r < ∞. For
1 ≤ i ≤ n we also write

DiD
αu(x) =

∫
Rn
Di∇E(x− y)Dα(F − u⊗ u)(y) dy

and the same argument as above yields DiD
αu ∈ Lq(Rn) for all 1 < q <∞. The index i

and the multiindex α of order m+ 1 are arbitrary, and we thus deduce ∇m+1u,∇m+2u ∈
Lq(Rn) for all 1 < q < ∞. Therefore, it follows from the Gagliardo-Nirenberg inequality
that

‖∇m+1u‖∞ ≤ C‖∇m+1u‖1−n/rr ‖∇m+2u‖n/rr

for n < r <∞.
Since ∇m+1u ∈ L∞(Rn) and |∇E(x− y)| ≤ C|x− y|1−n, by Lemma 3.1 we see

Dαu(x) =

∫
Rn
∇E(x− y)Dα(F − u⊗ u)(y) dy

≤
∫
Rn

C

|x− y|n−1

(
|∇m+1F |+

m∑
`=1

|∇`u||∇m+1−`u|

+ |u||∇m+1u|

)
(y) dy

≤
∫
Rn

C

|x− y|n−1

{
‖∇m+1F‖Xn+δ

(|y|+ 1)n+δ
+

m∑
`=1

‖∇`u‖Xn−1

(|y|+ 1)n−1

×
‖∇m+1−`u‖Xn−1

(|y|+ 1)n−1
+
‖u‖Xn−1‖∇m+1u‖∞

(|y|+ 1)n−1

}
dy

≤ C{(|x|+ 1)1−n + (|x|+ 1)2−n}
≤ C(|x|+ 1)2−n.

The multiindex α of order m + 1 is arbitrary and we thus obtain ∇m+1u ∈ Xn−2. We
repeat the calculation above using ∇m+1u ∈ Xn−2, instead of ∇m+1u ∈ L∞(Rn), to get
∇m+1u ∈ Xn−1 for n ≥ 4. In the case n = 3, we use |u||∇m+1u| ∈ X3 ⊂ X5/2 in the
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calculation above to obtain ∇m+1u ∈ X3/2. Hence |u||∇m+1u| ∈ X7/2 and repeating the
calculation once again yields ∇m+1u ∈ X2. This completes the induction on m and, as a
conclusion, we derive

∇ju ∈ Xn−1 for all j = 1, . . . ,m,

under the assumption of the lemma.

Now we give the proof of Theorem 2.1.

Proof of Theorem 2.1. The existence of a solution u ∈ Xn−1 to (2.1) is proved essentially
in [11]. The proof is based on the estimate∥∥∥∥∫

Rn
∇E(x− y)(F − v ⊗ v)(y) dy

∥∥∥∥
Xn−1

≤ C(‖F‖Xn+δ + ‖v‖2Xn−1
)

for v ∈ Xn−1, which follows from Lemma 3.1. Here the constant C depends only on n
and δ. Then the typical argument via the contraction mapping principle yields a solution
u ∈ Xn−1 to (2.1) provided that F is sufficiently small in Xn+δ, see [11, Theorem 1.1
(i)] for details. We note that uniqueness of the solution u ∈ Xn−1 in the class of small
solutions in Xn−1 is also shown in [11, Theorem 1.1 (i)].

We prove by induction on m the decay property (2.3) of the solution u ∈ Xn−1 obtained
above. We can check that the case m = 1 follows from the argument below, by letting
m = 0 formally, and thus we omit the proof for m = 1. Assume, in addition to (2.2), that
∇m+1F ∈ Xn+m+1 and ∇ju ∈ Xn−1+j for all j = 1, . . . ,m. According to Lemma 3.2, we
have ∇m+1u ∈ Xn−1. Let α be any multiindex of order m+ 1. We write

Dαu(x) =

∫
Rn
∇E(x− y)Dα(F − u⊗ u)(y) dy

=

∫
|x−y|< |x|+1

2

∇E(x− y)Dα(F − u⊗ u)(y) dy

+

∫
|x−y|> |x|+1

2

∇E(x− y)Dα(F − u⊗ u)(y) dy

=: I3 + I4.
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Since ∇m+1u ∈ Xn−1, we have

(3.3)

|I3| ≤
∫
|x−y|< |x|+1

2

C

|x− y|n−1

(
|∇m+1F |+

m∑
`=1

|∇`u||∇m+1−`u|

+ |u||∇m+1u|

)
(y) dy

≤
∫
|x−y|< |x|+1

2

C

|x− y|n−1

{
‖∇m+1F‖Xn+m+1

(|y|+ 1)n+m+1
+

m∑
`=1

‖∇`u‖Xn−1+`

(|y|+ 1)n−1+`

×
‖∇m+1−`u‖Xn+m−`

(|y|+ 1)n+m−`
+
‖u‖Xn−1‖∇m+1u‖Xn−1

(|y|+ 1)2n−2

}
dy

≤ C

∫
|x−y|< |x|+1

2

dy

|x− y|n−1(|y|+ 1)γ
(γ := min{n+m+ 1, 2n− 2})

≤ C

(|x|+ 1)γ

∫
|x−y|< |x|+1

2

dy

|x− y|n−1

≤ C(|x|+ 1)1−γ.

Concerning the estimate for I4, we integrate I4 by parts for m+ 1 times to get

|I4| ≤ I41 + I42,

where

I41 :=

∫
|x−y|> |x|+1

2

|∇m+2E(x− y)||(F − u⊗ u)(y)| dy,

I42 :=
m+1∑
`=1

∫
|x−y|= |x|+1

2

|∇`E(x− y)|

(
|∇m+1−`F |

+
m+1−`∑
i=0

|∇iu||∇m+1−`−iu|

)
(y) dSy.

Recalling that |∇jE(x− y)| ≤ C|x− y|2−n−j, we obtain

(3.4)
I41 ≤

C

(|x|+ 1)n+m

∫
|x−y|> |x|+1

2

{
‖F‖Xn+δ

(|y|+ 1)n+δ
+

‖u‖2Xn−1

(|y|+ 1)2n−2

}
dy

≤ C(|x|+ 1)−n−m.
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Since |x− y| = (|x|+ 1)/2 implies (|x| − 1)/2 ≤ |y| ≤ (3|x|+ 1)/2, we see

(3.5)

I42 ≤
m+1∑
`=1

∫
|x−y|= |x|+1

2

C

|x− y|n−2+`

{
‖∇m+1−`F‖Xn+m+1−`

(|y|+ 1)n+m+1−`

+
m+1−`∑
i=0

‖∇iu‖Xn−1+i
‖∇m+1−`−iu‖Xn+m−`−i

(|y|+ 1)2n−1+m−`

}
dSy

≤ C

m+1∑
`=1

(|x|+ 1)2−n−`(|x|+ 1)−n−m−1+`
∫
|x−y|= |x|+1

2

dSy

≤ C(|x|+ 1)−n−m.

Here we have used F ∈ Xn+δ ⊂ Xn. Hence

(3.6) |I4| ≤ C(|x|+ 1)−n−m.

Since γ = n+m+ 1 if n ≥ m+ 3 and γ = 2n− 2 if n ≤ m+ 3, it follows from (3.3) and
(3.6) that

|Dαu(x)| ≤ C
{

(|x|+ 1)1−γ + (|x|+ 1)−n−m
}

≤

{
C(|x|+ 1)−n−m if n ≥ m+ 3,

C(|x|+ 1)3−2n if n ≤ m+ 3.

The multiindex α of order m + 1 is arbitrary, and we thus obtain ∇m+1u ∈ Xn+m for
n ≥ m+ 3 and ∇m+1u ∈ X2n−3 for n ≤ m+ 3. Hence the induction on m is completed if
n ≥ m+ 3. For n < m+ 3, in view of the estimates above, we have already obtained the
desired estimate (3.6) for I4 and it suffices to estimate I3 again using ∇m+1u ∈ X2n−3,
instead of ∇m+1u ∈ Xn−1, to get more rapid decay of Dαu (and thus ∇m+1u). Starting
from ∇m+1u ∈ Xn−1, we repeat this procedure for ` times to deduce

|Dαu(x)| ≤


C(|x|+ 1)−n−m if n ≥ m+ 1

`
+ 2,

C(|x|+ 1)1−n+`(2−n) if n ≤ m+ 1

`
+ 2.

We choose ` = m+1 to obtain |Dαu(x)| ≤ C(|x|+1)−n−m for all n ≥ 3 and any multiindex
α of order m+ 1. Therefore

∇m+1u ∈ Xn+m for all n ≥ 3.

This completes the induction on m and we conclude that

∇ju ∈ Xn−1+j for all j = 1, . . . ,m.

Furthermore, from this conclusion and the property that ∇2E is the Calderón-Zygmund
kernel, we can deduce that ∇m+1u ∈ L1,∞(Rn) ∩ Lq(Rn) for 1 < q <∞.
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Next, we prove the decay property (2.4) of the associated pressure p. Let 0 ≤ k ≤ m−1
and let β be any multiindex of order k. By the integration by parts, we see

Dβp(x) =

∫
Rn
Q(x− y) ·Dβ(div F − u · ∇u)(y) dy ≤ I5 + I6 + I7,

where

I5 :=

∫
|x−y|< |x|+1

2

|Q(x− y)|

(
|∇k+1F |+

k+1∑
`=0

|∇`u||∇k+1−`u|

)
(y) dy,

I6 :=

∫
|x−y|> |x|+1

2

|∇k+1Q(x− y)||(F − u⊗ u)(y)| dy,

I7 :=
k∑
`=0

∫
|x−y|= |x|+1

2

|∇`Q(x− y)|

(
|∇k−`F |+

k−∑̀
i=0

|∇iu||∇k−`−iu|

)
(y) dSy.

Recalling that |∇jQ(x − y)| ≤ C|x − y|1−n−j and ∇ju ∈ Xn−1+j (j = 0, 1, . . . ,m), we
estimate I5, I6 and I7 in the same way as (3.3), (3.4) and (3.5), respectively, to get

I5 ≤ C(|x|+ 1)−n−k, I6 ≤ C(|x|+ 1)−n−k, I7 ≤ C(|x|+ 1)−n−k.

Consequently, we obtain |Dβp(x)| ≤ C(|x| + 1)−n−k for any multiindex β with |β| = k.
Therefore

∇kp ∈ Xn+k for all k = 0, . . . ,m− 1.

Finally, we prove the uniqueness of the solution u obtained above in the class of
solutions v ∈ Xn−1 with ∇v ∈ Xn to (2.1). We verify that u is a weak solution of (1.1)
and can satisfy the smallness condition in [4, 10]. Indeed, the pair {u, p} obtained above
satisfies (1.1)1,2 in the sense of distributions and the class of u implies u ∈ Ḣ1

0,σ(Rn).
Thus, we see that

(∇u,∇ϕ) + (u · ∇u, ϕ) = −(F,∇ϕ) for all ϕ ∈ C∞0,σ(Rn).

Here (·, ·) denotes the inner product in L2(Rn). Hence u is a weak solution of (1.1) in the
sense of [9, 3]. Furthermore, in view of the construction of the solution u, we can check
that the estimate ‖u‖Xn−1 ≤ C‖F‖Xn+δ holds for some constant C depending only on n
and δ. Since this implies

‖u‖X1 ≤ C‖F‖Xn+δ
with the same constant C, the solution u can satisfy the smallness condition in [4, 10]
provided that F is sufficiently small in Xn+δ. Therefore, we can apply the result of [4, 10]
to deduce, by restricting the size of F in Xn+δ, that the solution u obtained above is
unique in the class of weak solutions w ∈ Ḣ1

0,σ(Rn) of (1.1) with the energy inequality
‖∇w‖22 ≤ −(F,∇w).

Let v ∈ Xn−1 with ∇v ∈ Xn be a solution of (2.1). As we just saw above, v is a weak
solution of (1.1). It is known that every weak solution w ∈ Ḣ1

0,σ(Rn) with w ∈ L4(Rn)
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fulfills the energy equality ‖∇w‖22 = −(F,∇w) (see [4, IX, Theorem 2.1 and Remark
2.3]). Clearly, v ∈ L4(Rn) and thus v satisfies the energy equality. Consequently, if F is
sufficiently small in Xn+δ, then the argument above yields u = v. The proof of Theorem
2.1 is complete.

Acknowledgment

The research was supported by the Academy of Sciences of the Czech Republic, Institute
of Mathematics (RVO: 67985840). The author would like to thank Professor J. Neustupa
for helpful conversations.

References

[1] W. Borchers, T. Miyakawa, On stability of exterior stationary Navier-Stokes flow,
Acta Math. 174 (1995), 311-382.
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